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selected using closed - loop autonomous materials explora 
tion and optimization ( CAMEO ) . 
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NOVEL NANOCOMPOSITE PHASE - CHANGE 
MEMORY MATERIALS AND DESIGN AND 

SELECTION OF THE SAME 

CROSS - REFERENCE TO RELATED 
APPLICATION 

[ 0001 ] This application claims priority to U.S. Provisional 
Application Ser . No. 63 / 151,263 , filed Feb. 19 , 2021 , the 
disclosure of which hereby is incorporated herein by refer 
ence in its entirety . 

with experiments remains a formidable challenge . Closed 
loop autonomous system for materials exploration and opti 
mization ( CAMEO ) offers a new materials research para 
digm to truly harness the accelerating potential of ML , 
setting the stage for the 21st - century paradigm of materials 
research the autonomous materials research lab run under 
the supervision of a robot scientist or artificial scientist [ 4 ] . a 
Furthermore , CAMEO embraces aspects of human - in - the 
loop autonomous systems [ 5,6 ] , where the human provides 
their expertise while ML presides over decision making 
steps . Live visualization of data analysis and decision mak 
ing ( including uncertainty quantification ) provides interpret 
ability of the autonomous process for the human expert in 
the human - machine research team ( see FIG . 15 ) . CAMEO 
also exploits ( as of yet ) non - automated capabilities of the 
human expert in the closed loop , thus elevating the capa 
bilities of both human and machine . 

STATEMENT OF GOVERNMENT SUPPORT 

[ 0002 ] This invention was made with government support 
under Grant No.HR0011-18-3-0004 awarded by the Depart 
ment of Defense Advanced Research Projects Agency 
( DARPA ) , Grant No. 70NANB17H041 awarded by the 
National Institute of Standards and Technology ( NIST ) , and 
Grant No. N0000141712661 awarded by the Office of Naval 
Research ( ONR ) . The government has certain rights in the 
invention . 

FIELD 

[ 0003 ] The subject matter of the present disclosure gen 
erally relates to improved materials , more particularly 
improved phase - change memory materials for use in the 
field of electronics and semiconductors , and the develop 
ment and design of the same . 

BACKGROUND 

[ 0004 ] Technologies drive the perpetual search for novel 
and improved functional materials , necessitating the explo 
ration of increasingly complex multi - component materials 
[ 1 ] . With each new component or material ( s ) parameter , the 
space of candidate experiments grows exponentially . For 
example , if investigating the impact of a new parameter 
( e.g. , introducing doping ) involves approximately ten 
experiments over the parameter range , N parameters will 
require on the order of 10N + possible experiments . High 
throughput synthesis and characterization techniques offer a 
partial solution : with each new parameter , the number of 
candidate experiments rapidly escapes the feasibility of 
exhaustive exploration . The search is further confounded by 
the diversity and complexity of materials composition 
structure - property ( CSP ) relationships , including materials 
processing parameters and atomic disorder [ 2 ] . Coupled 
with the sparsity of optimal materials , these challenges 
threaten to impede innovation and industrial advancement . 
[ 0005 ] Structural phase maps , which describe the depen 
dence of materials structure on composition , serve as blue 
prints in the design of functional and structural materials , as 
most materials properties are tied to crystal - structure proto 
types . For example , property extrema tend to occur within 
specific phase regions ( e.g. , magnetism and superconduc 
tivity ) or along phase boundaries ( e.g. , caloric - cooling mate 
rials and morphotropic phase - boundary piezoelectrics ) . 
Structural phase maps , and more specifically equilibrium 
phase diagrams , were traditionally generated over years with 
point - by - point Edisonian approaches guided by expert 
knowledge and intuition and involving iterative materials 
synthesis , diffraction - based structure characterization , and 
crystallographic refinement . 
[ 0006 ] Machine learning ( ML ) is transforming materials 
research before our eyes [ 3 ] , and yet direct coupling of ML 

[ 0007 ] Active learning [ 7 ] the ML field dedicated to 
optimal experiment design ( i.e. , adaptive design ) , is key to 
this new paradigm . Active learning provides a systematic 
approach to identify the best experiments to perform next to 
achieve user - defined objectives . Scientific application can 
be traced as far back as the 18th century to Laplace's guided 
discoveries of celestial mechanics [ 8 ] . Bayesian optimiza 
tion ( BO ) active learning techniques have been used more 
recently to guide experimentalists in the lab to optimize 
unknown functions [ 9-14 ] . BO methods balance the use of 
experiments to explore the unknown function with experi 
ments that exploit prior knowledge to identify extrema . 
However , these past studies only advised researchers on the 
next experiment to perform , leaving experiment planning , 
execution , and analysis to the researcher . Recent advances in 
robotics have shifted the burden of materials synthesis from 
human experts to automated systems , accelerating materials 
discovery [ 15,16 ] . Concurrently , active learning has been 
demonstrated to accelerate property optimization by guiding 
simulations of known phases [ 17 ] . More recently , autono 
mous systems and machine learning driven research have 
been demonstrated for optimizing process and system opera 
tion [ 18-20 ) sample characterization [ 21 ] , and tuning chemi 
cal reactions of known polymers and organic molecules for 
technological applications [ 22-24 ] , using off - the - shelf opti 
mization schemes . Taking another step and placing active 
learning in real - time control of solid - state materials explo 
ration labs promises to accelerate materials discovery while 
also rapidly and efficiently illuminating complex materials 
property relationships . Such potential innovation has been 
discussed in recent perspectives [ 25,26 ] , with a primary 
focus on autonomous chemistry [ 27-29 ] . 

SUMMARY 

[ 0008 ] Herein , CAMEO ( see FIG . 1 ) is demonstrated in 
both real - time control of X - ray diffraction measurement 
experiments over composition spreads at the synchrotron 
beamline and in the lab . The algorithm accelerates phase 
mapping and discovery of novel materials , such as novel 
solid - state materials , with a 10 - fold reduction in required 
experiments , each iteration taking tens of seconds to tens of 
minutes depending on the experimental task . 
[ 0009 ] According to an aspect , provided is a phase - change 
memory material including Ge Sb Tez . 
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[ 0010 ] According to another aspect , provided is a phase 
change memory material including a material of formula ( I ) : 

TM Sb Te 
wherein TM is a transition metal , wherein x , y , and z are 
each independently an integer between 1-10 , and wherein 
the phase - change memory material has an extinction differ 
ence between crystalline and amorphous phases ( kc - ka ) 
greater than about 2 in a wavelength range of about 1000 nm 
to about 1500 nm . 
[ 0011 ] According to another aspect , provided is a method 
of forming a photonic switching device including forming a 
film on a substrate , the film including a phase - change 
memory material selected to have an extinction difference 
between crystalline and amorphous phases ( k - k ) greater 
than about 2 in a wavelength range of about 1000 nm to 
about 1500 nm . 
[ 0012 ] According to another aspect , provided is a method 
of forming a memory device including forming a film on a 
substrate , the film including a phase - change memory mate 
rial selected to have an extinction difference between crys 
talline and amorphous phases ( k . - ka ) greater than about 2 in 
a wavelength range of about 1000 nm to about 1500 nm . 
[ 0013 ] According to another aspect , provided is a method 
of selecting a phase - change memory material including : 
evaluating optical bandgap difference of phase - change 
memory materials ; and selecting phase - change memory 
material or materials having larger or largest optical bandgap 
differences , wherein the evaluation is conducted via Bayes 
ian active learning . 
[ 0014 ] According to another aspect , provided is a method 
including : evaluating optical bandgap of a phase - change 
memory material via Bayesian active learning ; and selecting 
a phase - change memory material or materials having larger 
or largest optical bandgap differences . 

a 

to get caught in local optima . Panel b ) The phase - map 
informed optimization scheme exploits CSP relationship by 
recognizing that the property is dependent on phase , thus 
including phase mapping in the search for the optimum . ( i ) 
Phase - mapping steps and ii ) materials optimization step that 
exploits knowledge of the phase boundaries . This allows a 
search for phase region dependent optima . c The Ge Sb 
Te CAMEO workflow began with incorporating raw ellip 
sometry data as a phase - mapping prior . On each iteration , 
CAMEO selects a material to measure for X - ray diffraction 
and concurrently requests an expert to calculate AE , for that 
material . Each cycle takes 20-25 min . 
[ 0017 ] FIG . 3 Discovery of Ge Sb Te , ( GST467 ) . Panel a ) 
Optimization of the Ge - Sb Te system , with the objective 
of identifying the material with the largest AEg , bandgap 
difference between amorphous and crystalline states . Per 
formance is shown for : the CAMEO live run ( black ) with 
GST467 discovered on iteration 19 ( black star ) ; for the mean 
and 95 % confidence interval of 100 CAMEO runs computed 
post data collection ( blue ) , 100 runs of Gaussian process 
upper confidence bounds ( GP - UBC , magenta ) , and random 
sampling ( red ) . For the 100 runs , CAMEO gets within 1 % 
of the optimal in the first 20 runs 31 % of the time compared 
to GP - UBC's 10 % . Panel b ) Left : structural phase map for 
the crystalline GeSb — Te composition spread . Complete 
phase map constructed after all the diffraction measurements 
( beyond the live CAMEO run described in a ) ) is shown . 
Structural phase regions are color - coded as single - phase 
FCC — Ge — Sb — Te ( GST ) structure region ( red , GST ) , 
single - phase Sb — Te region ( blue ) , and region where GST 
and Sb Te phases co - exist ( orange ) . The materials mea 
sured during the live CAMEO run are indicated in black . 
Right : Complete mapping of AE , following analysis of 
entire ellipsometry data ( beyond the live CAMEO run ) . The 
discovered GST467 and GST225 are indicated in both maps . 
[ 0018 ] FIG . 4 Nanostructure and device performance of 
( Ge Sb Te , ) GST467 . Newly identified phase - change 
memory material GST467 shows large optical contrast ideal 
for photonic - switching device applications such as neuro 
morphic computing . Panel a ) High resolution transmission 
electron microscopy image reveals formation of coherent 
nanocomposite of GST structure matrix and Sb Te . The 
dotted lines denote the atomically sharp interface . The FFT 
( inset ) of this region indicates structural similarity of the 
adjacent phases ; panel b ) endurance of the GST467 : it is 
stable over 30,000 cycles indicating the robustness of the 
nanocomposite structure defined by local composition varia 
tion . The dotted lines indicate the range of each state in 
relative optical transmission T / T , at 1500 nm . Laser pulses 
were 50 ns with 183 pJ for quenching and 500 ns with 3.3 
nJ for crystallization . The fluctuations in T / T are due to the 
thermal fluctuation of the device measurement set - up ; panel 
c ) comparison of the optical contrast here indicated by 
difference in the extinction coefficient k between crystalline 
and amorphous phases ( k.-k. ) for the wavelength range of 
1000-1500 nm for various compositions within Ge Sb 
Te system . GST225 and GST467 data are from this work . 
The GeTe data are from ref . 55. GST467 shows higher 
extinction difference over other known compositions ; one 
to - one comparison of panel d ) GST225 ( left ) and panel e ) 
GST467 ( right ) for multi - level switching in optical trans 
mission at 1500 nm ( T / T . ) using 500 ns , 6 pJ pulses : 
GST467 having larger optical contrast results in substan 
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[ 0015 ] FIG . 1 : Closed - loop autonomous materials explo 
ration and optimization ( CAMEO ) . The autonomous cycle 
begins with loading data from databases including compo 
sition data for the materials on the composition spread and 
computed materials data from the AFLOW.org 1 density 
functional theory database . The collected data is then used to 
begin analysis of the data using physics - informed Bayesian 
machine learning . This process extends knowledge of struc 
ture and functional property from materials with data to 
those without , predicting their estimated structure and func tional property , along with prediction uncertainty . Physics 
informed active learning is then used to identify the most 
informative next material to study to achieve user - defined 
objectives . For this work , active learning can select the next 
sample to characterize through autonomous control of the 
high - throughput X - ray diffraction system at a synchrotron 
beamline or it can ( optionally ) request specific input from 
the human - in - the - loop . Future implementations will include 
autonomous materials synthesis and simulation . The data 
collected from measurements and from human input are 
added to the database and used for the next autonomous 
loop . For more information , see EXAMPLE 1 , Methods . 
[ 0016 ] FIG . 2 : Comparison of materials optimization 
schemes . Panel a ) Simple optimization seeks to identify the 
property optimum with a mixture of exploration and exploi 
tation without knowledge of the composition - structure 
property ( CSP ) relationship . These methods are more likely 

o 
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Regions of small circles indicate high likelihood of phase 
region boundary . Black circles indicate samples that have 
been measured for X - ray diffraction and target functional 
property . Red diamond indicates CAMEO's selection of the 
next sample to measure . Panel b ) Color indicates CAMEO 
prediction of functional property , with each phase region 
fitted with its own Gaussian process . Here the measured 
voltage is the signal from scanning SQUID and is propor 
tional to magnetization . Panel c ) Color indicates computed 
GP - UCB acquisition function for ( c ) Panel d ) FMI phase 
mapping convergence calculated between each subsequent 
iteration . Panel e ) Convergence in maximum functional 
property value identified computed as the difference in the 
max identified property in consecutive iterations . 
[ 0030 ] FIG . 16 : The structural information of the nano 
composite phase - change memory material Ge Sb Tey . The 
synchrotron radiation measurements show the coexistence 
of the SbTe impurity and the GeSb — Te matrix . 
[ 0031 ] FIG . 17 : The optical parameters of the Ge_Sb Te , 
and its comparison with Ge Sb Tes . Panel A ) The optical 
parameters of the Ge Sb Te , in the amorphous and crystal 
line states . Panel B ) Comparison of the optical contrast 
indicated by difference in the extinction coefficient k 
between crystalline and amorphous phases ( k crystalline - ka 
morphous ) for the wavelength range of 1000 to 1500 nm . 
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DETAILED DESCRIPTION 

tially more states than GST225 . Device fabrication and 
characterization details are described in EXAMPLE 1 , 
Methods . 
[ 0019 ] FIG . 5. Benchmarking performance . Panel a ) Main 
figure : Phase mapping performance demonstrating that 
CAMEO provides a significant advantage over the three 
alternatives : random sampling , sequential sampling , and 
measuring 10 % of the samples well distributed over the 
composition space . Subset figure : Material optimization 
performance . The benchmark materials optimization chal 
lenge is highly simple with a very prominent , broad peak — a 
challenge that Bayesian optimization schemes excel at . 
Nevertheless , CAMEO provides improved results over the 
next best alternative , GP - UCB . Of note is CAMEO's initial 
lag in performance due to its initial goal of maximizing 
phase mapping performance . Once phase mapping perfor 
mance converges , it then switches to materials optimization 
and shows faster performance than GP - UCB . Panel b ) The 
number of clusters for the benchmark dataset was initialized 
to 5 and while this number on average increased during 
CAMEO's phase mapping , it converged to 5. Demonstrating 
that improved performance was not due to increased com 
plexity defined by a larger number of clusters . 
[ 0020 ] FIG . 6. Color coded phase map prior derived from 
AFLOW.org computed tie - lines ( black lines ) for the bench 
mark Fe Ga — Pd material system . 
[ 0021 ] FIG . 7. Example GeSb Te optical data used for phase mapping prior . 
[ 0022 ] FIG . 8. Panel a ) For the 10 % material selection out 
of the 278 materials in the composition spread , the selected 
28 materials are indicated with filled circles . Panel b ) The 
order of materials measured during sequential measurement . 
[ 0023 ] FIG . 9. Modifications made to the Fe Gad 
remnant magnetization as measured as scanning SQUID 
voltage signals . Panel a ) Circles indicate the samples with 
saturated voltage of 10 V , Panel b ) Modified voltage by 
enhancing main voltage peak at u = Fez Ga 6Pd , and the 
maximum indicated with a circle . 
[ 0024 ] FIG . 10. Phase - change temperature mapping of the 
combinatorial Ge — Sb — Te spread . 
[ 0025 ] FIG . 11. Structural evolution FCC / Ge — SbTe 
( GST ) structure ( top ) to the Sb — Te structure ( bottom ) 
across the line of composition marked in the phase diagram 
on the right . Peak indices are denoted . 
[ 0026 ] FIG . 12. The optical bandgap of amorphous ( left ) 
and crystalline ( right ) states for a combinatorial Ge — Sb 
Te spread . 
[ 0027 ] FIG . 13. The performance of the photonic device 
fabricated by the new nanocomposite PCM , GST467 . The 
symmetric multi - level switching is realized . The inset is the 
top view of the photonic device used for multi - level switch 
ing , endurance test and comparison between Ge Sb Te , and 
Ge Sb Tes : 
[ 0028 ] FIG . 14. Comparison of CAMEO , GP - UCB , and 
random for materials optimization . Each curve shows the 
percentage of the 100 ( post data collection ) simulation runs 
for each active learning scheme which have reached within 
1 % of the optimal AEG . Within the first 20 iterations , 31 % of 
CAMEO's runs have reached within 1 % of the optimal AE 
compared to 10 % for GP - UBC . 
[ 0029 ] FIG . 15. Live visualizations for the Fe Ga - Pd 
system . Panel a ) Samples labeled with the same color are 
identified to belong to the same phase region . The size of the 
filled circles indicates probability of estimated region label . 
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[ 0032 ] The foregoing and other aspects of the present 
disclosure will now be described in more detail with respect 
to other embodiments described herein . It should be appre 
ciated that the subject matter of the present disclosure can be 
embodied in different forms and should not be construed as 
limited to the embodiments set forth herein . Rather , these 
embodiments are provided so that this disclosure will be 
thorough and complete , and will fully convey the scope of 
the examples provided in the present disclosure to those 
skilled in the art . 
[ 0033 ] The terminology used in the description of the 
examples of the present disclosure is for the purpose of 
describing particular embodiments only and is not intended 
to be limiting . As used in the description of the examples and 
the appended claims , the singular forms “ a ” , “ an ” and “ the ” 
are intended to include the plural forms as well , unless the 
context clearly indicates otherwise . Additionally , as used 
herein , the term “ and / or ” includes any and all combinations 
of one or more of the associated listed items and may be 
abbreviated as " / " . 
[ 0034 ] The term “ comprise , " as used herein , in addition to 
its regular meaning , may also include , and , in some embodi 
ments , may specifically refer to the expressions " consist 
essentially of " and / or " consist of . " Thus , the expression 
" comprise ” can also refer to , in some embodiments , the 
specifically listed elements of that which is claimed and does 
not include further elements , as well as embodiments in 
which the specifically listed elements of that which is 
claimed may and / or does encompass further elements , or 
embodiments in which the specifically listed elements of 
that which is claimed may encompass further elements that 
do not materially affect the basic and novel characteristic ( s ) 
of that which is claimed . For example , that which is claimed , 
such as a composition , formulation , method , system , etc. 
“ comprising ” listed elements also encompasses , for 
example , a composition , formulation , method , kit , etc. “ con 
sisting of , " i.e. , wherein that which is claimed does not 

' g ' 
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such as switching between , crystalline and amorphous 
phases ; and , e.g. , at least about 15-20 distinct levels , such as , 
for example , about 17 , distinct levels in non - volatile sym 
metric multi - level switching . It will be appreciated that 
switching between phases , such as switching between crys 
talline and amorphous phases , of materials may be accom 
plished by exposing / subjecting the materials to , for example , 
light , such as laser light , or an electrical current , but are not 
limited thereto . 

[ 0039 ] In some embodiments , phase - change memory 
materials , such as those materials of formula ( I ) , include a 
material of formula ( II ) : 

Ge Sb Tez ( II ) 
a 

a 

g 

a 

include further elements , and a composition , formulation , 
method , kit , etc. " consisting essentially of , " i.e. , wherein 
that which is claimed may include further elements that do 
not materially affect the basic and novel characteristic ( s ) of 
that which is claimed . 
[ 0035 ] The term “ about " generally refers to a range of 
numeric values that one skilled in the art would consider 
equivalent to the recited numeric value or having the same 
function or result . For example , " about ” may refer to a range 
that is within + 1 % , 12 % , 25 % , + 10 % , + 15 % , or even -20 % 
of the indicated value , depending upon the numeric values 
that one skilled in the art would consider equivalent to the 
recited numeric value or having the same function or result . 
Furthermore , in some embodiments , a numeric value modi 
fied by the term “ about ” may also include a numeric value 
that is “ exactly ” the recited numeric value . In addition , any 
numeric value presented without modification will be appre 
ciated to include numeric values " about the recited numeric 
value , as well as include “ exactly ” the recited numeric value . 
Similarly , the term “ substantially ” means largely , but not 
wholly , the same form , manner or degree and the particular 
element will have a range of configurations as one skilled in 
the art would consider as having the same function or result . 
When a particular element is expressed as an approximation 
by use of the term “ substantially , ” it will be understood that 
the particular element forms another embodiment . 
[ 0036 ] Unless otherwise defined , all technical and scien 
tific terms used herein have the same meaning as commonly 
understood by one skilled in the art . 
[ 0037 ] The present disclosure relates to preparation of 
phase - change materials , such as phase - change memory 
materials , with improved and enhanced properties . Features 
include : 
1. Phase - change memory materials having improved or 
enhanced optical bandgap differences between amorphous 
and crystalline states ; 
2. Methods of evaluating / examining phase - change memory 
materials using machine / active learning , such as Bayesian 
active learning and / or Bayesian manifold learning , to select 
phase - change memory materials , such as materials having 
larger optical bandgap differences between phases ; and 
3. Methods of forming electronic devices , such as photonic 
switching devices and / or enhanced memory devices , with 
phase - change memory materials selected using the methods 
evaluating / examining phase - change memory materials 
using machine / active learning , such as Bayesian active 
learning and / or Bayesian manifold learning , as set forth 
herein . 
[ 0038 ] Phase - change memory materials include , for 
example , phase - change memory materials including a mate 
rial of formula ( I ) : 

TM , Sb , Te , ( I ) 

wherein TM is a transition metal , wherein x , y , and z are 
each independently between about 1-10 , between about 
3-10 , between about 3-9 , between about 4-9 , between about 
3-7 or about 4-7 , and wherein the phase - change memory 
material has an extinction difference between crystalline and 
amorphous phases ( ke - ka ) greater than about , e.g. , 2 , in a 
wavelength range of , e.g. , about 1000 nm to about 1500 nm . 
Other properties of the phase - change memory materials 
include , for example : a phase - change temperature of , e.g. , 
about 200 ° C .; a AE , of greater than or equal to about , e.g. , 
0.76 eV ; stability over , e.g. , at least about 30,000 cycles , 

wherein x is between about 3.4 and 4 , y is between about 5 
and 6 , and z is between about 6.5 and 7.5 , and wherein the 
phase - change memory material has an extinction difference 
between crystalline and amorphous phases ( kk ) greater 
than about , e.g. , 2 , in a wavelength range of , e.g. , about 1000 
nm to about 1500 nm . Other properties of the phase - change 
memory materials include , for example : a phase - change 
temperature of , e.g. , about 200 ° C .; a AE , of greater than or 
equal to about , e.g. , 0.76 eV ; stability over , e.g. , at least 
about 30,000 cycles , such as switching between , crystalline 
and amorphous phases ; and , e.g. , at least about 15-20 
distinct levels , such as , for example , about 17 , distinct levels 
in non - volatile symmetric multi - level switching , wherein 
switching between phases , such as switching between crys 
talline and amorphous phases , of materials may be accom 
plished by , for example , exposing / subjecting the materials 
to , for example , light , such as laser light , or an electrical 
current . 

[ 0040 ] In some embodiments , systems for analysis , opti 
mization , and / or prediction of characteristics of composi 
tions / materials , and selection of compositions / materials that 
are suitable for use as , for example , phase - change memory 
materials , are provided . Systems may include any electrical 
circuitry that would be appreciated by one skilled in the art 
configured to perform analysis , optimization , and / or predic 
tion of characteristics of compositions / materials described 
herein . In some embodiments , circuitry to perform the 
analysis , optimization , and / or prediction of characteristics of 
compositions / materials may employ one or more artificial 
intelligence and / or machine learning methods / techniques , 
which in some embodiments may be implemented by cir 
cuitry configured to perform the artificial intelligence and / or 
one or more machine learning methods / techniques . 
[ 0041 ] “ Artificial intelligence ” is used herein to broadly 
describe any computationally intelligent systems and meth 
ods that can learn knowledge ( e.g. , based on training data ) , 
and use such learned knowledge to adapt its approaches for 
solving one or more problems , for example , by making 
inferences based on a received input , such as the received 
characteristics / properties of compositions / materials having 
potential use as a phase - change memory material . “ Machine 
learning ” generally refers to a sub - field or category of 
artificial intelligence , and is used herein to broadly describe 
any algorithms , mathematical models , statistical models , or 
the like that are implemented in one or more computer 
systems or circuitry , such as processing circuitry , and which 
build one or more models based on sample data ( or training 
data ) in order to make predictions or decisions related to , for 
example , analysis , optimization , prediction , and / or selection 

g 
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of compositions / materials that have potential for use , such 
as phase - change memory materials , according to embodi 
ments as set forth herein . 

[ 0042 ] Machine learning techniques utilized may include , 
for example , neural networks , convolutional neural net 
works , deep learning , active learning techniques such as 
Bayesian active learning , Bayesian program learning and / or 
Bayesian manifold learning , support vector machines , pat 
tern recognition techniques , etc. to analyze , optimize , pre 
dict , and / or select characteristics of compositions / materials 
as set forth herein . Furthermore , the machine learning tech 
niques may implement any one or any combination of the 
following computational algorithms or techniques : classifi 
cation , regression , supervised learning , unsupervised learn 
ing , feature learning , clustering , decision trees , etc. , or the 
like . 

[ 0043 ] As one example , an artificial neural network may 
be utilized by the system to develop , train , or update one or 
more machine learning models which may be utilized to 
optimize , predict , and / or determine the characteristics of 
compositions / materials . An example artificial neural net 
work may include a plurality of interconnected “ neurons ” 
which exchange information between each other . The con 
nections have numeric weights that can be tuned based on 
experience , and thus neural networks are adaptive to inputs 
and are capable of learning . The “ neurons ” may be included 
in a plurality of separate layers which are connected to one 
another , such as an input layer , a hidden layer , and an output 
layer . The neural network may be trained by providing 
training data ( e.g. , past data related to characteristics / prop 
erties of compositions / materials ) to the input layer . Through 
training , the neural network may generate and / or modify the 
hidden layer , which represents weighted connections map 
ping the training data provided at the input layer to known 
output information at the output layer ( e.g. , classification of 
characteristics / properties of compositions / materials ) . Rela 
tionships between neurons of the input layer , hidden layer , 
and output layer , formed through the training process and 
which may include weight connection relationships , may be 
stored , for example , as one or more machine learning 
models within the system , or any circuitry thereof . 
[ 0044 ] Once the neural network has been sufficiently 
trained , the neural network may be provided with non 
training data ( e.g. , received characteristics / properties of 
novel and / or uncharacterized compositions / materials that 
are not currently part of the training data ) at the input layer . 
Utilizing characteristics / properties knowledge ( e.g. , as 
stored in the machine learning model , and which may 
include , for example , weighted connection information 
between neurons of the neural network ) , the neural network 
may make determinations about the received characteristics / 
properties of novel and / or uncharacterized compositions / 
materials at the output layer . For example , the neural net 
work may be used to predict and / or determine if a particular 
novel and / or uncharacterized composition / material may 
have characteristics / properties that are suitable for its use as 
a phase - change memory material . 
[ 0045 ] Employing one or more computationally intelligent 
and / or machine learning operations , the system may learn , 
for example , by developing and / or updating a machine 
learning algorithm or model based on training data , to 
predict and / or determine characteristics of compositions / 

materials based at least in part on knowledge , inferences or 
the like developed or otherwise learned through training of 
the system . 
[ 0046 ] In some embodiments , systems may be operated by 
and / or on a computer processor , a microprocessor , a micro 
controller , or the like , configured to perform the various 
functions and operations described herein with respect to a 
system and / or circuitry for analysis of compositions / mate 
rials characteristics as set forth herein . In some embodi 
ments , systems and / or electrical circuitry for analysis of 
compositions / materials characteristics may be configured to 
execute software instructions stored in any computer - read 
able storage medium , including , for example , read - only 
memory ( ROM ) , random access memory ( RAM ) , flash 
memory , hard disk drive , optical storage device , magnetic 
storage device , electrically erasable programmable read 
only memory ( EEPROM ) , organic storage media , or the 
like . In some embodiments , analysis of compositions / mate 
rials characteristics may include data / information transmis 
sion on a communications network without limitation . The 
communications network may utilize one or more protocols 
to communicate data / information via one or more physical 
networks , including local area networks , wireless networks , 
dedicated lines , intranets , the Internet , and the like . 
[ 0047 ] Methods used to select compositions / materials , 
such as phase - change memory materials , accordingly may 
include , for example , selecting materials using machine 
learning methods / techniques , such as active learning meth 
ods / techniques , for example , Bayesian active learning and / 
or Bayesian manifold learning , to analyze , optimize and / or 
predict characteristics , e.g. , extinction differences , phase 
change temperatures , stability , such as cycle stability of 
switching between crystalline and amorphous phases , of 
compositions / materials , such as compositions / materials of 
formula ( I ) and ( II ) , that may be suitable for phase - change 
memory materials . The analysis of characteristics may , in 
some embodiments , be based at least in part on known 
characteristics that are part of a database for characteristics 
of compositions / materials , for example , characteristics and / 
or physical properties of compositions / materials that are 
available at www.AFLOW.org . In some embodiments , ana 
lyzing , optimizing , and / or predicting characteristics of the 
compositions / materials , as well as selecting compositions 
materials , is accomplished via Bayesian active learning 
and / or Bayesian manifold learning . In some embodiments , 
the Bayesian active learning and / or Bayesian manifold 
learning utilized in the methods includes closed - loop 
autonomous materials exploration and optimization 
( CAMEO ) . In some embodiments , methods used to select 
compositions / materials may include methods as set forth , 
for example , in Kusne , A. G. et al . On - the - fly closed - loop 
materials discovery via Bayesian active learning . Nat . Com 
mun . 11 , 5966 ( 2020 ) and supplemental information there 
for , the disclosure of which hereby is incorporated by 
reference in its entirety . 

EXAMPLES 

[ 0048 ] Having described various aspects , the same will be 
explained in further detail in the following examples , which 
are included herein for illustrative purposes , and which are 
not intended to be construed as limiting . 
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Example 1 

31 

On - The Fly Closed - Loop Materials 
Characterization Via Bayesian Active Learning 

[ 0049 ] Closed - loop autonomous system for materials 
exploration and optimization ( CAMEO ) has been demon 
strated in real - time control of X - ray diffraction measurement 
experiments over composition spreads at the synchrotron 
beamline and in the lab . The algorithm can accelerate phase 
mapping and materials discovery of a novel solid - state 
material , with a 10 - fold reduction in required experiments , 
each iteration taking seconds to tens of minutes depending 
on the experimental task . 

g 

Results 

[ 0050 ] CAMEO uses a materials - specific active - learning 
campaign that combines the joint objectives of maximizing 
knowledge of the phase map P ( x ) with hunting for materials 
X + that correspond to property F ( x ) extrema . Here xER d is 
the set of d materials - composition parameters . In particular , 
subsequent phase mapping measurements are driven by 
Bayesian graph - based predictions combined with risk mini 
mization - based decision making , ensuring that each mea 
surement maximizes phase map knowledge ( see “ Methods ” 
sections “ M1c - e ” ) . CAMEO accelerates both tasks by 
exploiting their mutual information via function g ( see Eq . 
1 ) . Further acceleration is achieved through integration of 
physics knowledge ( e.g. , Gibbs phase rule ) as well as prior 
experimental and theory - based knowledge of the target 
material system . 
[ 0051 ] These features allow CAMEO to target its search in 
specific phase regions or to search near phase boundaries 
where significant changes in the target property are likely to 
occur , thus exploiting the dependence of materials property 
on structure . An example of how phase map knowledge can 
accelerate materials discovery and optimization is shown in 
FIG . 2a . Off - the - shelf BO methods ignore material structure 
and assume material properties are a function of only the 
synthesis parameters , while CAMEO incorporates knowl 
edge that significant changes in properties may occur at 
phase boundaries . Phase mapping knowledge thus improves 
property prediction estimate and uncertainty where it mat 
ters most . 
[ 0052 ] For this example a simplified implementation of g 
is used , switching from phase mapping to materials optimi 
zation once phase mapping converges . Materials optimiza 
tion is focused in the most promising phase region , with a 
greater importance given to compounds near the phase 
boundaries . CAMEO thus provides two benefits — a signifi 
cant reduction of the search space and an improved func 
tional property prediction due to phase map knowledge . 
Discussion of other approaches to g appears in the “ Meth 
ods ” section . We demonstrate that this physics - informed 
approach accelerates materials optimization compared to 
general optimization methodologies that focus on directly 
charting the high dimensional , complex property function . 

Xx = argmax [ g ( x ) , P ( x ) ) ] 
[ 0053 ] Here , we explored the GeSb — Te ternary system 
to identify an optimal phase - change memory ( PCM ) mate 
rial for photonic switching devices30 . PCM materials can be 
switched between the amorphous and crystalline states with 
an associated change in resistance and optical contrast which 
can be accessed on the nanosecond scale or shorter . Various 

Ge — Sb — Te based PCMs , especially Ge Sb Tes ( GST225 ) , 
have been used in DVD - RAM and nonvolatile phase - change 
random - access memory . We have implemented our strategy 
for identifying the optimal composition within the ternary 
for high - performance photonic switching with an eye toward 
neuromorphic memory applications . Our goal was to find 
a compound with the highest optical contrast between amor 
phous and crystalline states in order to realize multi - level 
optical switching with a high signal - to - noise ratio . The 
composition range mapped was selected based on the lack of 
detailed phase distribution and optical property information 
near known PCM phases . We tasked CAMEO to find the 
composition with the largest difference in the optical band 
gap AE , and hence optical contrast between amorphous and 
crystalline states . We have discovered a naturally - forming 
stable epitaxial nanocomposite at a phase boundary between 
the distorted face - centered cubic GeSb — Te structure 
( which we refer to as FCC / GeSb Te or simply GST ) 
phase region and phase coexisting region of GST and 
Sb Te whose optical contrast is superior to the well - known 
GST225 or other compounds within the Ge — Sb — Te ter 
nary . In a direct comparison , a photonic switching device 
made of the newly discovered material outperforms a device 
made of GST225 with a significant margin . 
[ 0054 ] CAMEO satisfies many attributes of a robot sci 
entist , as diagrammed in FIG . 1. The modular algorithm has 
‘ at its fingertips ' a collection of information knowledge of 
past experiments both physical and computational , materials 
theory , and measurement - instrumentation science . The algo 
rithm uses this knowledge to make informed decisions on 
the next experiment to perform in the pursuit of optimizing 
a materials property and / or maximizing knowledge of a 
materials system . For example , at each iteration the set of 
possible phase maps are identified and ranked by Bayesian 
likelihood , given analysis results of the measured materials . 
Phase map and functional property likelihoods establish 
scientific hypotheses and drive further phase mapping and 
materials optimization and are also presented to the human 
in - the - loop who can then ( optionally ) provide guidance . 
Specifics are presented in Methods . CAMEO controls lab 
based characterization equipment in real - time to orchestrate 
its own experiments , update its knowledge , and continue its 
exploration . The more specific implementation of Eq . 1 is 
shown in FIG . 2 . 
[ 0055 ] CAMEO is based on the fundamental precept that 
in navigating compositional phase diagrams , enhancement 
in most functional properties is inherently tied to the pres 
ence of particular structural phases and / or phase boundaries . 
The strategy is , therefore , broadly applicable to a variety of 
topics with disparate physical properties . The method was 
first benchmarked and its hyperparameters tuned using a 
previously characterized composition spread Fe_Ga Pd , 
where an entirely different physical property - remnant 
magnetization , was optimized ( see “ Methods ” for bench 
marking method and performance analysis ) . It was then 
successfully used to discover a new photonic PCM compo 
sition whose AE , ( between crystalline and amorphous 
states ) is up to 3 times larger than that of the well - known 
Ge Sb Tes : 
[ 0056 ] For this task , scanning ellipsometry measurements 
were performed on the spread wafer with films in amor 
phous ( initial ) and crystalline states ahead of the CAMEO 
run , and the raw ellipsometric spectra data were incorpo 
rated as a phase - mapping prior . This was performed by 

g 
( 1 ) 
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increasing graph edge weights between samples of similar 
raw ellipsometry spectra during the phase mapping opera 
tion ( see " Methods ” section “ M1c " ) . Thus , the algorithm 
makes use of information regarding phase distribution 
across the spread that is " hidden " in the unreduced complex 
spectroscopic data , which vary non - trivially across the 
spread . At each iteration , CAMEO identifies the next mate 
rial to query , indicates the material to the experimentalist 
( human - in - the - loop ) who performs the intensive task of 
processing the raw optical data to extract AEg . In parallel , 
CAMEO remotely controls scanning of the synchrotron 
beam to collect X - ray diffraction data from the spread wafer 
with films in the crystalline state . CAMEO first seeks 
knowledge of the phase map until 80 % convergence , and 
then switches to material optimization ( see “ Methods ” sec 
tion “ M1 ” ) . This procedure identified the material with the 
largest AEg over 19 iterations taking approximately 10 h , 
compared to over 90 continuous hours for the full set of 177 
composition spots . After data collection CAMEO was 
bench - marked against common active learning schemes 
with each run for 100 simulations . CAMEO provides an 
approximate maximum average 35 - iteration lead over the 
best alternative Gaussian process - upper confidence bounds 
( GP - UCB ) focusing on AE , optimization in the composition 
space . The use of the ellipso - metry prior to accelerate phase 
mapping provides a 25 - iteration lead out of the 35. Further 
more , over the 100 runs , CAMEO gets within 1 % of the 
optimal in the first 20 runs 31 % of the time compared to 
GP - UBC's 10 % ( see FIG . 14 ) . 
[ 0057 ] As seen in FIG . 3 , panel b , the optimal composition 
identified here lies at the boundary between the FCC Ge 
Sb Te ( GST ) phase region and the region where there is 
co - existence of GST and Sb — Te phases . The average com 
position of the region is Ge4Sb6Te7 , and henceforth we 
refer to the region as GST467 . Its AE , is found to be 
0.76 + 0.03 eV , which is nearly 3 times that of GST225 
( 0.23 + 0.03 eV ) . To investigate the origin of the enhanced 
AE , of GST467 at the phase boundary , we have performed 
high - resolution transmission microscopy of this composi 
tion ( FIG . 4 , panel a ) which revealed a complex nanocom 
posite structure consisting of GST and Sb — Te phases . As 
seen in the figure , the phases have grown coherently with the 
relationship GST Fm - 3m ( 111 ) // Sb Te ( 001 ) . ( see “ Methods ” 
for details . ) 
[ 0058 ] This boost in AE , indeed directly leads to large 
enhancement in optical contrast as captured in Ak = k . - k? , 
the difference in the extinction coefficient ( between amor 
phous ( k . ) and crystalline states ( k . ) ) extracted from the 
ellipsometry data at different wavelengths ( FIG . 4 , panel c ) . 
Ak for GST467 is 60-125 % larger than that of GST225 in 
the 1000-1500 nm wavelength range . The superior physical 
properties of GST467 shown here were reproduced on 
multiple composition spread wafers . 
[ 0059 ] We have fabricated photonic switching PCM 
devices based on the discovered GST467 nanocomposite . 
With a sequence of laser pulses ( energy and pulse width ) 
with varying amplitude sent through the device , the material 
can be switched between the crystalline and amorphous 
phases ( FIG . 4 , panel b ) . The device made of the nanocom 
posite GST467 thin film was found to be stable up to at least 
30,000 cycles indicating the high reversibility of the crys 
tallization and quenching processes of the coherent nano 
composite . The one - to - one comparison between the devices 
fabricated with our GST225 and GST467 films here ( FIG . 4 , 

panels d and e ) shows that GST467 device exhibits a 
much - enhanced switching contrast resulting in up to 50 % 
more in the number of interval states , important for photonic 
memory and neuromorphic devices 32,33 
[ 0060 ] Recent reports of nanostructured PCM materials , 
including multilayer and superlattice thin films have high 
lighted the crucial roles interfaces and defects play in their 
switching mechanisms leading to faster switching speed and 
lower switching energies34,35 . Our finding of GST467 
exhibiting significant boost in AE , and consequently larger 
optical contrast , underscores the effectiveness of naturally 
forming nanocomposites as another approach to enhancing 
performance of PCM materials , especially for optical 
switching devices . It is the presence of epitaxial nano 
pockets of the Sb Te phase in GST467 which is locally 
modifying the resonant bonding in the GST matrix resulting 
in the lowered optical bandgap in the crystalline state , which 
in turn leads to the larger AEG : 
[ 0061 ] The discovery of a novel PCM material demon 
strates that systems similar to CAMEO will fulfill the 
primary goals of materials design by accelerating the dis 
covery and collection of materials knowledge , streamlining 
the experiment cycle , improving control over experimental 
variability , and improving reproducibility , thus improving 
trust in scientific results . They will also generate reference 
and benchmark datasets — automatically processed , ana 
lyzed , and converted to actionable knowledge with all 
associated metadata , for developing and improving trust in 
machine learning tools . Further benefits include automatic 
knowledge capture to maintain institutional knowledge , 
maximizing information gain , and reducing use of consum 
able resources , such as expert time , freeing up experts to 
work on higher level challenges . Research at the synchro 
tron exemplifies these resource demands and limitations , 
where obtaining scientist and equipment time is difficult or 
expensive . And potentially most impactful , placing labs 
under the control of AI may greatly reduce the technical 
expertise needed to perform experiments , resulting in a 
greater ' democratization of science36 . In turn , this may 
facilitate a more distributed approach to science , as advo 
cated by the materials collaboratory concept37 

g 

Methods 

[ 0062 ] MO Outline of Sections . 
[ 0063 ] A description of the closed - loop , autonomous sys 
tem for materials exploration and optimization ( CAMEO ) 
scheme can be found in Mi beginning with a detailed 
description of results and a description of materials and 
device synthesis and characterization in section M2 . The 
description of CAMEO is broken down into the subsections : 
Mla detailed results , Mlb Initialization and data pre - pro 
cessing , Mlc Phase mapping , Mid Knowledge propagation , 
Mle Active learning , Mif Statistics and performance mea 
sures . The materials and device section is broken down into 
the subsections : M2a Sample fabrication , M2b Mapping of 
phase - change temperature , M2c Structural mapping , M2d 
High - angle annular dark - field scanning transmission elec 
tron microscopy ( HAADF - STEM ) of Ge_Sb Te , ( GST467 ) , 
M2e Modeling and calculation of the ellipsometry spectra , 
M2fGST467 photonic device fabrication and measurement . 
[ 0064 ] M1 CAMEO . 
[ 0065 ] CAMEO's methodology follows the diagrams of 
FIGS . 1 and 2c ( main text ) , where active learning drives 
measurement and expert input . Active - learning - driven syn 
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thesis and simulation are excluded for this work . The 
materials are pre - synthesized as a composition spread and , 
if desired , the AFLOW.org density functional theory ( DFT ) 
simulations are run prior to CAMEO's control of the X - ray 
diffraction measurement . For this work , DFT calculations 
were run to build a prior for the FeGa — Pd phase map 
ping . DFT data were not used for the Ge — Sb Te material 
system , instead ellipsometry data was used to build a phase 
mapping prior . The combinatorial library is physically 
loaded into the high - throughput X - ray diffraction system , 
and any data captured from external or internal databases is 
automatically imported into CAMEO . All preliminary data 
is analyzed to build the first estimated phase map along with 
uncertainty quantifications . This kicks off the iterative 
autonomous process where the phase map and material 
property estimate and estimate uncertainty are used to 
inform the active - learning - driven selection of the material to 
query next . At each iteration , CAMEO selects a material to 
study and requests and obtains structure and functional 
property data for the query material , with automatic X - ray 
diffraction pre - processing . In parallel , results and predic 
tions are presented to the expert user and pertinent knowl 
edge is captured from the expert . All gathered knowledge is 
then stored in a database . A description of the capabilities of 
CAMEO are presented in Table 1 . 

optimization ) . However , g is a general function , flexible for g 
other implementations , such as combining knowledge of 
composition , lattice structure , and functional property ( as 
well as microstructure , and other information ) in one inte 
grated acquisition function . Future work will explore the 
pros and cons of these other implementations . 
[ 0068 ] For this work , the first set of iterations maximize 
phase map knowledge until the estimated phase map con 
vergences to the user defined threshold c , at which point the 
system switches to materials property optimization . A sepa A 
rate Gaussian Process is fit to each individual phase region 
for the functional property , allowing for phase region depen 
dent hyperparameter optimization . This exploits the CSP 
relationship to improve functional property prediction accu 
racy , accelerate materials optimization , and provide poten 
tial computational resource savings . The phase regions are 
then ranked by the maximum expected functional property 
value and the top R regions are selected for optimization , 
with R a user defined variable . Here R is set to 1. Optimi 
zation balances exploitation and exploration through the 
mean u ( x , ) and weighted variance Bo ( x ) ( the iteration 
dependent ß follows ref . 38 and is described below ) . The 
optimization acquisition function also allows the user to 
target points closer or further from phase boundaries via 
yd ( x , ) , where d ( x ) is the distance from point x , to the nearest 

TABLE 1 

Knowledge and Control implemented in CAMEO 

Knowledge and Control CAMEO 

Knowledge : Past experiments both physical and Automated access to experimental and density 
computational functional theory materials structure databases . 

Includes Inorganic Crystal Structure Database and 
AFLOW.org . 

Knowledge : Materials physics theory Phase mapping and structure theory including Gibbs 
phase rule via constraint programming 

Knowledge : Materials synthesis and processing NA 
Knowledge : Measurement science X - ray diffraction simulation capability using 

structure data as input 
Control : Synthesis control NA 
Control : Characterization X - ray diffraction : high - throughput X - ray diffraction 

system at the Stanford Synchrotron Radiation 
Lightsource ( SSRL ) and Bruker D - 8 * 

Control : Communication GUI for user interface ; Interface to databases to store 
and share knowledge with experts and other Als ; 
Network interface for instrument control 

[ 0066 ] CAMEO's specific implementation of Eq . 1 is 
shown in Eq . 2 : 

( 2 ) g ( x ) = { ) = { P ( x ) , c < 80 % 
F ( xr ) = = u ( xr ) + Bo ( Xr ) + yd ( bfx , ) else = 

[ 0067 ] Recent use of active learning in materials science 
seeks to optimize functional material properties as a function 
of only the material synthesis parameters , e.g. , composition . 
However , a material's properties are clearly not just depen 
dent on its composition . Fundamental to functional proper 
ties are a material's lattice structure , microstructure , stress , 
etc. The general function g provides a framework for incor 
porating these different pieces of knowledge as well as an 
active learning scheme for acting on the knowledge . Here 
we take the simplest action scheme , switching between one 
phase of optimization ( phase mapping ) to another ( materials 

phase boundary and y is a user - defined parameter - negative 
( positive ) to emphasize points near the edge ( center ) of the 
phase region . Here the value is set to 10. Myopia to 
particular phase regions can be removed with an additional 
exploration policy 
[ 0069 ] Pre - synthesized ( pseudo ) ternary combinatorial 
spreads are used to provide a pool of hundreds of materials 
to investigate . While for this demonstration the autonomous 
system must select samples from the given pool of pre 
synthesized samples , this is only a limit of the current 
physical experimental system and not a limit of the pre 
sented ML methodology . 
[ 0070 ] Mla CAMEO Detailed Results . 
[ 0071 ] CAMEO was benchmarked on a material system 
previously studied9 . Efficacy was compared to a range of 
alternative methods as shown in FIG . 5 with phase mapping 
performance measured with the Fowlkes - Mallows index 
( FMI ) and Bayesian optimization performance measured by 



US 2022/0407001 A1 Dec. 22 , 2022 
9 

a 

a 

8 

' 

minimum percent deviation from optimal . The mean per 
formance and 95 % confidence intervals over 100 iterations 
are plotted in FIG . 5. The algorithm provides significant 
accuracy improvement and lower variance in phase map 
ping . Additionally , each level of increased physical knowl 
edge further accelerates phase mapping . The benchmark 
optimization challenge was to maximize a functional prop 
erty that is a simple function of composition with one broad , 
dominant peak in one phase region and a smaller peak with 
a maximum in another phase region . For this simple chal 
lenge , CAMEO provides improved performance compared 
to the next best optimization scheme Gaussian process 
upper confidence bounds ( GP - UCB ) . For more information 
about the benchmarking process see ( Active learning 
materials optimization : benchmark system ) . 
[ 0072 ] Once tuned , CAMEO was placed in active control 
over the high - throughput X - ray diffraction system at SLAC 
and a commercial in - house diffraction system . Here , the 
material optimization goal was to identify an optimal phase 
change material in the Ge_Sb - Te system , characterized 
by maximizing AE —the difference between the amorphous 
and crystalline optical bandgap . Scanning ellipsometry mea 
surements were performed on the spread wafer in amor 
phous and crystalline states ahead of the CAMEO run , and 
we fed the unprocessed ellipsometric spectra as a prior for 
building the phase map model . At each iteration , the query 
material was indicated to the experimentalist ( human - in - the 
loop ) who then performed the intensive task of processing 
the raw optical data to obtain AE , and provided this data to 
CAMEO ( see section “ M2e ” for full description ) . This 
procedure identified the material with the largest AE , over 
19 iterations taking approximately 10 h , compared to 90 h 
for the full set of 177 materials . A post - analysis is shown in 
FIG . 4 , where 100 runs are performed comparing CAMEO 
to alternative methods . CAMEO provides an approximate 
maximum average 35 - iteration lead over GP - UCB . More 
importantly , the algorithm is able to mine and make use of 
information regarding phase distribution across the spread 
hidden in the complex raw spectroscopic data . 
[ 0073 ] M1b System Initialization and Data Pre - Processing 
[ 0074 ] Physical system initialization . The system is ini 
tialized by loading the composition spread into the X - ray 
diffraction system , either the Bruker D8 * or the SSRL 
diffraction synchrotron beamline endstation . For the SSRL 
system , a network connection is used for sending commands 
to the X - ray diffraction system via the SPEC interface40 . 
Exposure time for each point measurement was 15 s . 
[ 0075 ] Importing external data : ICSD and AFLOW.org . 
The user first indicates the material system of interest . A 
database of known stable phases , derived from past phase 
diagrams , is then used to automatically identify pertinent 
phases . Structure data is then automatically assembled for 
these phases from the Inorganic Crystal Structure Database 
( ICSD ) a database of critically evaluated experimental 
structures , and the AFLOW.org4l density functional theory 
database . All retrieved structures are then used to generate 
simulated diffraction patterns through a call to Bruker's 
Topas42 . After data is collected from the databases , the pool 
of material samples is updated to contain both the samples 
on the composition spread and those derived from databases . 
Previously it was shown that external structure data 
improved phase mapping performance in the case of exhaus 
tive data collection42 . For this work , the AFLOW.org com 
puted ternary energy hull is imported and converted to 

region labels which are used as phase region ( i.e. cluster ) 
priors , see FIG . 6 and Phase mapping prior . 
[ 0076 ] Initialize phase mapping . Phase mapping is initial 
ized with a user - selected expected number of phase regions 
for the material system , 5 for FeGa - Pd and 10 for 
Ge — Sb — Te . While this number is used to initialize the 
phase map model , the phase mapping technique will con 
verge to either a larger or smaller number of phase regions 
as described in the GRENDEL ( graph - based endmember 
extraction and labeling ) section . All other phase mapping 
hyperparameters were optimized on the benchmark system , 
and these values were used without modification for the 
Ge — Sb — Te system . Other default parameters include : 
graph distance multiplier is 1.2 and max number of iterations 
is 100 . 
[ 0077 ] Selection of first sample to seed processes . If prior 
material structure data is imported , such as data from 
AFLOW.org , that knowledge is used to initialize phase 
mapping ( see Phase mapping prior ) , with the active learning 
criterion used to select the most informative material to 
query next . However , if no such prior data is used , the first 
sample queried can be selected randomly or using some 
other informative process . For benchmarking , the initial 
material was selected at random with uniform probability . 
For the live application to the GeSb Te system , the first 
sample was selected to be the one at the composition center 
of the materials on the composition spread . This sample was 
selected as it is potentially the most informative , given no 
other knowledge of the samples . The live run for the 
Ge — Sb — Te system completed after all the materials were 
measured , allowing for later analysis of active learning 
methodologies . To compare these methods , the initial mate 
rial was again selected at random with a uniform prior . 
[ 0078 ] Measurement and data pre - processing : collection , 
integration , background subtraction . Once the next query 
material has been identified , the system then measures the 
query material for X - ray diffraction using a programmati 
cally generated script via SPEC for the SLAC high - through 
put system or a GADDS script for the Bruker system . For the 
Bruker system , the diffraction image is integrated into a 
diffraction pattern automatically , and for the SLAC system , integration is performed as well43 . The background signal is 
then automatically identified and subtracted . 
[ 0079 ] The background signal from sample to sample can 
vary significantly , requiring a background subtraction 
method capable of handling these variations . For both the 
SLAC and Bruker diffraction measurements , Matlab's enve 
lope function with the ‘ peak ' setting and the parameter value 
of 50 was used to identify and remove the background curve . 
[ 0080 ] Mic Phase mapping 
[ 0081 ] Main method : GRENDEL — list of physical con 
straints . Phase mapping was performed using the physics 
informed phase region and constituent phase identification 
method GRENDEL 44. This method represents the material 
composition space as a graph , where each material is rep 
resented by a vertex that is connected by edges to neigh 
boring materials in composition space ( or wafer x - y coor 
dinate ) . Neighboring materials are defined by Voronoi 
tessellating the composition space 44. Mathematically , G = { V , 
E } , where V is the set of vertices , E is the set of edges with 
all edge weights set to 1. G is used to define a Markov 
Random Field ( MRF ) 45 where materials identified with the 
same vertex label belong to the same phase region , and each 

9 
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phase region is described by a set of constituent phases . This 
method encodes a list of physical constraints through the 
methods listed in Table 2 . 

a prior for phase mapping . For materials that share a graph 
edge and a clustering label , the edge weight in E , is set to 1 , 
otherwise the edge connecting them is removed from Ep . 

p 

TABLE 2 

List of physical constraints in [ ( 32 ) ] method and associated encoding methods . 

Physical Constraint Encoding Method 
Phase regions are cohesive and phase 1. If two or more set of vertices share the same 
boundaries are continuous phase region label but are not connected by vertex 

neighbors , differing labels are assigned to the 
disconnected sets . 
2. The Markov Random Field smoothness 
constraint 

Materials of similar synthesis and processing 1. Markov Random Field smoothness constraint 
parameters have similar properties 2. Harmonic Energy Minimization for label 

propagation 
Abundances of phases is non - negative Karush - Kuhn - Tucker conditions 
X - ray diffraction intensity is non - negative Karush - Kuhn - Tucker conditions 
Soft Gibbs Phase Rule - Upper bound limit on Upper limit on number of endmember limits 
number of constituent phases allowed in each phase region 
Identified endmembers should be physically Volume constraint on identified / predicted 
realizable endmembers 

[ 0082 ] This method identifies a phase map for hundreds of 
samples in tens of seconds , on the same order of X - ray 
diffraction measurements at SSRL which typically takes 30 
s , and measurements on the Bruker D8 which takes over 10 
min . 

2 

3 

[ 0087 ] For the Ge Sb Te material system , the prior was 
determined based on optical data collected . For each mate 
rial , the complex reflectance ratio amplitude y and phase 
difference A for the amorphous and crystalline phases were 
collected for the set of angles e = { 50 ° , 55 ° , 60 ° , 65 ° , 70 ° } 
relative to the laser's plane of incidence , creating 20 spectral 
measurements for each material consisting of different mea 
surement types me { ycrystalline , yamorphous , Acrystalline , 
Aamorphous } . Example optical data used for the prior is 
shown in FIG . 7 . 
[ 0088 ] To define a prior for the phase diagram , the set of 
all spectra are reduced into a set of similarity weights 
defining a similarity of 0 or 1 for each pair of samples , which 
can then be used to evaluate Ey . The following equations are 
used for mapping of spectra to similarity values . First the 
Euclidean difference between each set of materials ( i , j ) is 
computed for each spectral measurement type and angle { m , 
e } . These differences are then averaged for each pair of 
samples ( i , j ) over the set of angles e and then normalized to 
between 0 and 1 for each measurement type m . These values 
are then averaged again over measurements m , resulting in 
a final dissimilarity value for each pair ( i , j ) . A threshold is 
then used to convert the continuous dissimilarity values to 0 
or 1 , defining whether an edge between ( i , j ) exists ( 1 ) or 
does not ( 0 ) . The threshold of DThreshold = 0.07 was selected 
to achieve a ratio of E , \ / EI = 0.49–0.5 , i.e. , the prior removes approximately half the edges from the initial graph . 

[ 0083 ] GRENDEL hyperparameters include the MRF seg 
mentation ( i.e. , graph cut ) weight and the balance between 
the material - phase region matrix based on clustering and 
that based on phase mixture 44. As the graph cut weight is 
increased , a greater number of clusters becomes possible , 
increasing the phase mapping performance using the mea 
sured described in the text , while also increasing cluster 
complexity . For the Fe Ga — Pd a graph cut weight of 
W & c = 100 * n ° 13 was found to output the desired number of 
clusters n . The full set of phase mapping parameters are 
described in the text . 

[ 0084 ] During the GRENDEL process , if the number of 
clusters drops below 90 % of the number of clusters used 
when starting the process , GRENDEL is terminated and the 
computed phase map labels and constituent phases from the 
previous internal GRENDEL iteration are output . 
[ 0085 ] Phase mapping prior . Material property data is 
incorporated into the MRF model as a prior through the edge 
weights of the composition graph G , where the original edge 
weights of G are modified by a functional property graph Go 
with edge weights of 0 ( disconnected ) or 1 ( connected ) and 
f : E , E - > E . If e E En E , then e = l + € e else e = 1- € e . The value 
of € , was varied for the benchmark material system and the 
value of € = 0.5 selected as it demonstrates clear improved 
phase mapping performance during the first active learning 
selected measurements and worse performance near the end 
of the run . This is to be expected as prior knowledge can 
benefit initial analysis but can overwhelm knowledge gained 
from data if the prior is weighted too heavily . A smaller 
( larger ) value of € demonstrates a smaller ( larger ) , similar 
effect . 

[ 0086 ] For the benchmark system an AFLOW.org based 
phase map prior was used , as shown in FIG . 6 , where the 
AFLOW.org tie - lines are used to define regions . Points that 
fall in the same region are given the same label , resulting in 

gc 

p 

2 e e 

e D'Ij = mean [ d Euclidean ( mi , @ , mj , 9 ) ] ( 3 ) 
A 

( 4 ) = Dim = [ Di - min D : ] [ max D ; - minD ; ] 
[ Dm ] Dij = mean 

7 

Gp = Di , j < DThreshold ( 6 ) 
e 

[ 0089 ] Mid Knowledge Propagation 
[ 0090 ] Phase mapping knowledge propagation . Once the 
phase map has been identified for the given data , the phase 
region labels must be propagated to the materials that have 
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yet to be measured for structure . To exploit the graph 
described data manifold , the semi - supervised learning tech 
nique Gaussian random field harmonic energy minimiza 
tion 6 ( HEM ) is used . HEM computes the likelihood of each 
material belonging to each phase region and then assigns 
each material to the phase region with the greatest likeli 
hood , thus defining the most likely phase map for the full set 
of materials on the composition spread . Using this informa 
tion , alternative phase maps can also be identified along with 
their likelihoods . The edge weights E , define the similarity 
matrix used to define the graph Laplacian . 
[ 0091 ] Phase mapping knowledge propagation compari 
son method : nearest neighbor ( NN ) . The phase mapping 
knowledge propagation harmonic energy minimization 
method is compared to the use of 1 - nearest neighbor , where 
any material without a phase region label takes on the label 
of its 1st nearest neighbor with a label . First nearest neighbor 
was implemented using MATLAB's knnsearch function 
with default parameters . 
Functional property knowledge propagation : Gaussian pro 
cess regression . GPR was implemented using MATLAB's 
“ fitrgp ' function with default parameters . 
[ 0092 ] Mle Active Learning . 
[ 0093 ] In the Bayesian optimization47 literature , the fol 
lowing formalism is used : 

a 

a 

y = f ( x ) + € ( 7 ) 

minimize expected total phase region label misclassification 
error and equivalently maximize knowledge of the phase 
map . 
[ 0095 ] Active learning comparison methods : random , 
sequential , and 10 % sampling . The risk minimization 
method is compared to ( 1 ) random sampling selecting 
each subsequent material at random from the wafer , with a 
uniform prior , ( 2 ) sequential sampling where each sample 
is selected in the order it appears on the wafer , and ( 3 ) where 
10 % of the materials are selected in a pre - determined design . 
Random sampling is expected to provide increasingly poor 
performance relative to active learning as the search space 
increases in dimension due to the curse of dimensionality48 . 
The pre - determined 10 % selection of materials in ( 3 ) are chosen to provide maximal coverage of the composition 
space . However , the use of 10 % is not a generalizable 
benchmark . For a given number of data points , the density 
of data points decreases as the dimensionality of the com 
position space increases , with each point describing a larger 
volume . The optimal number of benchmark materials is thus 
dependent on the expected size of phase regions . If smaller 
phase regions are expected , a larger number of materials will 
be required to identify the phase regions . 
[ 0096 ] The Fe Ga — Pd composition spread contains 278 
samples . For the 10 % sampling , the 28 samples are indicated 
in FIG . 8 , panel a . They were selected to provide uniform 
coverage of the composition space described by the spread . 
For the sequential sampling , the order of samples is shown 
in FIG . 8 , panel b . 
[ 0097 ] Active learning materials optimization : Gaussian 
process upper confidence bounds . For CAMEO and GP 
UCB the iteration dependent weight parameter ß is used38 . 

B = 2 log ( DPA ? 169 ) ( 9 ) 

Where D is the total number of samples , I is the current 
iteration number , and a = 0.1 . 
[ 0098 ] Active learning CAMEO : phase mapping con 
vergence . The phase maps identified at each iteration i is 
compared to the iteration ( i - 4 ) using the FMI performance 
measure . Convergence is defined as FMI > = 80 % . 
[ 0099 ] Active learning materials optimization : bench 
mark system . The target optimization for the benchmark 
system is maximizing remnant magnetization , as measured 
by scanning SQUID voltage . One modification was made to 
the remnant magnetization signal : The signal saturates over 
a large range of the composition spread . For BO bench 
marking , it is preferred that one material is identified as the 
optimum . As such , the saturated values were modified with 
a squared exponential function , in effect “ hallucinating ” the 
remnant magnetization values as if sensor saturation had not 
occurred , converting the signal from FIG . 9 , panel a to FIG . 
9 , panel b . The squared exponential function used to modify 
the voltage was defined in cartesian space . For the ternary 
composition ( afe , bGas CPd ) : 

x = ( b / 100 ) + ( c / 100 ) * sin ( 30 ° ) , y = ( c / 100 ) * sin ( 60 ° ) ( 10 ) 

Xx = argmax , ( x ) ) ( 8 ) 
d where y is the target property to be maximized , xER " is the 

set of material synthesis and processing parameters to be 
searched over , f ( x ) is the function to optimize , ? is typically 
independent stochastic measurement noise , and X. defines 
the material synthesis and processing parameters that result 
in the maximal material property ( for the minimum , replace 
argmax with argmin ) . When f ( x ) is unknown , a surrogate 
model is used to approximate it based on given data . The 
surrogate function is then used to identify the best next 
material to study . Each subsequent material is selected to 
identify the optimal material X * in the smallest number of 
experiments possible . Identifying extrema of a function 
involves a balance between exploiting prior data to identify 
nearby extrema and exploring to identify extrema far from 
prior data . An alternative active learning objective is to 
select experiments that will best improve the overall pre 
diction accuracy of the surrogate model , or in other words , 
select experiments to most efficiently learn the unknown 
function f ( x ) . Such a campaign learns the general trends of 
f ( x ) , which is highly useful when attempting to quantify 
anomalous behavior of novel materials . 
[ 0094 ] Active learning for phase mapping : risk minimiza 
tion . The active learning method used to select the next 
material to query for phase mapping is based on risk 
minimization * 6 . HEM propagates phase region labels to 
unmeasured material and identifies the likelihood of each 
material belonging to each phase region . These likelihoods 
can be aggregated to define the set of potential phase 
diagrams and their associated likelihoods . The set of poten 
tial phase diagrams form a hypothesis space of phase 
diagrams . Risk minimization seeks to identify the optimal 
material to query next for its structure that will most rapidly 
whittle down the hypothesis set and most rapidly hone - in on 
the optimal phase map for the full set of materials , i.e. , 

46 

Nxy ( u = ( 0.19,0.05 ) , c2 = 0.001 ) ( 11 ) 

[ 0100 ] Mapping to ternary space gives u = FezgGa16Pdo . 
[ 0101 ] Mif Statistics and Performance Metrics 
[ 0102 ] Confidence interval . The 95 % confidence interval 
was computed for the variable of interest over 100 experi 
ments at the given iteration with : 
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( 12 ) 
[ 0108 ] Bayesian optimization . Bayesian optimization per 
formance is measured with minimum percent deviation from 
optimal , related to simple regret . 

-1 C195 = Corp , 
( Ptarget – Pi ) ( 18 ) Minimum percent deviation from optimal = 100 % * min 

Ptarget 

Simple Regret = min ( Ptarget – Pi ) ( 19 ) 
i 

Where F - 1 is the inverse of the Student's t cumulative 
distribution function , o is the standard deviation , n = 100 is 
the number of experiments , p = { 2.5 % , 97.5 % } , and v = 99 is 
the degrees of freedom . 
[ 0103 ] Phase mapping . Phase mapping performance is 
evaluated by comparing phase region labels determined by 
experts with those estimated by CAMEO for the entire phase 
map ( after the knowledge propagation step ) . To evaluate 
system performance , the Fowlkes - Mallows Index ( FMI ) is 
used , which compares two sets of cluster labels . The equa 
tions are presented below for the expert labels le L and the 
ML estimated labels le L , where the labels are enumerated 
L ? N and L ? N . 
[ 0104 ] If the number of phase regions is taken to be too 
large by either the user or the ML algorithm while the phase 
napping is correct , some phase regions will be seg ented 

into sub - regions with the dominant phase boundaries pre 
served . For example , peak shifting can induce phase region 
segmentation42 . To ensure that the performance measures 
ignore such sub - region segmentation , each estimated phase 
region is assigned to the expert labeled phase region that 
shares the greatest number of samples . The number of phase 
regions is monitored to ensure that increases in model 
accuracy are not driven by increases in model complexity . 

Fowlkes - Mallows Index : FMI = TP / 
V ( TP + FP ) ( TP + FM ) ( 13 ) 

TP = 122941 = 1 ; & l = 1 : 1 ( 14 ) 

FP = 122,2,1 , # & = 1,1 ) ( 15 ) 

FN = 1 / £ / £ / ( 1 , = 1 ; & # ) ( 16 ) 

TN = 1 / 29,5 1 , # ; & 1 : 41 ) ( 17 ) 

[ 0105 ] Mlg Live Visualizations . 
[ 0106 ] CAMEO provides live visualizations to support 
algorithm interpretability . Phase mapping is supported by 
FIG . 15 , panels a and b , where each filled circle indicates a 
sample the combinatorial library . Samples labeled with 
the same color are identified as likely belonging to the same 
phase region . Samples with a black border have been 
measured for X - ray diffraction and the sample indicated by 
the red diamond is the sample that CAMEO will query next . 
The size of each sample marker indicates the probability of 
the sample belonging to the color - indicated phase region . 
Thus , areas of the composition diagram where filled circles 
are small indicate a high likelihood region for a phase 
boundary . FIG . 15 , panel b presents the CAMEO predicted 
values of the target functional property . Here each predicted 
phase region is analyzed using its own Gaussian process ( see 
“ Methods ” Section “ M1 " ) . FIG . 15 , panel c shows the 
associated Gaussian process predicted variance which has 
been mapped using the sigmoid function to values between 
0 and 1 . 
[ 0107 ] FIG . 15 , panel d presents the FMI score between 
each subsequent phase mapping iteration , quantifying the 
percent change in phase mapping from iteration to iteration . 
FIG . 15 , panel e shows convergence in materials property 
optimization computed as the difference in the max identi 
fied property in consecutive iterations . 

[ 0109 ] M2 Materials Synthesis and Characterization 
[ 0110 ] M2a Sample fabrication . Amorphous thin - film 
composition spreads encompassing a region of the Ge 
Sb - Te ternary ( separated into 177 samples using a gridded 
physical shadow mask ) were fabricated on 3 - inch silicon 
wafers with SiO2 layers ( 2 um ) by co - sputtering Ge , Sb , and 
Te targets at room temperature . Different ( average ) thickness 
composition spreads ( covering the same composition range ) 
were fabricated for different measurements : they were 20 
nm , 100 nm , 200 nm , and 500 nm for optical , structural , 
resistance , and composition mapping , respectively . To 
obtain a crystalline state , some of the wafers were annealed 
at 300 ° C. for 10 min following their characterization in the 
amorphous state . 
[ 0111 ] The composition mapping of the spreads is mea 
sured using the wavelength dispersion spectroscopy . For 
every separated sample region on a spread , three random 
spots are measured , and the average composition value is 
used for the actual stoichiometry mapping in FIG . 10 . 
[ 0112 ] M2b Mapping of phase - change temperature . Upon 
increasing the temperature , a phase - change memory mate 
rial undergoes a structural transition from amorphous to 
crystalline states with up to four orders of magnitude in the 
change of resistance . The temperature at which the resis 
tance drop takes place can be taken as the phase - change 
temperature , Tcp ( FIG . 10 ) . The entire spreads were mea 
sured in a scanning four - probe station combined with a 
Keithley 2400 from room temperature up to 300 ° C. Tep of 
GST467 was found to be ~ 200 ° C. , which is much higher 
than that of GST225 ( ~ 140 ° C. ) . The higher Tep of GST467 
indicates higher stability of the amorphous state of GST467 
compared to GST225 . 
[ 0113 ] M2c Structural mapping . Synchrotron diffraction 
on crystallized spreads was carried out at Beamline 10-2 at 
SLAC . In addition to the remote - controlled CAMEO run , 
we have also carried out diffraction of entire spreads in order 
to obtain the complete structural phase mapping of the 
probed GeSb —— Te region and to verify the accuracy of the 
phase diagram determined by CAMEO . FIG . 11 shows an 
example set of diffraction patterns taken across the spread . 
Along the marked line in the composition map , the evolution 
of diffraction patterns indicates phases going from the 
distorted FCC - Ge — Sb Te ( GST ) structure region to the 
phase co - existence region ( GST and SbTe ) to the Sb Te 
region . 
[ 0114 ] Sb Te ( RZm ) , Sb2Te2 ( P3m ) , and Sb2Te3 ( RZm ) all 
have very similar diffraction patterns and atomic projections 
of the [ 100 ] zone - axis , except for different lattice periods 
along the [ 001 ] direction . These three phases are present 
across the Sb - Te region depending on the local composi 
tion on our spread . The predominant Sb Te phase in 
GST467 is Sb Te ( below ) . 
[ 0115 ] M2d HAADF - STEM of GST467 . We have per 
formed cross - sectional high - angle annular dark - field scan 
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ning transmission electron microscopy ( HAADF - STEM ) 
measurements on the GST467 thin film and found that there 
are nanometer - sized SbTe regions grown coherently inside 
the distorted cubic GST matrix as shown in FIG . 4a of the 
main text . To distinguish between similar phases ( SbTe , 
Sb2Te2 , and Sb2Te3 ) , analysis of electron diffraction rings 
was carried out ( not shown here ) , and Sb Te phase in the 
GST467 was identified to be Sb Tej . 
[ 0116 ] M2e Modeling and calculation of the ellipsometry 
spectra . The experimental ellipsometry data ( J.A. Woollam 
company ) of the combinatorial GsSb Te spread was 
analyzed in the range from 200 to 1000 nm using the 
Complete EASE software . The dielectric function e ( @ ) used 
in the model contains49 ( 1 ) a constant , ( 2 ) a Drude - type 
contribution for free carriers in the case of crystalline state , 
and ( 3 ) a Tauc - Lorentz oscillator to describe the onset of 
optical transition : 

49,52-54 
> 

amorphous state : & ( @ ) = const?Tauc - Lorentz ( @ ) , ( 20 ) 

! crystalline state : & ( @ ) = const + E Drude ( 0 ) + € Tauc - Lorentz 
( 0 ) 

[ 0117 ] For the Drude model : 
( 21 ) 

up to 20 min . at a composition spot , and the AE , value is 
then fed back to the CAMEO algorithm . 
[ 0121 ] The complete mapping of the optical bandgap of 
amorphous and crystalline states measured and calculated 
from one spread are shown in FIG . 12. In the amorphous 
state , the Ge — Sb — Te based compounds are effectively 
covalently - bonded semiconductors with large optical band 
gaps With changing composition , there is variation in 
bonding leading to slight shift in the optical bandgap shown 
in FIG . 12. In the crystalline state , the resonantly - bonded p 
orbitals can delocalize the carriers resulting in the reduced 
bandgap -54 , leading to the large contrast between the 
amorphous and crystalline states . In the distorted cubic 
phase ( i.e. , GST ) , with changing composition , the local 
distortion ( i.e. , Peierls distortion ) due to vacancies 52,55,56 
would modify the resonant bonding shifting the optical 
bandgap . In the Sb Te phase , the optical bandgap also 
varies with the changing composition in FIG . 12. When the 
epitaxial nanocomposite with the SbTe phase are coherently 
and homogeneously grown in the GST matrix as shown in 
FIG . 4a , the nano Sb Te phase can act as the impurity dopant 
phase in the GST matrix . 
[ 0122 ] M2f Ge_Sb Te , photonic device fabrication and 
measurement . Photonic switching devices were fabricated 
out of GST467 films ( FIG . 13 ) . The 30 nm thick nanocom 
posite GST467 thin film was sputtered on a 330 nm thick 
SizN4 layer on an oxidized silicon wafer . A 10 nm thick SiO2 
protection layer was then coated on the top of the GST467 
thin film . Using e - beam lithography and inductively coupled 
plasma etching , a 1.2 um wide photonic waveguide was 
fabricated . Then the GST467 thin film was patterned into 
disk shaped features 500 nm in diameter on the top of the 
waveguide , and they were encapsulated with a 200 nm thick 
A1203 layer as shown in the inset of FIG . 13 . 
[ 0123 ] Asymmetric multi - level switching of the photonic 
device was investigated as shown in FIG . 13. In order to 
provide and precisely control the pump pulses to quench or 
anneal the GST467 thin film in steps , pulses from a CW 
pump laser were first modulated by an electro - optic modu 
lator and then sent into an erbium - doped fiber amplifier 
followed by a variable optical attenuator . The output of the 
optical signal was collected with a photodetector . During the 
annealing process , a sequence of pump pulse ( 50 ns , 2 mW ) 
train was applied to the photonic device . In the quenching 
process , a sequence of 50 ns pump pulses with gradually 
increased amplitude was sent into the waveguide . 

wir ( 22 ) w EDrude ( W ) = € 1 ( W ) + i . € 2 ( W ) = 1 ( & ( 00 ) ) - w ? +1 ' w ( 62 + ) 
= + 

+ 

O where 0 , = VN.e ? / m- £ o , and 0 , is the plasma frequency , I is , 
the collision frequency . 
[ 0118 ] For the Tauc - Lorentz model : 

a 

( 23 ) 
@ Taue - Lorentz ( W ) = { 1 +1 : € 2 ( W ) = 

E1 ( 00 ) + 2 € 2 ( E ) 
P 

JEG 82-22 " 
+ i AE T ( E – Eg ) ( E – Eg ) 

E [ ( EP - E ? ) ? + r2E2 ] 
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Example 2 

Where A is the prefactor , E , is the peak in the joint density 
of the state , E , is the optical bandgap , and I is the broad 
ening parameter . 
[ 0119 ] The optical parameters , e.g. , refractive index n and 
extinction coefficient k , as well as the optical bandgap , can 
be extracted from these models . In order to confirm the 
accuracy of the optical parameters , one needs to check if the 
fitting curves as well as a set of fitting parameters , e.g. 
thickness , carrier density , and surface roughness , can be 
used to analyze the experimental data of the samples for the 
entire spread wafer . Typically , a fitting procedure requires 
repeated steps in order to fine - tune the parameters manually 
to optimize the results , and some samples require more 
manual fitting steps for setting the range and the starting 
values of the parameters than others . 
[ 0120 ] For the CAMEO run , the unprocessed raw ellip 
sometry data taken at each composition spot ( for crystalline 
and amorphous states ) are used as the prior ( see section 
“ M1c , Phase mapping prior ” ) . Once a spot is identified as a 
possible composition with enhanced AE , ( the difference in 
the optical bandgap between the amorphous and crystalline 
state ) , the fitting procedure above is carried out on the raw 
data , and the value of AE , is computed , the process of which 
includes manual inspection of fitting parameters . Depending 
on the number of repeated steps , each computation can take 

Properties of a Novel Nanocomposite 
Phase - Change Memory Material Characterized Via 

Bayesian Active Learning 

Fundamental Properties of the Novel Nanocomposite 
Phase - Change Memory Material 
[ 0124 ] 

Fundamental 
property Features Checking method 

8 Composition Ge_Sb Tez Wavelength dispersion 
spectroscopy 
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-continued 

Fundamental 
property Features Checking method 

Resistance - temperature 
[ 1 ] mapping 

Synchrotron radiation and 
STEM measurements [ 2 ] 

[ 0130 ] [ 5 ] The device made of the nanocomposite 
Ge_Sb Te , thin film was found to be stable up to at least 
30,000 cycles indicating the high reversibility of the crys 
tallization and quenching processes of the coherent nano 
composite , ( see , FIG . 4 , panel b ) . The one - to - one compari 
son between the devices fabricated with GezSb Te , and 
Ge_Sb Te , films here ( see , FIG . 4 , panels d and e ) shows that 
Ge_Sb Te , device exhibits up to 50 % more in the number of 
non - volatile interval states than Ge Sb Tez device . The 
non - volatile symmetric switching was also realized ( see , 
FIG . 13 ) . These are important for the photonic memory and 
neuromorphic devices . 

Phase - change 200 ° C. 
temperature 
Structure The Sb Te impurity dopants 

intergrow with the distorted 
cubic Ge - Sb - Te matrix 

Optical Improvement in the optical 
property contrast between the amorphous 

and crystalline states 

6 

6 

Ellipsometry spectra [ 3 ] 
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[ 0187 ] The foregoing is illustrative of the present disclo 
sure and is not to be construed as limiting thereof . Further 
embodiments of the present disclosure are exemplified in the 
following claims . 
[ 0188 ] All patents , patent applications , and printed publi 
cations cited herein are incorporated herein by reference in 
the entireties , except for any definitions , subject matter 
disclaimers or disavowals , and except to the extent that the 
incorporated material is inconsistent with the express dis 
closure herein , in which case the language in this disclosure 
controls . 

1. A phase - change memory material comprising a mate 
rial of formula ( I ) : 

TM_Sb , Tez 
wherein TM is a transition metal , wherein x , y , and z are 

each independently an integer between 1-10 , and 
wherein the phase - change memory material has an 
extinction difference between crystalline and amor 
phous phases ( k.-k. ) greater than about 2 in a wave 
length range of about 1000 nm to about 1500 nm . 

2. The phase - change memory material of claim 1 , wherein 
TM of formula ( I ) is Ge . 

3. The phase - change memory material of claim 2 , wherein 
the material of formula ( I ) is Ge Sb Tez . 

4. The phase - change memory material of claim 1 , wherein 
the phase - change memory material has a AE , of greater than 
about 0.76 eV . 

5-7 . ( canceled ) 
8. A method of forming a photonic switching device 

comprising forming a film on a substrate , the film compris 
ing the phase - change memory material of claim 1 . 

9-14 . ( canceled ) 
15. A method of forming a memory device comprising 

forming a film on a substrate , the film comprising a phase 
change memory material selected to have an extinction 
difference between crystalline and amorphous phases ( kc 
ka ) greater than about 2 in a wavelength range of about 1000 
nm to about 1500 nm . 

16. A method of forming a memory device comprising : 
selecting a phase - change memory material having an 

extinction difference between crystalline and amor 
phous phases ( k -ka ) greater than about 2 in a wave 
length range of about 1000 nm to about 1500 nm ; 

forming a lower electrode on a substrate ; 
forming a film including the phase - change memory mate 

rial on a lower electrode ; and 
forming an upper electrode on the film . 

17. The method of claim 16 , wherein selecting the phase 
change memory material comprises evaluating the extinc 
tion difference of the phase - change memory material via 
Bayesian active learning . 

18. The method of claim 17 , wherein the Bayesian active 
learning comprises closed - loop autonomous materials 
exploration and optimization ( CAMEO ) . 

19. The method of claim 16 , wherein the phase - change 
memory material comprises a material of formula ( I ) : 

TM Sb , Tez 
wherein TM is a transition metal , and wherein x , y , and z 

are each independently an integer between 1-10 . 
20. The method of claim 19 , wherein TM is Ge . 
21. The method of claim 19 , wherein the material of 

formula ( I ) comprises Ge_Sb Te ,. 
22. ( canceled ) 
23. A method of selecting a phase - change memory mate 

rial comprising : 
evaluating optical bandgap difference of phase - change 
memory materials ; and 

selecting a phase - change memory material or materials 
having larger or largest optical bandgap differences , 

wherein evaluation is conducted via Bayesian active 
learning . 

24. The method of claim 23 , wherein the Bayesian active 
learning comprises closed - loop autonomous materials 
exploration and optimization ( CAMEO ) . 

25. The method of claim 23 , wherein the phase - change 
memory materials comprise materials of formula ( I ) : 

TM_Sb Tez ( I ) 

wherein TM is a transition metal , and wherein x , y , and z 
are independently integers between 1-10 . 

26. The method of claim 25 , wherein TM is Ge . 
27. The method of claim 25 , wherein the materials of 

formula ( 1 ) comprise Ge Sb Te . 
28. The method of claim 25 , wherein the phase - change 

memory materials have a AE , of greater than about 0.76 eV . 
29-30 . ( canceled ) 
31. The phase - change memory material of claim 1 , com 

prising a material of formula ( II ) : 
Ge Sb Tez ( I ) . 

32. The phase - change memory material of claim 31 , 
wherein x is between about 3.4 and 4 , y is between about 5 
and 6 , and z is between about 6.5 and 7.5 . 
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