

EXPANDING AMERICAN LEADERSHIP IN QUANTUM INFORMATION SCIENCE

Jake Taylor Office of Science and Technology Policy

QUANTUM INFORMATION TECHNOLOGY

Quantum sensing

Measure beyond the limits of individual particles — use entanglement (Adv. LIGO, dual ion clock)

Quantum communication

Use fundamental quantum mechanics to ensure security (already commercial implementations)

Quantum simulation

Implement arbitrary Hamiltonians (nonequilbrium, topological phases, quantum phase transitions)

Quantum computation

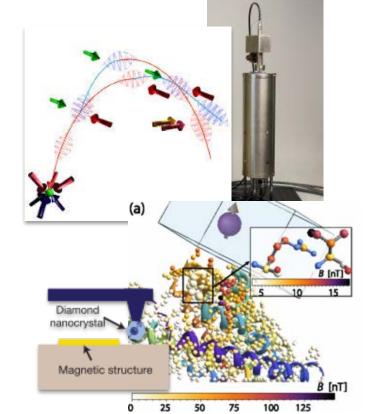
Shor's algorithm, Grover's algorithm (breaking codes, searching databases)

The future

How do we operate in a post-quantum world?

CURRENT QUANTUM TECHNOLOGY

Transistors


MRI (medicine)

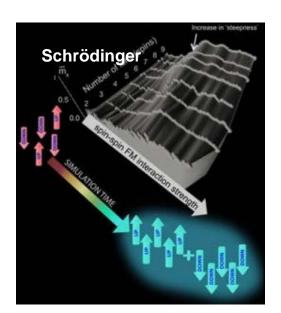
Lasers

Atomic clocks (GPS!)

Quantum-limited sensors

Quantum key distribution

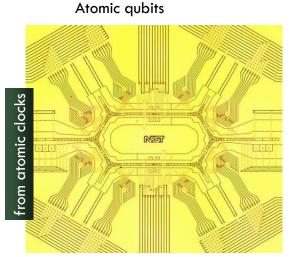
NEAR TERM: QUANTUM SIMULATION

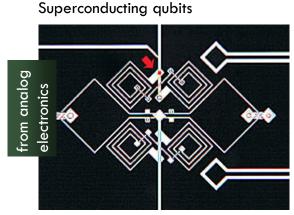

Chemistry, biology, materials science all depend on solving quantum mechanics problems

Recall: Simulating quantum mechanics is hard...

Solution: Use one system to simulate another

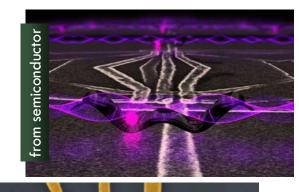
Navier-Stokes




TOWARDS QUANTUM COMPUTATION

Ideal case: programmable quantum computer

Moving from the lab to systems and engineering...


but many questions about a processor await

Semiconductor spins

Topological qubit

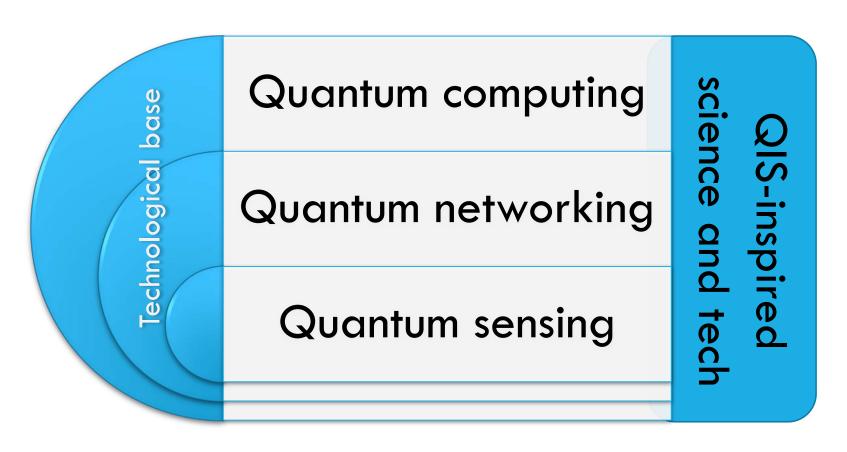
⁻rom Condesed Matter/math

And more (photonic, impurity, ...)

WHAT DO WE KNOW? WHERE CAN WE GO? THE FIELD OF DREAMS Q simulation Machine Shor's algorithm) Learning??? NISQ Full stack The outfield: Supporting tech algorithms? Q networks Entanglement enhanced sensing Quantum Q computing chemistry Q algorithms The Infield: Industry Classical control Q chemistry Heuristic Q algorithms Q information science Q enhanced High sensing simulation optimization New paradigms for ML Q simulation (materials) Q control Q sensing Middleware Q compilers (next gen) Full stack **Q** programming

QUANTUM INDUSTRY: AN OPPORTUNITY

Current quantum technology: atomic clocks, nuclear magnetic resonance, modern telecom detectors and sources, LIGO, optical sensors, ...


Next generation quantum?

- Improved computational approach to materials, chemistry
- Fundamental advances in condensed matter, high energy theory
- New understanding of optimization, machine learning
- Spin-offs: Quantum random number generators, new sensing modalities, better PNT, new qubit technologies, new analog microwave and optical technologies

The 10 year outlook?

 The beginnings of a sea change for corporations and government – the need to incorporate quantum computing and technologies into their business model

WHAT DOES QUANTUM INFORMATION SCIENCE POLICY COVER?

Focus on basic research!

OUR CHOICE

Invest in our talent	Enhance workforce
	Drive market opportunities
	Enable new jobs in science, engineering, and beyond
Develop public- private partnerships	Realize government multiplier for innovation economy
	Gain efficiency via division of responsibility
	Two-way knowledge transfer for improved R&D
Lead through smart policy	STEM effort for quantum engineering, masters
	Regular coordination across boundaries
	Continuous refactoring with improving knowledge