Carnegie Mellon

e ectrical & Computer
e oy [ ]y gl rsms ) ENGINEERING

Smart Grid in a Room (SGRS)
Platform for Distributed Simulations

Marija llic
9/10/2015
NIST — TE Challenge Workshop



Collaborative CMU-NIST effort

*+*SGRS —emulator platform of

--cyber algorithms (1) energy market decision
making by market participants; clearing process by
the market; 2) retail market for differentiated
reliability service; 3) smart wire grid algorithms;
4) primary control; protection; AGC; AVC; FACTS
control logic)

--physical power system processes

-inter-dependencies of cyber— and physical
processes (prototype CPS emulator) 2
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SGRS Framework Overview
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SGRS Framework Details

« Map power system to distributed simulation of power system modules

« Computational distribution abstracted away from user through
iImplementation of interfaces in modules

« Simulation cluster managed by broker and scheduler algorithms
Access to framework via web inter
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Dynamic Monitoring and Decision System
(DyMonDS) —modular level
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Example 1: Prototype TE

— Market for EVs

¢ Simulation of charging strategies for
electric vehicles
+» Different methods for smart charging:

= Fast charging

= MPC based charging — price taker; time
of use; ALM
L/

= MDP based charging — ALM
** Cost comparison
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Example 2: Flores Island: Combining Dynamics
and ALM

¢ Based on prices, market computes active power set points P* from
each component

¢ Since currently the market does not specify reactive power set
points Q*, data for Q* is randomly created

¢ Place a voltage source inverter and a flywheel variable speed drive
controller on the hydro and diesel generator buses

** Control the sum of the power out of the hydro and diesel
generators to match the active and reactive power set points
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Example 2: Simulation Results — Wind Generator Bus
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Example 3: Retail reliability market—SGRS
prototype (Siripha Julakarn, EPP PhD, 2015)
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NIST Project: Ensuring Feasible
Power Delivery Using
Distributed Smart Wires
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Ensuring Feasible Power Delivery

g Generator or Source
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Power Delivery System
(Wires leading to loads)
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Ensuring Feasible Power Delivery

Generator or Source

4 4
i Power Delivery System i
(Wires leading to loads)
z Load increases:

voltage collapse .
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Ensuring Feasible Power Delivery

Generator or Source

. 4 L 4
i Power Delivery System i
(Wires leading to loads)
Possible corrective actions:
1) Shed enough load ——2

2) Adjust reactance of wire
delivering power
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Ensuring Feasible Power Delivery

Generator or Source

Power Delivery System
(Wires leading to loads)
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Wires and loads embedded
with smarts, and decide
their own adjustments
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Feasible Power Delivery Across
Each Wirel

% Power delivery must satisfy V, V,
mathematical conditions across L]
any wire in network Z
. SLoad
= A closed form solution of

V,is found in terms of V,
Z, SLoad

= This closed form solution
has non-physical answers,
such as the voltage
magnitude being imaginary

Wire connecting generator and load.

V| =% - re{Z*S, .4} £ ---

Sqrt( 1- 4(re{Z*SLoad} + im{z.kSLoad}z) )
= Must be satisfied by every

wire of a network when
calculating power flow
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Distributed Algorithm To Calculate Power Flow
and Needed Component-wise Adjustments?34

/

** Each component has internal logic and
communicates variables to their neighbors
iteratively

] | = Wires communicate their power flow
<_, |_> (S;), loss (S,), and voltages (V) at each

end to their neighboring buses
Sf;i,k; SL:i,k’ Vi; Vk = Buses communicate their bus voltage
(sent to both buses) (V), and power mismatch at the bus (A),
to all neighboring wires

= Internal logic only operates on received
neighbors' information, and on internal
variables

L = S;, S, and Z determine reactance control
= A and neighboring wire flows determine
load shedding

(sent to all wires)
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Next steps...

“*Beginning to simulate a real-world sanitized micro-
grid (should be able to share data)

‘*Webcast for industry; make it open to community

***A means of testing what is doable and what is the
potential of smart grids, prior to building

‘*Work together toward recommending
standards/protocols that could support
implementable, used and useful smarts/cyber
(including markets for energy, reliability and
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