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Precision Calibration of Phase Meters

RAYMOND 8. TURGEL, SENIOR MEMBER, IEEE, AND DOMINIC F. VECCHIA

Abstract—Using the calibration of a phase meter with a nominally
linear resp as an ex le, a statistical approach is discussed for
predicting worst-case offsets of the meter response characteristic from

the value of the reference standard. A linear calibration carve is used

to model the meter response, and statistical tests are described which
test the appropriateness of the model and whether the calculated cali-
bration curve differs significantly from the ideal. Various levels of cor-
rections to be applied can then be determined on the basis of these
tests, and limits to offsets are calculated for each of the levels. By ex-
tending this approach, it is possible to predict limits of uncertainty
‘when using the calibrated meter to make measurements.

I. INTRODUCTION

TV HIS paper discusses a statistical treatment of calibra-
tion data which leads to the prediction of measure-
ment uncertainties after appropriate cotrections are ap-
plied to the readings of the calibrated .instrument. The
method is illustrated using a phase meter as an éxample.
In any measurement, the ‘‘true’’ value of the measur-
and is hidden by random effects and systematic offsets in-
hererit in the measuring instrument and the measurement
process. The purpose of a calibration is to try to eliminate
the systematic offset by determining switable corrections
which, when applied to-the instrument reading, bring the
measurement result into closer agreement with the refer-
ence standard. Since a degree of uncertainty is inherently
associated with the process of calibration itsélf, the cor-
rections for the systematic offset cannot be established
precisely. However, it is possible t6 estimate limits to the
uncertainty of the measurement result after the corrections
have been applied. The statistical approaches that lead to
these estimates are discussed in this paper.

II. CALBRATION CURVE

The calibration of a measuring instrument can be rep-
resented mathematically by a “‘calibration curve’” (Fig.
1) which relates the readings of the instrument under test
fo the corresponding values of the calibration standard.
Since random fluctuations tend to mask the limiting mean
of the instrument response at any particular test point, the
cotrections calculated based on predicted valucs derived
from the calibration curve will, in general, give more re-
liable results than those obtained from the test data di-
rectly. A necessary condition is that the calibration curve
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‘Fig. 1. Calibration curve. Dotted lines ‘indicate 95 percent confidence

bands.

. models the instrument response correctly. Therefore, it is

important to test whether the a priori assumption that the
model fits the instrument response is justified.

Once the correctness of the model is established, the
computed calibration curve can be compared with an ideal
curve that represonts an instrument which agrees perfectly
with the standard. To do this, the authors examine whether.
there are statistically significant differences between the
parameters of the computed calibration curve and corre:
sponding parameters of an ideal calibration curve [1]. The
outcome of such tests helps to decide what level of cor
rections, if any, will be necessary.

A. Nustrative Example

To illustrate the application of the above concepts, 2
simple instrument having a linear response is used as an
example. However, the validity of the method is by no
means restricted to linear systems and can be extended to.
more complex relationships. The formulas are derived for.
the statistical analysis of a nominally linear relationship
between the phase angles indicated by a phase meter and

the phase angle supplied by a calibrating standard signal

source—a phase angle standard.
In this linear case, the calibration curve is a straight line

‘which can be characterized by a slope and an intercept

The corrections to be applied to the phase meter readings
can be derived from the linear equation. The extent 10
which corrections need to be applied must be regarded as
a function not only of the calibration data but also of the
acenracy specifications of the instmment. In general, there
is no point in applying corrections if the uncorrected me-
ter readings are already within the specified accuracy lim:
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ven though applying corrections will always reduce
redicted offset of the measurement result that is com-
from the statistical parameters, If the intercept of a
r calibration curve differs appieciably from zero, but
lope is not significantly different from its ideal value,
ple additive constant will bring the measurement re-
to within the specification limits. There is then no
to calculate individual corrections for every data
, although doing so may result in smaller numerical
es for the predicted offset. In the following sections
ulas are developed to evaluate the limits of the pre-
d offset for three levels .of applied corrections. A
parison of the numerical values of these limits with
nstrument specifications will guide the decision on
ting the appropriate level of corrections.

gg ExPERIMENTAL PROCEDURE USED FOR CALIBRATING
A PHASE METER
hoice of Calibration Procedure
e example of a phase meter calibration is particularly
itable because the straightforward experimental proce-
provides a good illnstrafion of a generalized calibra-
method that could apply equally well to other types
struments. The output reading of the meter is in the
e units and of the same magnitude as the phase angle
ided by the calibration source, and no intermediate
s or conversion factors are involved.

# Circuit Configuration

phase angle standard [2]-[4] which generates two
soidal s1gnals adjustable in phase and independently
stable in amplitude is used as a calibration source.
standard is designed so that the selected phase angle
own precisely and, therefore, can be used as the ref-
ce to which the readings on the phase meter are com-
d. For convenience, the phase angle standard can be
ated via the TEEE-488 bus, allowing the test points
e selected under software control. Signals from the
ut of the calibration standard are applied directly to
: input terminals of the instrument under test.

$ Test Point Selection

_For the purpose of the calibration, a ° ‘range’” is defined
/ the frequency and the amphtudes of the two test sig-
. In each range, measurements are made at several
se angles chosen to cover the desired span. usually
om 0° to 360°. The exact number of test points is not
aportant, as long as it is large enough to provide the
ropriate accuracy for the calculation of the calibration
e. Experience has shown that for a phase meter with
0.01° resolution, twelve points spread over the 360°
an are a satisfactory compromise between the effort in-
olved in making measurements and the accuracy ob-
ined. The results of the measurements in each range are
eated as a statistically independent population, and sep-
rate accuracy parameter values are computed for each
grange.
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D. Measurement Procedure

For the statistical treatment, it is important to make rep-
licate measurements, usually three or four, at each phase
angle tested. This replication provides a measure of the
variability of the readings due to the phase meter. Any
variation in the output of the phase standatd is generally
at least an order of magnitude smaller, and is disregarded
for the present discussion. The sequence of measurements
at the selected phase-angle test points is randomized to
minimize time dependent trends and thereby reduce a pos-

* sible bias in the measurements.

" The computer program determines the randomized se-
quence of phase angles to be tested, and the output of the
phase standard is set accordingly. Readings from the phase
meter are then recorded and stored in the computer.

IV. MoDEL oF THE RESPONSE CHARACTERISTIC

A. Estimated Calibration Curve

Using a least squares fit to the data collected, a calibra-
tion curve is derived for the response characteristic of the
meter under test for each range. For our example, assum-
ing a linear response (phase reading versus phase stan-
dard), the model of the calibration data is a straight line
of the form '

y=a-+bx +e
where

aand b are the intercept and slope of the straight line,

x phase angle given by the standard,
y reading on the phase meter
e term for the random effect.

If the subscript i (i = 1, - + + , k) denotes the index of
the test point, and the subscript j (j = 1, -, n) the
number of the replicate reading, then the estimated values
{denoted by a caret) for the coefficient a and b of the cal-
ibration curve = @ + bx can be-expressed as [1]

4=7y—bx
k n
‘Zl E (}’y - ?) (xl - 'x)
i=1j=1
b= :
n 2 (X, - '?)2
i=1
where the average y and the average X are
k n k
- i=lj=1 _ =1
y = ok and X = "

B. Adequacy of the Model

“To test whether the calibration data fit the linear model,
the fitted value for each phase angle is compared to the
average of the repeat measurements at corresponding
phase angles by an “‘F-Test.”” This test provides a crite-
rion to decide if the calibration data fit the linear model
[5]. The calibration data are not consistent with the linear
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model if
52 ,
F = 32 > Fc;m{k -2, k(n = 1)}
where
| nooe 2
2 = 3.~ V.Y ’
'SL k — 2 igl ( ? yl) '
) k n
G2 Z
§? = k(n EEE § (v — )
(see footnote 1)
and
}",f=_+,5x,-, i=1,"',k
-
2
'..T’iv=jw" . i=1,k
n
and Fo1{k — 2, k(n — 1’)} is the upper one-percent

point of the F distribution with ¥ — 2 degrees of freedom
in the nuinerator and k(n — 1) degrees of freedom in the
denominator. Use of a small significance level (& = 0.01)
in the test implies that we are only interested in detecting
very snbstantial departures from linearity in the phase me-
ter characteristic.”

Similarly, if the linear model is appropriate, levels of
significance can be calculated for the coefficients of the
calibration curve. These are based omn the statistics ¢£; and
t, which test whether a = 0 and b = 1, respectively. The
test statistics are

a I_Bfl
s(a)y 2 s(b)
where S(4) and S(b) are the estimated standard devia-
tions of the coefficients.

Using the tables of the Student’s ¢ distribution for (nk
— 2) degrees of freedom, the attained levels of statistical
significance associated with #; and 7, can be computed. A
significance level near zero ( <0.05) for #; indicates that
the intercept is probably different from its *‘ideal’” value
of zero, and a significance value near zero for ¢, indicates
that the slope is probably different from its ‘‘ideal’” value
of one.

V. CALCULATION OF PHASE METER UNCERTAINTY

When making a phase measurement, the reading ob-
tained from the phase meter differs from the correspond-
ing value of the standard by a systematxc offset plus a
random effect. As mentioned, the systematic offset can be

IThis variance accounts for the random effect, e, in the equation for the
.Stl'ﬂlght -line response characteristic.

2A special condition arises when the variability about the average is of
the same order as the resolution of the metet, and consequently the readings
at each test point are truncated to the same numerical value, or a value
differing by only one significant digit. In this case the distribution of the
deviations will be far from normal, and values of the F-test using tables
based on a normal distribution cannot be applied.

teduced by an appropriate correction, while the random
effect can only be reduced by averaging several readings.
For the correction of the systematic component, ‘we ¢on-
sider three cases:

Level 1. No correction applied:
2=y
Level 2. A constant correction applied:
£t=y+C C=%-7%

" Level 3. Full correction applied using the calibratior,
curve:

%= (y - a)/b.

For each case, we-can estimate the limits to the uncer-
tainty in the phase meter reading. We denote the system-
atic offset of an uncorrected reading A, at a phase angle
xby

A= E(y\i) ~x=a+(b-1)x

where E(y | x) is the expected phase meter reading, an¢
the other symbols are defined as before.

It is evident that the offset is a function of the phase
angle as well as the parameters of the calibration curve,
Tn most cases, however, we would like to know the limits
of (he offset over the entire span of phasc angles. For the
straight line calibration curve, the equation for the upper
and lower limits for the systematic offset at the point x,,
which can be derived {6] from the confidence bands of the
calibration curve, shown as dotted lines in Fig. 1, are
given by

u(A,) =4+ (B- 1)x, + R(x) (1a)
and '
I(A,) =A+ (B - 1)x, — R(x,) (1b)
where
R(x) = s \2Fy0s(2, nk — 2)
- 12
1L (oo
n Z (x; ~ x)

In the equations x, denotes the phase angle given by the
standard, s is the standard deviation of fit of the straigh

line, the ¢coefficients 4 and R are assioned apnropriate val

Ane, e cocliicicnis £ anc s .are assighec approptiat

ues for level 1 and level 2 as shown below, and F is th
value of the F distribution for the upper 5-percent poin
with two degrees of freedom in the numerator and nk -
2 degrees of freedom in the denominator. Fig. 1 is aplo
of the characteristic curve for a phase meter and show:
the upper and lower limits of likely systematic offsets.
Note that the largest values occur at 0° and at 360°.

A. Estimated Limits for the Systematic Offser

For the three levels of applied corrections, the upper
and lower limits of the systematic offset can be calculated
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e magnitude of the largest offset for each level A,
¢ found. These values can then be compared fo per-
nce specification limits for the instruments in order
termine what level of corrections need to be applied.
uld be noted, however, that the A;’s account only
v the uncertainty due to the calibration process. If it is
ted to include the additional uncertainty that arises
the user’s measurement with the meter, then the
idard deviation for the user’s measurement process
be taken into account as shown below.

‘he limits of systematic offset can be estimated as fol-

tevel 1, no correcuuns upplied:
$Using (1a) and (1h), setting A = 4, B=b

~

A, = maximum of{ll(Ao)s], l

l 1(Asgo) | | u(Ase) l }
‘evel 2, constant correction C applied:
sing (la) and (1b), settingd =4 + C, B = b
A, — maximum of {l 1(4Ay) ‘ l u(Ag) | ,
| 1(As0) )|, | #(As00) |}
iLevel 3, full correction applied:
sing u(A,) = +R(x,)/band I(A,) = —R(x,)/b

A; = maximum of { l 1(Ap) [ , I u(Ag) l ,
| l(Asso)il ) l u(Ase0) I} .

 Estimated Limits for Phase Meter Reading

ertainty

'0 obtain an overall estimate of the uncertainty of a
iiase meter reading, the variability of replicated readings
Jiist be included .as well as the systematic offset (relative
e standard) given above. The estimate of the standard
iation for the user’s measurement process, s,, must be
ulated from the data obtained under the test conditions
the user’s laboratory. This standard deviation may well
different than that calculated from the calibration data.
he value for the standard deviation s, may now be
ed to the A limits of the systematic offsets for the three
els of corrections applied to provide a bound E to the
ertainty of the meter reading relative to the value sup-
ied by the standard.

Level 1, no corrections applied:
El = Al —+ Sp * t(x/l(vp)-
Level 2, a constant correction A applied:
E2 = A2+ Sp toz/2(Vp)-
Level 3, full correction applied:
Eg = 6‘3 + Sp *

ta2 (7).
¥here,

5, standard deviation of repeat measurements
vy degrees of freedom associated with s,
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— o/2 percentile of the Student’s ¢ distri-
bution with », degtees of freedom.

The standard deviation ., should have at least 15 de-

ta/20py 1

grees of freedom. Additional repeat measurement can be

combined for a pooled value of the standard deviation by

computing the square root of the weighted average

(weight = »;) of the variances of each set of repeat mea-
surements. A sample calculation is shown in the Appen-
dix.

VI. CONCLUSION

A statistical procedure has been described for the cali-
bration of a phase meter with-a nominally linear responseé.
The systematic offset of the meter reading relative to the
values provided by the calibration standard can be pte-
dicted from a calibration curve. Three levels of correction
are considered which will bring the meter readings to
within (he specified accuracy. The level is selected de-
pending on how closely the actual calibration agrees with
an ideal calibration curve. The overall uncertainty of the
phase meter reading can be estimated by applying the ap-
propriate level of corrections as well as a term for the
random effects of the measurement process.

APPENDIX
A. Sample Calculation

The predicted values of the phase meter reading are ob-
tained by fitting the calibration data for the set of current,
voltage, and frequency conditions to a linear equation
which models the average response of the phase meter. In
the equations shown below § is the predicted value of the
phase meter response for a phase angle value x given by
the standard:

Input 4: 100 V Input B: 100 V. Frequency: 60 Hz

$ = —0.019402 + 0.999749 x
(0.006952) (0.000036)

Test Conditions:

Predicted value
Standard errors

Significance levels® (0.009) (0.000)
Residual Standard

Deviation. s = 0.02218
Lack of fit F' = 0.466
Significance level* (0.895) 25 = 0.04436
Level of Correction ~ Correction Equation Limit to Oﬁ'fset5
No correetion £= 0.091
Constant correction £ = y + 0.021944 0.070
C_om_plctc calibration .

curve = 1.000251 - y + 0.019407

0.020

Assuming arbitrarily for this example that with 20 degrees
of freedom the user’s standard deviation is 20 percent

3Significance levels are derived using the statistical s-tests to decide if
the intercept arid slope of the linear model are different from zero and one,
respectively. A ievel near zero (less than or equal to 0.05) indicates that

-the associated parameter is pmbably different from the ideal value.

“The significance level of F’ is associated with an objective stafistical
test for the adequacy of a linear model relating the phase meter under test
and the NBS assigned values, Levels nearzero indicate that the assumption
of a straight line relationship may be incorrect.

SPhase meter offset relative to the reference standard.
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larger than that calculated from the calibration data, then
5, = 0.027, and for a the confidence factor o = 0.05, the
estimated uncertainty of the phase meter readings be-
comes; '

Limit to

Level of Correction Correct Equation
Uncertainty®
No correction =y 0.147
Coustant correction £ =y +0.021944 0.126
Complete calibration £ = 1.000251 - y + 0.019407 0.076
curve

SUncertainty of phase meter reading relative to the reference standard
for a given (user’s) standard deviation.
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