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P E R V A S I V E  M I D D L E W A R E

M ark Weiser of the Xerox 
Palo Alto Research Center 
(PARC) envisioned a future 
that would transform com-
puters from desktop work-

stations to unobtrusive, ubiquitous data appli-
ances of everyday life. Smart spaces constitute 
a second stage of this transformation, in which 
user and context-sensitive interfaces sense, rec-
ognize, respond to, and assist individual users as 
they live and work. The processing and fusion 

of distributed multimodal 
sensors—recognizing who 
people are, what they say, and 
even their gestures and activi-
ties as well as context-sensitive 
responses—is the subject of 
widespread research. These 
interfaces and services are of 
unprecedented complexity 
and are being developed across 
a community of advanced- 

technology laboratories.
To deal with this complexity, the US National 

Institute of Standards and Technology (NIST) 
has provided data and metrology tools for the 
past 20 years to aid the research community. 
These include the NIST Data Flow System 
(NDFS)—common middleware for distributed 
sensor data acquisition and processing. This 
middleware supports interoperability for algo-
rithms and hardware, collaborative develop-
ment, and performance measurement.

International Collaboration
NIST’s mission is to “promote US innovation 
and industrial competitiveness by advancing 
measurement science, standards, and technol-
ogy in ways that enhance economic security 
and improve our quality of life” (www.nist.gov/
public_affairs/nist_mission.htm). In the global 
economy, this includes mutually bene!cial inter-
national collaboration.

Since the mid 1980s, NIST programs in  
spoken-language and multimodal systems have 
focused on creating standard research corpora, 
“ground truth” metadata, interoperability, and 
metrology tools for measuring recognition per-
formance against standard data sets. NIST has 
provided the community with

data sets to train and test classi!ers that rec-
ognize words, speakers, events, and objects;
metrics such as dynamic alignment for word 
error rates, speaker identi!cation, and bio-
metrics; and
sensor-net middleware for data collection and 
synchronization of research corpora.

NIST programs support research at leading 
laboratories in the US and worldwide under 
programs such as Video Analysis and Content 
Extraction (VACE), Computers in the Human 
Interaction Loop (CHIL), and Augmented Mul-
tiparty Interaction (AMI). For example, our 
Rich Transcription 2007 Meeting Recognition 
Evaluation participants used conference-meet-

The National Institute of Standards and Technology has developed data 
and metrology tools for the research community, including common 
middleware for distributed sensor data acquisition and processing.
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ing, lecture-meeting, and lecture-cof-
fee-break corpora. (The work of many 
of our collaborators is available else-
where.1,2) These programs used data 
collected with NDFS middleware and 
also used the NIST Mark-III micro-
phone arrays. Laboratories collaborat-
ing with these programs included:

Athens Information Technology,
Computers in the Human Interaction 
Loop
Carnegie Mellon University,
Edinburgh University,
Evaluations and Language Resources 
Distribution Agency,
IBM Research Division,
International Computer Science 
Institute,
Institute for Infocomm Research,
Nanyang Technological University,
SRI International,
Center for Scienti!c and Technologi-
cal Research,
Karlsruhe University,
Linguistic Data Consortium,
Laboratoire Informatique d’Avig-
non,
Laboratoire d’Informatique pour 
la Mécanique et les Sciences de 
l’Ingénieur,
University of Shef!eld,
Netherlands Organization for Ap-
plied Scienti!c Research TNO,
Universitat Politècnica de Catalunya, 
and
Virginia Tech.

Tasks included speech to text, close-
talk microphone transcription, meet-
ing diarization of who spoke when, 
and speaker-attributed speech to text. 
Participants also investigated speech 
activity detection.

This research required a new gen-
eration of data collection facilities, so 
several CHIL participants (Athens In-
formation Technology, IBM Research 
Division, Center for Scienti!c and Tech-
nical Research, Karlsruhe University, 
and Universitat Politècnica de Catalu-
nya) constructed laboratories contain-
ing 64-channel NIST Mark-III micro-

phone arrays, T-shaped four-channel 
arrays, table-top microphones, wireless 
CTMs, and video cameras. They col-
lected interactive seminars with inter-
ruptions and coffee breaks, and evalu-
ated various recognition system tasks.

The Classification of Events, Ac-
tivities, and Relationships (Clear) pro-
gram began in 2005 in collaboration 
between the US-funded VACE and the 
European-Commission-funded CHIL 
programs. Fifteen organizations par-
ticipated in the 2006 Clear evaluation. 

In 2007 the AMI program joined the 
consortium. Clear provides a frame-
work for evaluating algorithm research 
and creating metrics, tasks, and anno-
tated multimodal corpora for percep-
tual technology. In 2007, there were 24 
evaluation tasks, supported by 19 orga-
nizations. The tasks included 3D single- 
and multiple-person tracking; 2D mul-
tiple-person tracking; 2D face tracking; 
person identi!cation; head pose estima-
tion; and detection of acoustic events 
such as door knocks, footsteps, chair 
motions, paper work, phone rings, and 
other nonspeech sounds.

NIST Middleware Development
NIST held the first DARPA/NIST 
Smart Spaces Workshop in 1998 to 
explore, with the research community, 
issues about creating smart spaces us-
ing distributed pervasive devices,3 
sensor-rich audiovisual user-sensitive 
interfaces,4,5 complex interoperability 
requirements,6 and multimodal recog-
nition technologies.7

The increasing complexity of inter-
faces using speech recognition and con-
text-sensitive multimodal responses, 
such as those proposed by Vincent 
Stanford and his colleagues,8 required 
distributed data transport. In response, 

the NIST Information Access Division 
began the NDFS project in 1998, which 
became operational in 1999. This sys-
tem drew concepts from an earlier 
large-grained data-"ow system called 
the Graph Analysis and Design Tech-
nique (GADT), for naval array signal 
processing.9 GADT provided runtime 
semantics for graphs in a form similar 
to the Structured Analysis and Design 
Technique (SADT) for data-"ow-based 
requirements modeling that Doug Ross 
and his colleagues developed in the late 

1960s and early 1970s.10 The early 
work on data-flow systems by Ross 
and others has inspired several projects 
in recent years (see the “Evolution in 
Data-Flow Systems” sidebar).

We designed NDFS for localized high-
bandwidth, multisensor data streams, 
which consisted of hundreds of micro-
phones and multiple video channels ac-
quired on networked sensors and PCs. 
It used broadcast networking for appli-
cation server discovery, so it remained 
limited to local-area networks, typically 
with point-to-point gigabit connections 
between multicore PCs, and wireless 
connections to pervasive devices. Be-
cause NDFS was designed as an open 
middleware layer for distributed sensors 
and computations, and served a collab-
orative research community, we devel-
oped multiple-language bindings for it. 
These included C++, GNU Octave, and 
Java. GNU Octave offers extensive high-
level libraries for matrix and sensor sig-
nal-processing-algorithm development. 
NDFS was also easily adaptable for run-
ning with Matlab.

Another goal was access to the wid-
est variety of sensors on all major oper-
ating systems. NDFS ran transparently 
across networks and, more ef!ciently, 
through shared memory on single  

The NIST Information Access Division began 

the NIST Data Flow System (NDFS) project  

in 1998, which became operational in 1999. 
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machines. It duplicated data "ows when 
necessary and used shared memory 
when possible. The data transport pro-
tocols were lightweight, and it acquired 
about 4 Gbytes of reference data per 
minute on low-cost commodity hard-
ware in our NIST Meeting Room Data 
Collection Laboratory.

The limited processors and band-

width of the late 1990s forced us to 
develop NDFS-I, based on C, with ef-
!ciency as a primary requirement. The 
result was platform-dependent and even 
brittle, but we were able to collect more 
than 20 Tbytes of multimodal meeting 
data for the research community.

NDFS-II successfully addresses these 
limitations. It still specializes in sensor-

rich, localized smart spaces, but it’s 
more "exible and fault tolerant. It sup-
ports all major PC operating systems, 
including many versions of Windows, 
OS X, and Linux, so sensors and hard-
ware interfaces from most vendors are 
accessible. We chose C++ for the NDFS-
II source code because it supports high 
data rates on modest hardware, yet 

I n recent years, researchers have developed numerous  
distributed-processing systems, many using data-!ow 

architectures, with various specialized architectural features. 
Many of these systems signi"cantly overlap with the US Na-
tional Institute of Standards and Technology’s NIST Data Flow 
System (NDFS) architecture.

Grid computing created a virtual batch of scienti"c super-
computers from geographically distributed centers.

Several projects, such as TelegraphCQ, Aurora and Borea-
lis, Pipes (Public Infrastructure for Processing and Exploring 
Streams), and WaveScope, focused on continuous-query (CQ) 
of SQL databases over data streams, with events correspond-
ing to SQL table rows. (WaveScope also supports parallel  
signal processing.) This suggests applicability to a different  
domain than the tightly coupled gigabit bandwidth of  
NDFS-based smart spaces. For example, a CQ system can pro-
cess a stream from a NIST Mark-III array by inserting 44,100  
64-channel rows per second into an SQL relational database 
management system (RDBMS), but the overhead would place 
prohibitive demands on low-cost hardware. Many CQ systems 
use Java, rather than the portable C++ libraries used in NDFS, 
to achieve portability. Unfortunately, although Java perfor-
mance is improving, Java still reduces performance for any 
given hardware platform.

Hourglass and Global Sensor Networks are both middle-
ware for data collection networks of heterogeneous Internet 
sensors.

Grid Computing
The Grid Computing Initiative, which began in 1997,1 provides 
resource location and allocation, communications, a uni"ed 
resource information service, an authentication interface, 
process creation, and data access. It also implements a uni-
"ed access mechanism called Metacomputing Directory Ser-
vices (MDS) using the Lightweight Directory Access Protocol 
(LDAP). Thus, it offers large-scale and geographic distribution 
and is often used to implement batch parallelism. But it also 
supports distributed-processing systems, including Parallel Vir-

tual Machine (PVM) and the Message Passing Interface (MPI).
As is often the case with highly successful projects, the grid 

concept is spreading in many directions, with additions such 
as service-oriented architecture (SOA), Web services, and even 
virtual organizations. This wide array of extensions precludes us 
from providing an exhaustive survey of grid technologies in this 
article, but it clearly indicates the successful implementation and 
wide dissemination of grid-computing technology.

TelegraphCQ
The Telegraph Data!ow System was an early project written 
in Java beginning in 2000, and grew out of earlier adaptive 
relational-query work. TelegraphCQ, "rst described in 2002, 
supports CQ processing over streams using an adaptation of the 
PostgreSQL RDBMS.2 It processes streams in unpredictable envi-
ronments by using query operators and provides load balancing, 
fault tolerance, and adaptability, enabling better performance 
compared with static-query plans.

Aurora and Borealis
Aurora began in 2001 and led to the development of the 
standards-based StreamSQL, which supports continuous and 
time-windowed queries of transaction streams. Borealis—a 
second-generation distributed stream-processing engine that 
can handle high-volume, event-based transaction streams such 
as stock exchanges—superceded Aurora in 2005.3 It includes a 
distributed catalog, nodes, client applications, and data sources. 
Stream !ows connect the nodes, which collaboratively compute 
the queries and thus embody this system’s data-!ow aspect. 
Borealis provides automatic coordination of queries, fault toler-
ance, load monitoring and balancing, and revision processing for 
erroneous input. It also has a GUI for creating queries, organiz-
ing data streams, and visualizing Borealis networks. Borealis has 
been built and tested on various Linux distributions.

Pipes
Pipes was developed in 2003. It provides a publish-subscribe 
architecture for processing and exploring streams, and it offers 

Evolution in Data-Flow Systems
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presents an object-oriented program-
ming interface for all major operating 
systems. NDFS-II offers interoperabil-
ity for algorithms and hardware, collab-
orative development, and performance 
measurement. (The “Infrastructure 
for Collaborative Multimodal-Sensor 
Research” and “Event Recognition in 
Sensor-Based Smart Environments” 

sidebars discuss two scenarios in which 
this middleware has been used.)

NDFS-II lets us capture about 250 
Gbytes per hour from sensors in our 
NIST Meeting Room Data Collection 
Laboratory for our multimodal cor-
pora (see Figure 1). We synchronize 
the audio and video channels to within 
a video frame by estimating time tag 

trend lines, which we use to adjust off-
sets, smooth jitter, and compensate for 
data collection clock rates.

The NIST Data Flow System II
The NDFS-II architecture has the fol-
lowing components:

Data-!ow servers discover the peer 

functionalities to express, implement, and run CQs over data 
streams.4 It was implemented in the XXL Java library for query-
processing algorithms. Pipes allows the composition of query 
graphs with runtime resource sharing. The Pipes group has in-
vestigated scheduling approaches such as operator threading 
and graph threading, and it has developed a hybrid approach 
that allows concurrency with reduced overhead.

WaveScope
WaveScope appeared in 2006 as a data management and con-
tinuous sensor data system that integrates RDBMS CQ and 
signal-processing operations into a single system. The major 
components include a new language called WaveScript for signal 
processing, an execution engine for multicore PCs, and a distrib-
uted-execution engine. Lewis Girod and his colleagues make a 
case for this combination of capabilities.5 According to the de-
velopers’ Web site, the project is still at an early stage. Develop-
ers can compile the signal-processing operators in WaveScript 
programs into data-!ow graphs at a "ner-grained level than the 
large-grained process-level nodes supported by NDFS. Hence, 
with many processor cores now emerging, WaveScope could be 
especially well-suited for highly parallel systems.

Hourglass
This system, developed in 2004, is a data collection network for 
naming, discovering, routing, and aggregating data from geo-
graphically diverse sensor networks using a publish-subscribe 
paradigm.6 Hourglass is similar to the NDFS architecture in sev-
eral ways and the systems use a similar discovery mechanism. 
Both maintain a buffered-!ow architecture to permit intermit-
tent connectivity, separate control and data components, dis-
covery of resources such as sensors, and quality of service (QoS). 
However, Hourglass supports additional Internet services for 
wider distribution, albeit with higher overhead.

Global Sensor Networks
GSN, developed in 2006, is a Java-based platform for deploying 
sensor network technologies that uses a set of abstraction layers 

comprising virtual sensors in a container-based architecture ac-
cessed via standard Internet or Web services.7 According to this 
project, the lack of standardization and frequent arrival of novel 
sensors make portable-application development dif"cult. GSN 
provides distributed querying, "ltering, and combining sensor 
data. Each GSN virtual sensor corresponds to a database table, 
and each sensor reading corresponds to a tuple.
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Figure 1. The US National Institute 
of Standards and Technology (NIST) 
Meeting Room Data Collection 
Laboratory in operation, using the 
NIST Data Flow System (NDFS) for 
data transport, synchronization, and 
storage, as seen at the review station: 
(a) one pan-tilt high-de!nition camera 
(upper left) can follow a presenter, 
while the other six high-de!nition 
cameras show whiteboards, written 
materials, projector displays, and the 
other meeting participants; (b) the 
system displays input levels for 24 
individual microphones and four high-
resolution NIST Mark-III 64-channel 
microphone arrays.

Kevin Donohue and Jens Hannemann
University of Kentucky Center for Visualization  
and Virtual Environments

T he University of Kentucky Center for Visualization and Vir-
tual Environments is developing a multimodal distributed-

sensor-system testbed for research in scene understanding and 
smart spaces. The US National Science Foundation funds this 
ambient-virtual-assistant (AVA) project. The testbed’s main goal 
is to establish an ef"cient infrastructure for researchers to imple-
ment and test algorithms for processing the complex, massive 
data sets that the multimodal sensor system generates.

Our system currently consists of 23 cameras connected to 
host computers, 40 microphones, and 24 speakers connected 
to a single host computer running the Jack audio connection kit, 
several projectors, displays, and RFID readers. These sensors are 
distributed over three of"ces and a hallway in our laboratory. We 
selected the US National Institute of Standards and Technology’s 
NIST Data Flow System II (NDFS-II) to transport streaming data 
to an 80-node Linux-based cluster for general processing. To 
explore the possibilities of the NDFS-II API, we developed a Jack 
front end and back end, which enable the connection of NDFS-II 
data !ows for input and output to Linux-supported sound cards.

Current cluster-scheduling and load-balancing systems, such 
as Sun’s Grid Engine, aren’t suited for processing real-time 
streaming data. To overcome this, the AVA project has designed 
and implemented an API that lets programmers route stream-
ing data to one or more nodes in a cluster. The multicasting used 
by NDFS-II, running on the eight-way symmetric multiproces-
sor (SMP) cluster nodes, improves this routing’s ef"ciency. For 
each data stream, the testbed creates a tree of processors. These 
processor trees can run in separate threads, if necessary, fully 
exploiting the underlying parallelism potential. Data streams 
from different modes and sensor sets with timing dependencies 
achieve synchronization via the network using the Precision Time 
Protocol (PTP).

To enhance the ability to propose and implement experiments 
on the testbed, we developed an interactive system that enables 
direct access to a library of basic processing operations and data 
stream control via the Python scripting language. Researchers 
can therefore control the routing and scheduling from a remote 
machine using XML-RPC.

NDFS-II has provided us with a robust, ef"cient infrastructure 
for reliably transporting real-time data over local, high-band-
width networks, thereby enabling !exible processing of data 
from the multimodal and distributed systems in our testbed.

Infrastructure for Collaborative  
Multimodal-Sensor Research
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application servers and maintain lists 
of active servers, clients, and "ows by 
using XML-based control messages.
Clients read and write "ows. They’re 
connected to the local server for con-
trol, and to duplicators for binary 
data "ows.
Duplicators transport data flows, 
which are controlled by local servers 
and connected to remote duplicators 
and local clients. There is one dupli-
cator per "ow where that "ow is pro-
duced or consumed.
The control center displays, con-

trols, and monitors application 
graphs.

Figure 2 shows the control and data 
transport connections. NDFS-II relies 
on an open source, cross-platform com-
munication library, the Adaptive Com-
munication Environment (ACE; www.
cse.wustl.edu/~schmidt/ACE.html), for 
multiplatform concurrent communica-
tion and uses the open source Qt toolkit 
for portable GUIs. ACE provides C++ 
wrappers and framework components 
for communication design patterns on 

major operating systems. NDFS-II uses 
the ACE reactive model for connection 
requests, message processing, and data 
transport. Servers, duplicators, and cli-
ents use the reactor framework to auto-
mate detection and demultiplexing of 
events and dispatch them to handlers. 
The acceptor-connector framework 
establishes connections and initializes 
services.

Implementing a server using the reac-
tive model is less error-prone than using 
multiple threads and semaphores, because 
NDFS-II a priori avoids interlocking  
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Figure 2. The major NIST Data Flow System II (NDFS-II) components and their interprocess communication. The data-"ow server 
(top center) manages control messages between clients, duplicators, and hosts. The duplicators (bottom center) each transport 
one data "ow and duplicate the data stream as necessary for multiple local clients. The client node (left) uses a shared library, 
which has one thread to process messages from the server and one thread per "ow for data transport.
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between threads and shared variables. 
Also, the duplicators support a hybrid 
push/pull data transport model and can 
synchronize "ows by block count for gen-
eral parallel distributed processing.

The NDFS-II Network
One data-"ow server runs on each par-
ticipating host. Collectively, the sibling 
servers maintain a crossbar connec-
tion to the other servers in the applica-
tion. The discovery process lets hosts 
join the NDFS-II network at any time. 
When launched, a server opens its ac-
cess points for incoming connections 
and broadcasts a message containing its 
application name. In response, each sib-
ling server sends its current application 
description. Thus, each server builds a 
full description of the running applica-
tion as it joins the network.

This peer-to-peer synchronization 

protocol avoids a single point of failure 
because all servers maintain a complete 
and current application description. 
So, each server manages the applica-
tion components running on its host by 
receiving local client requests directly 
and remote ones indirectly via remote 
servers. Servers then process requests, 
forward them as necessary, and update 
other servers with any changes.

Privileged-client APIs, used in the 
control center but open to other clients 
as well, let developers create and con-
trol distributed NDFS-II application 
graphs. These privileged clients use the 
API’s control methods to send requests 
to their server—for example, launching 
or stopping a speci!c client, requesting 
a description of the running NDFS ap-
plication, or making changes directly in 
the application rather than by subscrib-
ing to data "ows.

Optimized Data Transport
NDFS-II transports data between cli-
ents via "ows that locally use shared 
memory or to remote hosts across the 
network. Clients access "ows on the ba-
sis of their properties rather than loca-
tions. To achieve this network transpar-
ency, we use duplicators to transport 
data (see Figure 2), with "ows being 
duplicated for multiple subscriber cli-
ents on the various hosts.

Shared memory allows concurrent 
reading and avoids the need for multiple 
copies of data. A duplicator sends data 
only once per remote host, not once per 
consumer, thus reducing network band-
width. Also, a consumer node can sus-
pend data transfer of a speci!c "ow, or 
even crash, and the duplicator will still 
transport "ows for the other clients.

Data transport might be irregular, 
depending on the network conditions 

Albert Ali Salah
Centrum, Wiskunde & Informatica, Amsterdam

T he eNTERFACE Workshop (www.cmpe.boun.edu.tr/enter-
face07) is a one-month gathering where researchers can 

collaborate on projects involving human-computer interaction. 
In the 2007 workshop, organized at Bogaziçi University in Istan-
bul, we implemented a system to identify and track people in a 
smart room using multimodal information.1

We employed low-cost cameras and microphones, which had 
limited individual accuracy but could produce accurate descrip-
tions working together. We also wanted opportunistic sensing, 
which uses information sources such as the color of clothing, not 
ordinarily considered as biometric identi"ers but useful in the ap-
plication context.

The system used facial images, captured as people walked into 
the room, to recognize them in images from the other cameras. 
Four ceiling cameras received each person’s ID, and feature-
based identi"cation clients constructed color-based feature mod-
els of each person on the !y because face recognition from the 
low-quality ceiling cameras was dif"cult. A locally constructed, 
14-element microphone array aided localization and identi"-
cation based on acoustic information. We wrote a recognition 

module for simple gestures in visual input, and other modules for 
motion detection and foreground-background extraction. A vi-
sualization client displayed a map of the room, with icons depict-
ing people and identi"cation tags.

We used the US National Institute of Standards and Technol-
ogy’s (NIST) Data Flow System II (NDFS-II) as the middleware to 
connect the many components needed for the project, and its 
interface was intuitive and easy to use. Its cross-platform capabil-
ity was essential because several hosts running both Linux and 
Windows drove our sensors. On the other hand, we discovered 
that communication between clients could become a major bot-
tleneck. Also, different clients’ frame rates needed adjustment, 
depending on the resources at hand. In general, the modules 
written before the workshop by different groups operated under 
different assumptions, and integrating them quickly was a sig-
ni"cant challenge. Nevertheless, using the NDFS-II middleware 
at this workshop was a stimulating, thoroughly satisfying experi-
ence for all the involved parties.
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or client node consumption rates. A 
hybrid push/pull system regularizes 
data transport. Each client node has a 
queue per "ow running in a separate 
thread. When a producer pushes a data 
block, this data isn’t sent immediately 
but instead is enqueued. The separate 
thread then dequeues the data to shared 
memory when noti!ed by the duplica-
tor, which sends the data to remote peer 
duplicators if necessary. If no consumer 
subscribes to the "ow, the data block is 
dropped. If a consumer does subscribe, 
the "ow thread symmetrically retrieves 
a data block from the shared memory 
and enqueues it in the consumer "ow 
queue. The consumer can then pull the 
data from the queue.

This queue mechanism allows data 
transport with quality of service (QoS) 
and is ef!cient: when a consumer cli-
ent node requests a buffer, it will of-
ten already be in that node’s queue and 
thus available immediately. Moreover, 
queues can be customized as either 
blocking or nonblocking. In the lat-
ter case, queues can drop the oldest 
or newest buffer to make room. The 
API also provides dedicated methods 
for handling !les when a loss of blocks 
can’t be tolerated.

Sensor Fusion to Illustrate 
Operational Concepts
An example of audiovisual sensor 
fusion illustrated NDFS-II’s opera-
tional concepts. Using parallel signal- 
processing pipelines, we processed 
data captured live from a 64-channel 
NIST Mark-III microphone array and 
a high-de!nition video camera. As the 
large box in Figure 3 shows, an NDFS-
II client estimates the speaker’s bearing 
from the array beamformer (top right), 
evaluates a speech activity model (mid-
dle right), and identi!es facial regions 
and marks them with a white bounding 
box. In the !nal fusion step, upon de-
tecting speech activity and matching the 
speaker’s bearing with the face position 
angles relative to the array broadside is 
marked the active speaker’s face with a 
red bounding box. This example uses 

well-known algorithms such as steered-
response beamforming and Viola-Jones 
face localization.

Figure 4 shows the system element 
"ow graph, as rendered by the con-
trol center. Capture_Audio_Array reads the 
64-channel audio pipeline. Monitor_Audio 
displays the array audio. Pre!lter_Multi-
channel_Audio applies a band-pass !lter 
to attenuate wavelengths exceeding 
the array diameter and high frequen-
cies that would be spatially aliased. 
Transform_to_Beamspace and Estimate_Trigauss-
ian_SNR operate on !ltered audio and of-
fer "ows to Display_Tracked_Speaker, which 
uses trigaussian SNR (signal-to-noise 
ratio) parameters for speech activity de-
tection to decide when to use the room 
sound !eld’s beamspace representation 
to estimate speaker direction.

The video pipeline begins with 
Capture_Camera_Video, which offers an 
MPEG-2 video "ow for subscription. 

Monitor_Video displays the video input at 
the user interface. Track_Faces then pro-
duces bounding-box coordinates for 
the faces and offers them for subscrip-
tion to Display_Tracked_Speaker.

Next, Display_Tracked_Speaker fuses the 
audio and video features. Estimate_Trigauss-
ian_SNR indicates probable speech in the 
audio signal. Transform_to_Beamspace com-
putes a fan of beams at increments of 
approximately 3 degrees, along with 
each beam’s average power, over suc-
cessive windows. This steered-response 
beamformer computes power as a func-
tion of angle. The speaker bearing is im-
puted to the angle of the dominant en-
ergy, corresponding to a face in video. 
Then, if the trigaussian-SNR threshold 
is consistent with speech energy in the 
dominant beam, a speaker’s presence 
and location are suggested.

Thus, we used NDFS-II to coordi-
nate the distributed clients for data 

Figure 3. Using NIST Data Flow System (NDFS) to perform real-time sensor fusion 
of a high-de!nition MPEG-2 video "ow from a camera and a multichannel audio 
"ow from a 64-channel NIST Mark-III microphone array. NDFS correlates the faces’ 
bounding boxes with the sound source’s estimated bearing and then denotes the 
speaker with a red bounding box. (a) The right side of this panel shows audio signal 
processing for beamforming and speech activity detection. The surrounding panels 
show (b) the video tracks, (c) beamspace waterfall, (d) array raw data, (e) beam, and 
(f) audio tracks.
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acquisition, computing, sensor fusion, 
and display functions. This example 
application "ow graph (which is avail-
able with our open source project at 
www.nist.gov/smartspace) consists of 
modular entities that can be reused—
for example, to create a testbed host-
ing various research algorithms. Ad-
ditional functional elements such as 
monitoring or recording nodes can 
be added dynamically at runtime to 
the flow graph. Built-in data trans-
port mechanisms such as blocking and 
nonblocking queuing, along with the 
advanced-synchronization API, help 
model a wide spectrum of distributed 
applications. In this case, we used non-
blocking data transport functionality 
because of the application’s real-time 
processing character.

Lessons Learned
The earlier NDFS used a pull mecha-
nism for data transport and had a single 
server for publish-subscribe "ow man-
agement. The former required flow 
block pools at producing clients with 
reference-count garbage collection. So, 
a consumer client failure would even-
tually block all clients subscribing to a 
given "ow because the reference counts 
couldn’t reach 0 for garbage collection. 
The latter introduced a single point of 
failure, which could stop all of a run-
ning application’s clients.

We addressed these issues with a 

hybrid push/pull mechanism using 
duplicators, and a peer-to-peer server 
protocol. Thus, we avoided the single 
server and made the "ows nonblock-
ing in the event of client failures. The 
control center is now simply another 
client node with display and commu-
nication services, and it doesn’t main-
tain a central "ow publish-subscribe 
directory, as with NDFS-I. We based 
"ows on C++ classes, dynamic librar-
ies, and shared memory, which allows 
concurrent reading and avoids redun-
dant copy operations. It also minimizes 
network bandwidth by transmitting 
one copy per remote host even if there 
are multiple consuming-client nodes. 
Implementing core functionalities with 
multiplatform libraries allows cross-
platform development, which insulates 
NDFS-II from changes in the various 
target operating systems.

L aboratories worldwide are 
developing the recognition 
and classi!cation technolo-
gies needed for future perva-

sive interfaces. NDFS-II can host com-
munity-based research that facilitates 
plugging algorithms into standard 
and open data-"ow graphs. This will 
enable complex multimodal interface 
evaluations of collaboratively devel-
oped systems. Our data-"ow middle-
ware, already in use in our collabora-

tive research programs, can further 
aid researchers as they collaboratively 
specify, build, and evaluate advanced 
multimodal systems using standard 
corpora, performance measurement 
tools, and system designs.
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