

NIST, NPL and the EAB are happy to announce the agenda for the IFPC 2020 conference on performance of face recognition which is focused on all technical factors affecting the deployment and use of high performance face recognition applications, including applications, standards, advanced and rapid capture, quality assessment, age and ageing effects, demographic effects, datasets, their	Organizers: Patrick Grother, Mei Ngan, NIST, US Christoph Busch, EAB, DE Tony Mansfield, NPL, UK		
preparation, training and tuning, presentation attack detection, non-cooperative uses, accuracy measurement, and performance tests. Sponsored by the Department of Homeland Security's Science and Technology Directorate, the	Speakers: Research and development staff, system analysts, users, evaluators, planners, writers of technical specifications, standards developers and adopters.		
iference aims to assemble a set of speakers from across the globe involved in face recognition relopment, procurement, deployment and operations. The overarching goal is to bring greater turity to face recognition by improving performance, transparency, and trustworthiness. The anizers welcome proposals for technical or policy presentations focused on any technical factors, blems, and mitigations that influence face recognition operations and applications.	Target audience: Professionals concerned with face recognition procurement, deployment, maintenance, design, configuration, integration, standardization, research and development.		

Main Conference	
IFPC 2020 Conference	
Virtual via "BlueJeans"	
October 27, 28, 29	

	IFPC Conference Links:	<u>Homepage</u>	Registration	Directions
--	------------------------	-----------------	---------------------	------------

Face Recognition @ NIST	<u>FRVT 1:1</u>	FRVT 1:N	FRVT MORPH	FRVT Quality Assessment
	Face Forensics	Face masks	Demographics	

		IFPC 2020 - Tuesday Oct 27			IFPC 2020 - Wednesday Oct 28			IFPC 2020 - Thursday Oct 29
	07:20	Welcome		07:00	Welcome		07:00	Welcome
11	07:30	Arun Vemury, DHS Science + Technology Directorate (US): Welcome + DHS context	21	07:10	<i>Lars Ericson, IARPA (US): Overview of the IARPA efforts on face recognition</i>	31	07:10	Rebecca Heyer, DSTG (AU): Face recognition in Australia
12	07:40	Istvan Szilard Racz, EU-LISA: European Entry-Exit	22	07:40	Stergios Papadakis , Johns Hopkins Applied Physics Lab (US): Results from the Odin program on presentation attack detection	32	07:40	Martins Bruveris, Onfido (UK): Reducing geographic performance differentials for face recognition
13	08:10	Anna Stratmann, BSI (DE): Biometric processes of the Entry Exit System	23	08:10	Marta Gomez-Barrero, Hochschule Ansbach (DE): Presentation attack detection and unknown attacks	33	08:10	Jacqueline Cavazos, UT Dallas (US): Accuracy comparison across face recognition algorithms: Where are we on measuring race bias?
14	08:40	Patrick Grother , NIST (US): Measurement of face recognition performance for Entry-Exit	24	08:40	Christian Rathgeb, Hochschule Darmstadt (DE): Impact of facial beautification on face recognition: From plastic surgery to makeup presentation attacks	34	08:40	Johanna Morley, Metropolitan Police (UK): Testing of demographic effects in an operational live facial recognition from video system
	09:10	Break 15 mins		09:10	Break 15 mins		09:10	Break 15 mins
15	09:25	Arun Ross, Michigan State University (US): Look-alike disambiguation in face recognition	25	09:25	Mei Ngan, NIST (US): Face morphing - threats, technology, what's next	35	09:25	Yevgeniy Sirotin, SAIC (US): Demographics: Skin tone and accuracy
16	09:55	P. Jonathon Phillips, NIST (US): Item response theory for designing calibrated face ability tests	26	09:55	Christoph Busch , NTNU/Hochschule Darmstadt (NO/DE): Face morphing attack detection in the iMARS project	36	09:55	<i>Michael Thieme,</i> Novetta (US): AI performance assessment standardization in SC 42 – implications for biometrics
17	10:25	John Howard, SAIC (US): Human-Algorithm Teaming	27	10:25	<i>Kiran Raja, NTNU/MOBAI (NO): Morphing Attack</i> Detection - obstacles for research to deployment	37	10:25	Brendan Klare, Rank One Computing (US): Efficiency considerations for face recognition algorithms
18	10:55	<i>Carina A. Hahn, NIST (US)</i> : The effectiveness of fusion in face recognition	28	10:55	Stephanie Schuckers, Clarkson University (US): Morph detection	38	10:55	Bhargav Avasarala , Paravision (US): Challenges and considerations for unconstrained face recognition
19	11:25	Amy N. Yates, NIST (US): Perceptual face abilities of face examiners for varying tasks	29	11:25	Pawel Drozdowski Hochschule Darmstadt (DE): Workload reduction in FR identification with morphing	39	11:25	Mosalam Ebrahimi , Trueface AI (US): A bias mitigation strategy: overcoming the problem of overly confident false matches
1a	11:55	Yevgeniy Sirotin, SAIC (US): Comparing face and iris as modalities for authentication	2a	11:55	Mei Ngan, NIST (US): Evaluation of face recognition accuracy for subjects potentially wearing face masks	За	11:55	Tony Mansfield , NPL (UK): The new ISO/IEC 19795-1 biometric performance testing and reporting standard
1b	12:25		2b	12:25		3b	12:25	Patrick Grother , NIST (US): Now under development: ISO/IEC 29794-5 face image quality standard
		12:55 Close			12:55 Close			12:55 Close