
!"#$%&'()*+")&,-.*

Reuse Rights and Reprint Permissions: Educational or personal use of this material is permitted

without fee, provided such use: 1) is not made for profit; 2) includes this notice and a full citation

to the original work on the first page of the copy; and 3) does not imply IEEE endorsement of any

third-party products or services. Authors and their companies are permitted to post their IEEE-

copyrighted material on their own Web servers without permission, provided that the IEEE

copyright notice and a full citation to the original work appear on the first screen of the posted

copy.

Permission to reprint/republish this material for commercial, advertising, or promotional purposes

or for creating new collective works for resale or redistribution must be obtained from the IEEE

by writing to the IEEE Intellectual Property Rights Office, 445 Hoes Lane, Piscataway, NJ

08854-4141 or pubs-permissions@ieee.org. Copyright © 2009 IEEE. All rights reserved.
Abstracting and Library Use: Abstracting is permitted with credit to the source. Libraries are

permitted to photocopy for private use of patrons, provided the per-copy fee indicated in the code

at the bottom of the first page is paid through the Copyright Clearance Center, 22 Rosewood

Drive, Danvers, MA 01923.

/011*!&)2)&"3.*

Middleware and Metrology for the Pervasive Future. Antoine Fillinger, Imad Hamchi,

Stéphane Degré, Lukas Diduch, Travis Rose, Jonathan Fiscus and Vincent Stanford.

IEEE Pervasive Computing Mobile and Ubiquitous Systems. Vol. 8, num. 3, page 74-83,

July-September 2009.*

74 PERVASIVE computing Published by the IEEE CS 1536-1268/09/$25.00 © 2009 IEEE

P E R V A S I V E M I D D L E W A R E

M ark Weiser of the Xerox
Palo Alto Research Center
(PARC) envisioned a future
that would transform com-
puters from desktop work-

stations to unobtrusive, ubiquitous data appli-
ances of everyday life. Smart spaces constitute
a second stage of this transformation, in which
user and context-sensitive interfaces sense, rec-
ognize, respond to, and assist individual users as
they live and work. The processing and fusion

of distributed multimodal
sensors—recognizing who
people are, what they say, and
even their gestures and activi-
ties as well as context-sensitive
responses—is the subject of
widespread research. These
interfaces and services are of
unprecedented complexity
and are being developed across
a community of advanced-

technology laboratories.
To deal with this complexity, the US National

Institute of Standards and Technology (NIST)
has provided data and metrology tools for the
past 20 years to aid the research community.
These include the NIST Data Flow System
(NDFS)—common middleware for distributed
sensor data acquisition and processing. This
middleware supports interoperability for algo-
rithms and hardware, collaborative develop-
ment, and performance measurement.

International Collaboration
NIST’s mission is to “promote US innovation
and industrial competitiveness by advancing
measurement science, standards, and technol-
ogy in ways that enhance economic security
and improve our quality of life” (www.nist.gov/
public_affairs/nist_mission.htm). In the global
economy, this includes mutually bene!cial inter-
national collaboration.

Since the mid 1980s, NIST programs in
spoken-language and multimodal systems have
focused on creating standard research corpora,
“ground truth” metadata, interoperability, and
metrology tools for measuring recognition per-
formance against standard data sets. NIST has
provided the community with

data sets to train and test classi!ers that rec-
ognize words, speakers, events, and objects;
metrics such as dynamic alignment for word
error rates, speaker identi!cation, and bio-
metrics; and
sensor-net middleware for data collection and
synchronization of research corpora.

NIST programs support research at leading
laboratories in the US and worldwide under
programs such as Video Analysis and Content
Extraction (VACE), Computers in the Human
Interaction Loop (CHIL), and Augmented Mul-
tiparty Interaction (AMI). For example, our
Rich Transcription 2007 Meeting Recognition
Evaluation participants used conference-meet-

The National Institute of Standards and Technology has developed data
and metrology tools for the research community, including common
middleware for distributed sensor data acquisition and processing.

Middleware and
Metrology for the
Pervasive Future

Antoine Fillinger, Imad Hamchi,
Stéphane Degré, Lukas L. Diduch,
Travis Rose, Jonathan Fiscus,
and Vincent Stanford
National Institute
of Standards and Technology

Authorized licensed use limited to: NIST Research Library. Downloaded on August 11, 2009 at 10:51 from IEEE Xplore. Restrictions apply.

JULY–SEPTEMBER 2009 PERVASIVE computing 75

ing, lecture-meeting, and lecture-cof-
fee-break corpora. (The work of many
of our collaborators is available else-
where.1,2) These programs used data
collected with NDFS middleware and
also used the NIST Mark-III micro-
phone arrays. Laboratories collaborat-
ing with these programs included:

Athens Information Technology,
Computers in the Human Interaction
Loop
Carnegie Mellon University,
Edinburgh University,
Evaluations and Language Resources
Distribution Agency,
IBM Research Division,
International Computer Science
Institute,
Institute for Infocomm Research,
Nanyang Technological University,
SRI International,
Center for Scienti!c and Technologi-
cal Research,
Karlsruhe University,
Linguistic Data Consortium,
Laboratoire Informatique d’Avig-
non,
Laboratoire d’Informatique pour
la Mécanique et les Sciences de
l’Ingénieur,
University of Shef!eld,
Netherlands Organization for Ap-
plied Scienti!c Research TNO,
Universitat Politècnica de Catalunya,
and
Virginia Tech.

Tasks included speech to text, close-
talk microphone transcription, meet-
ing diarization of who spoke when,
and speaker-attributed speech to text.
Participants also investigated speech
activity detection.

This research required a new gen-
eration of data collection facilities, so
several CHIL participants (Athens In-
formation Technology, IBM Research
Division, Center for Scienti!c and Tech-
nical Research, Karlsruhe University,
and Universitat Politècnica de Catalu-
nya) constructed laboratories contain-
ing 64-channel NIST Mark-III micro-

phone arrays, T-shaped four-channel
arrays, table-top microphones, wireless
CTMs, and video cameras. They col-
lected interactive seminars with inter-
ruptions and coffee breaks, and evalu-
ated various recognition system tasks.

The Classification of Events, Ac-
tivities, and Relationships (Clear) pro-
gram began in 2005 in collaboration
between the US-funded VACE and the
European-Commission-funded CHIL
programs. Fifteen organizations par-
ticipated in the 2006 Clear evaluation.

In 2007 the AMI program joined the
consortium. Clear provides a frame-
work for evaluating algorithm research
and creating metrics, tasks, and anno-
tated multimodal corpora for percep-
tual technology. In 2007, there were 24
evaluation tasks, supported by 19 orga-
nizations. The tasks included 3D single-
and multiple-person tracking; 2D mul-
tiple-person tracking; 2D face tracking;
person identi!cation; head pose estima-
tion; and detection of acoustic events
such as door knocks, footsteps, chair
motions, paper work, phone rings, and
other nonspeech sounds.

NIST Middleware Development
NIST held the first DARPA/NIST
Smart Spaces Workshop in 1998 to
explore, with the research community,
issues about creating smart spaces us-
ing distributed pervasive devices,3
sensor-rich audiovisual user-sensitive
interfaces,4,5 complex interoperability
requirements,6 and multimodal recog-
nition technologies.7

The increasing complexity of inter-
faces using speech recognition and con-
text-sensitive multimodal responses,
such as those proposed by Vincent
Stanford and his colleagues,8 required
distributed data transport. In response,

the NIST Information Access Division
began the NDFS project in 1998, which
became operational in 1999. This sys-
tem drew concepts from an earlier
large-grained data-"ow system called
the Graph Analysis and Design Tech-
nique (GADT), for naval array signal
processing.9 GADT provided runtime
semantics for graphs in a form similar
to the Structured Analysis and Design
Technique (SADT) for data-"ow-based
requirements modeling that Doug Ross
and his colleagues developed in the late

1960s and early 1970s.10 The early
work on data-flow systems by Ross
and others has inspired several projects
in recent years (see the “Evolution in
Data-Flow Systems” sidebar).

We designed NDFS for localized high-
bandwidth, multisensor data streams,
which consisted of hundreds of micro-
phones and multiple video channels ac-
quired on networked sensors and PCs.
It used broadcast networking for appli-
cation server discovery, so it remained
limited to local-area networks, typically
with point-to-point gigabit connections
between multicore PCs, and wireless
connections to pervasive devices. Be-
cause NDFS was designed as an open
middleware layer for distributed sensors
and computations, and served a collab-
orative research community, we devel-
oped multiple-language bindings for it.
These included C++, GNU Octave, and
Java. GNU Octave offers extensive high-
level libraries for matrix and sensor sig-
nal-processing-algorithm development.
NDFS was also easily adaptable for run-
ning with Matlab.

Another goal was access to the wid-
est variety of sensors on all major oper-
ating systems. NDFS ran transparently
across networks and, more ef!ciently,
through shared memory on single

The NIST Information Access Division began

the NIST Data Flow System (NDFS) project

in 1998, which became operational in 1999.

Authorized licensed use limited to: NIST Research Library. Downloaded on August 11, 2009 at 10:51 from IEEE Xplore. Restrictions apply.

76 PERVASIVE computing www.computer.org/pervasive

PERVASIVE MIDDLEWARE

machines. It duplicated data "ows when
necessary and used shared memory
when possible. The data transport pro-
tocols were lightweight, and it acquired
about 4 Gbytes of reference data per
minute on low-cost commodity hard-
ware in our NIST Meeting Room Data
Collection Laboratory.

The limited processors and band-

width of the late 1990s forced us to
develop NDFS-I, based on C, with ef-
!ciency as a primary requirement. The
result was platform-dependent and even
brittle, but we were able to collect more
than 20 Tbytes of multimodal meeting
data for the research community.

NDFS-II successfully addresses these
limitations. It still specializes in sensor-

rich, localized smart spaces, but it’s
more "exible and fault tolerant. It sup-
ports all major PC operating systems,
including many versions of Windows,
OS X, and Linux, so sensors and hard-
ware interfaces from most vendors are
accessible. We chose C++ for the NDFS-
II source code because it supports high
data rates on modest hardware, yet

I n recent years, researchers have developed numerous
distributed-processing systems, many using data-!ow

architectures, with various specialized architectural features.
Many of these systems signi"cantly overlap with the US Na-
tional Institute of Standards and Technology’s NIST Data Flow
System (NDFS) architecture.

Grid computing created a virtual batch of scienti"c super-
computers from geographically distributed centers.

Several projects, such as TelegraphCQ, Aurora and Borea-
lis, Pipes (Public Infrastructure for Processing and Exploring
Streams), and WaveScope, focused on continuous-query (CQ)
of SQL databases over data streams, with events correspond-
ing to SQL table rows. (WaveScope also supports parallel
signal processing.) This suggests applicability to a different
domain than the tightly coupled gigabit bandwidth of
NDFS-based smart spaces. For example, a CQ system can pro-
cess a stream from a NIST Mark-III array by inserting 44,100
64-channel rows per second into an SQL relational database
management system (RDBMS), but the overhead would place
prohibitive demands on low-cost hardware. Many CQ systems
use Java, rather than the portable C++ libraries used in NDFS,
to achieve portability. Unfortunately, although Java perfor-
mance is improving, Java still reduces performance for any
given hardware platform.

Hourglass and Global Sensor Networks are both middle-
ware for data collection networks of heterogeneous Internet
sensors.

Grid Computing
The Grid Computing Initiative, which began in 1997,1 provides
resource location and allocation, communications, a uni"ed
resource information service, an authentication interface,
process creation, and data access. It also implements a uni-
"ed access mechanism called Metacomputing Directory Ser-
vices (MDS) using the Lightweight Directory Access Protocol
(LDAP). Thus, it offers large-scale and geographic distribution
and is often used to implement batch parallelism. But it also
supports distributed-processing systems, including Parallel Vir-

tual Machine (PVM) and the Message Passing Interface (MPI).
As is often the case with highly successful projects, the grid

concept is spreading in many directions, with additions such
as service-oriented architecture (SOA), Web services, and even
virtual organizations. This wide array of extensions precludes us
from providing an exhaustive survey of grid technologies in this
article, but it clearly indicates the successful implementation and
wide dissemination of grid-computing technology.

TelegraphCQ
The Telegraph Data!ow System was an early project written
in Java beginning in 2000, and grew out of earlier adaptive
relational-query work. TelegraphCQ, "rst described in 2002,
supports CQ processing over streams using an adaptation of the
PostgreSQL RDBMS.2 It processes streams in unpredictable envi-
ronments by using query operators and provides load balancing,
fault tolerance, and adaptability, enabling better performance
compared with static-query plans.

Aurora and Borealis
Aurora began in 2001 and led to the development of the
standards-based StreamSQL, which supports continuous and
time-windowed queries of transaction streams. Borealis—a
second-generation distributed stream-processing engine that
can handle high-volume, event-based transaction streams such
as stock exchanges—superceded Aurora in 2005.3 It includes a
distributed catalog, nodes, client applications, and data sources.
Stream !ows connect the nodes, which collaboratively compute
the queries and thus embody this system’s data-!ow aspect.
Borealis provides automatic coordination of queries, fault toler-
ance, load monitoring and balancing, and revision processing for
erroneous input. It also has a GUI for creating queries, organiz-
ing data streams, and visualizing Borealis networks. Borealis has
been built and tested on various Linux distributions.

Pipes
Pipes was developed in 2003. It provides a publish-subscribe
architecture for processing and exploring streams, and it offers

Evolution in Data-Flow Systems

Authorized licensed use limited to: NIST Research Library. Downloaded on August 11, 2009 at 10:51 from IEEE Xplore. Restrictions apply.

JULY–SEPTEMBER 2009 PERVASIVE computing 77

presents an object-oriented program-
ming interface for all major operating
systems. NDFS-II offers interoperabil-
ity for algorithms and hardware, collab-
orative development, and performance
measurement. (The “Infrastructure
for Collaborative Multimodal-Sensor
Research” and “Event Recognition in
Sensor-Based Smart Environments”

sidebars discuss two scenarios in which
this middleware has been used.)

NDFS-II lets us capture about 250
Gbytes per hour from sensors in our
NIST Meeting Room Data Collection
Laboratory for our multimodal cor-
pora (see Figure 1). We synchronize
the audio and video channels to within
a video frame by estimating time tag

trend lines, which we use to adjust off-
sets, smooth jitter, and compensate for
data collection clock rates.

The NIST Data Flow System II
The NDFS-II architecture has the fol-
lowing components:

Data-!ow servers discover the peer

functionalities to express, implement, and run CQs over data
streams.4 It was implemented in the XXL Java library for query-
processing algorithms. Pipes allows the composition of query
graphs with runtime resource sharing. The Pipes group has in-
vestigated scheduling approaches such as operator threading
and graph threading, and it has developed a hybrid approach
that allows concurrency with reduced overhead.

WaveScope
WaveScope appeared in 2006 as a data management and con-
tinuous sensor data system that integrates RDBMS CQ and
signal-processing operations into a single system. The major
components include a new language called WaveScript for signal
processing, an execution engine for multicore PCs, and a distrib-
uted-execution engine. Lewis Girod and his colleagues make a
case for this combination of capabilities.5 According to the de-
velopers’ Web site, the project is still at an early stage. Develop-
ers can compile the signal-processing operators in WaveScript
programs into data-!ow graphs at a "ner-grained level than the
large-grained process-level nodes supported by NDFS. Hence,
with many processor cores now emerging, WaveScope could be
especially well-suited for highly parallel systems.

Hourglass
This system, developed in 2004, is a data collection network for
naming, discovering, routing, and aggregating data from geo-
graphically diverse sensor networks using a publish-subscribe
paradigm.6 Hourglass is similar to the NDFS architecture in sev-
eral ways and the systems use a similar discovery mechanism.
Both maintain a buffered-!ow architecture to permit intermit-
tent connectivity, separate control and data components, dis-
covery of resources such as sensors, and quality of service (QoS).
However, Hourglass supports additional Internet services for
wider distribution, albeit with higher overhead.

Global Sensor Networks
GSN, developed in 2006, is a Java-based platform for deploying
sensor network technologies that uses a set of abstraction layers

comprising virtual sensors in a container-based architecture ac-
cessed via standard Internet or Web services.7 According to this
project, the lack of standardization and frequent arrival of novel
sensors make portable-application development dif"cult. GSN
provides distributed querying, "ltering, and combining sensor
data. Each GSN virtual sensor corresponds to a database table,
and each sensor reading corresponds to a tuple.

REFERENCES

 1. I. Foster and C. Kesselman, “Globus: A Metacomputing Infrastruc-
ture Toolkit,” Int’l J. Supercomputing Applications, vol. 11, no. 2, 1997,
pp. 115–128.

 2. S. Chandrasekaran et al., “TelegraphCQ: Continuous Data!ow Pro-
cessing for an Uncertain World,” Proc. 1st Biennial Conf. Innovative
Data Systems Research (CIDR 03), VLDB Foundation, 2003; www-db.
cs.wisc.edu/cidr/cidr2003/program/p24.pdf.

 3. D.J. Abadi et al., “The Design of the Borealis Stream Processing En-
gine,” Proc. 2nd Biennial Conf. Innovative Data Systems Research (CIDR
05), VLDB Foundation, 2005; www-db.cs.wisc.edu/cidr/cidr2005/
papers/P23.pdf.

 4. M. Cammert et al., PIPES: A Multi-threaded Publish-Subscribe Architec-
ture for Continuous Queries over Streaming Data Sources, tech. report
32, Dept. of Mathematics and Computer Science, Univ. of Marburg,
2003.

 5. L. Girod et al., “The Case for a Signal-Oriented Data Stream Man-
agement System,” Proc. 3rd Biennial Conf. Innovative Data Systems
Research (CIDR 07), VLDB Foundation, 2007, pp. 397–406; www-db.
cs.wisc.edu/cidr/cidr2007/papers/cidr07p45.pdf.

 6. J. Shneidman et al., Hourglass: An Infrastructure for Connecting Sensor
Networks and Applications, tech. report TR-21-04, School of Eng. and
Applied Sciences, Harvard Univ., 2004.

 7. K. Aberer, M. Hauswirth, and A. Salehi, The Global Sensor Networks
Middleware for Ef!cient and Flexible Deployment and Interconnection of
Sensor Networks, tech. report LSIR-2006-006, School of Computer
and Communication Sciences, Ecole Polytechnique Fédérale de
Lausanne (EPFL); http://lsirpeople.ep!.ch/salehi/papers/LSIR-
REPORT-2006-006.pdf.

Evolution in Data-Flow Systems

Authorized licensed use limited to: NIST Research Library. Downloaded on August 11, 2009 at 10:51 from IEEE Xplore. Restrictions apply.

78 PERVASIVE computing www.computer.org/pervasive

PERVASIVE MIDDLEWARE

Figure 1. The US National Institute
of Standards and Technology (NIST)
Meeting Room Data Collection
Laboratory in operation, using the
NIST Data Flow System (NDFS) for
data transport, synchronization, and
storage, as seen at the review station:
(a) one pan-tilt high-de!nition camera
(upper left) can follow a presenter,
while the other six high-de!nition
cameras show whiteboards, written
materials, projector displays, and the
other meeting participants; (b) the
system displays input levels for 24
individual microphones and four high-
resolution NIST Mark-III 64-channel
microphone arrays.

Kevin Donohue and Jens Hannemann
University of Kentucky Center for Visualization
and Virtual Environments

T he University of Kentucky Center for Visualization and Vir-
tual Environments is developing a multimodal distributed-

sensor-system testbed for research in scene understanding and
smart spaces. The US National Science Foundation funds this
ambient-virtual-assistant (AVA) project. The testbed’s main goal
is to establish an ef"cient infrastructure for researchers to imple-
ment and test algorithms for processing the complex, massive
data sets that the multimodal sensor system generates.

Our system currently consists of 23 cameras connected to
host computers, 40 microphones, and 24 speakers connected
to a single host computer running the Jack audio connection kit,
several projectors, displays, and RFID readers. These sensors are
distributed over three of"ces and a hallway in our laboratory. We
selected the US National Institute of Standards and Technology’s
NIST Data Flow System II (NDFS-II) to transport streaming data
to an 80-node Linux-based cluster for general processing. To
explore the possibilities of the NDFS-II API, we developed a Jack
front end and back end, which enable the connection of NDFS-II
data !ows for input and output to Linux-supported sound cards.

Current cluster-scheduling and load-balancing systems, such
as Sun’s Grid Engine, aren’t suited for processing real-time
streaming data. To overcome this, the AVA project has designed
and implemented an API that lets programmers route stream-
ing data to one or more nodes in a cluster. The multicasting used
by NDFS-II, running on the eight-way symmetric multiproces-
sor (SMP) cluster nodes, improves this routing’s ef"ciency. For
each data stream, the testbed creates a tree of processors. These
processor trees can run in separate threads, if necessary, fully
exploiting the underlying parallelism potential. Data streams
from different modes and sensor sets with timing dependencies
achieve synchronization via the network using the Precision Time
Protocol (PTP).

To enhance the ability to propose and implement experiments
on the testbed, we developed an interactive system that enables
direct access to a library of basic processing operations and data
stream control via the Python scripting language. Researchers
can therefore control the routing and scheduling from a remote
machine using XML-RPC.

NDFS-II has provided us with a robust, ef"cient infrastructure
for reliably transporting real-time data over local, high-band-
width networks, thereby enabling !exible processing of data
from the multimodal and distributed systems in our testbed.

Infrastructure for Collaborative
Multimodal-Sensor Research

Authorized licensed use limited to: NIST Research Library. Downloaded on August 11, 2009 at 10:51 from IEEE Xplore. Restrictions apply.

JULY–SEPTEMBER 2009 PERVASIVE computing 79

application servers and maintain lists
of active servers, clients, and "ows by
using XML-based control messages.
Clients read and write "ows. They’re
connected to the local server for con-
trol, and to duplicators for binary
data "ows.
Duplicators transport data flows,
which are controlled by local servers
and connected to remote duplicators
and local clients. There is one dupli-
cator per "ow where that "ow is pro-
duced or consumed.
The control center displays, con-

trols, and monitors application
graphs.

Figure 2 shows the control and data
transport connections. NDFS-II relies
on an open source, cross-platform com-
munication library, the Adaptive Com-
munication Environment (ACE; www.
cse.wustl.edu/~schmidt/ACE.html), for
multiplatform concurrent communica-
tion and uses the open source Qt toolkit
for portable GUIs. ACE provides C++
wrappers and framework components
for communication design patterns on

major operating systems. NDFS-II uses
the ACE reactive model for connection
requests, message processing, and data
transport. Servers, duplicators, and cli-
ents use the reactor framework to auto-
mate detection and demultiplexing of
events and dispatch them to handlers.
The acceptor-connector framework
establishes connections and initializes
services.

Implementing a server using the reac-
tive model is less error-prone than using
multiple threads and semaphores, because
NDFS-II a priori avoids interlocking

Registered to the reactor

Shared-memory access

(P) Producer

(C) Consumer

Direction of messages

Data queues

Service access point

Shared memory

Read

Read

Client acceptor
event handler

Server acceptor
event handler

Client
event handler

Server discovery
event handler SAP

Server
event handler Server

Server

Duplicator

Duplicator

Duplicator
event handler

Duplicator acceptor
event handler Reactor

Flow thread

Reactor

SAPConnection requests from
local client nodes

Connection requests from
local duplicators

Connection requests from
remote servers

Connection requests from
local client nodes

Connection requests from
remote duplicators

SAP

SAP

SHM

Client node (C)

Client node (C)

Client node (P)

Write

Host BHost A

Server connection
manager

Server event
handler

Client acceptor
event handler

Server
event handler

Duplicator
event handler

Duplicator acceptor
event handler

ReactorSAP

SAP

SAP

Client
event handler

SHM

Figure 2. The major NIST Data Flow System II (NDFS-II) components and their interprocess communication. The data-"ow server
(top center) manages control messages between clients, duplicators, and hosts. The duplicators (bottom center) each transport
one data "ow and duplicate the data stream as necessary for multiple local clients. The client node (left) uses a shared library,
which has one thread to process messages from the server and one thread per "ow for data transport.

Authorized licensed use limited to: NIST Research Library. Downloaded on August 11, 2009 at 10:51 from IEEE Xplore. Restrictions apply.

80 PERVASIVE computing www.computer.org/pervasive

PERVASIVE MIDDLEWARE

between threads and shared variables.
Also, the duplicators support a hybrid
push/pull data transport model and can
synchronize "ows by block count for gen-
eral parallel distributed processing.

The NDFS-II Network
One data-"ow server runs on each par-
ticipating host. Collectively, the sibling
servers maintain a crossbar connec-
tion to the other servers in the applica-
tion. The discovery process lets hosts
join the NDFS-II network at any time.
When launched, a server opens its ac-
cess points for incoming connections
and broadcasts a message containing its
application name. In response, each sib-
ling server sends its current application
description. Thus, each server builds a
full description of the running applica-
tion as it joins the network.

This peer-to-peer synchronization

protocol avoids a single point of failure
because all servers maintain a complete
and current application description.
So, each server manages the applica-
tion components running on its host by
receiving local client requests directly
and remote ones indirectly via remote
servers. Servers then process requests,
forward them as necessary, and update
other servers with any changes.

Privileged-client APIs, used in the
control center but open to other clients
as well, let developers create and con-
trol distributed NDFS-II application
graphs. These privileged clients use the
API’s control methods to send requests
to their server—for example, launching
or stopping a speci!c client, requesting
a description of the running NDFS ap-
plication, or making changes directly in
the application rather than by subscrib-
ing to data "ows.

Optimized Data Transport
NDFS-II transports data between cli-
ents via "ows that locally use shared
memory or to remote hosts across the
network. Clients access "ows on the ba-
sis of their properties rather than loca-
tions. To achieve this network transpar-
ency, we use duplicators to transport
data (see Figure 2), with "ows being
duplicated for multiple subscriber cli-
ents on the various hosts.

Shared memory allows concurrent
reading and avoids the need for multiple
copies of data. A duplicator sends data
only once per remote host, not once per
consumer, thus reducing network band-
width. Also, a consumer node can sus-
pend data transfer of a speci!c "ow, or
even crash, and the duplicator will still
transport "ows for the other clients.

Data transport might be irregular,
depending on the network conditions

Albert Ali Salah
Centrum, Wiskunde & Informatica, Amsterdam

T he eNTERFACE Workshop (www.cmpe.boun.edu.tr/enter-
face07) is a one-month gathering where researchers can

collaborate on projects involving human-computer interaction.
In the 2007 workshop, organized at Bogaziçi University in Istan-
bul, we implemented a system to identify and track people in a
smart room using multimodal information.1

We employed low-cost cameras and microphones, which had
limited individual accuracy but could produce accurate descrip-
tions working together. We also wanted opportunistic sensing,
which uses information sources such as the color of clothing, not
ordinarily considered as biometric identi"ers but useful in the ap-
plication context.

The system used facial images, captured as people walked into
the room, to recognize them in images from the other cameras.
Four ceiling cameras received each person’s ID, and feature-
based identi"cation clients constructed color-based feature mod-
els of each person on the !y because face recognition from the
low-quality ceiling cameras was dif"cult. A locally constructed,
14-element microphone array aided localization and identi"-
cation based on acoustic information. We wrote a recognition

module for simple gestures in visual input, and other modules for
motion detection and foreground-background extraction. A vi-
sualization client displayed a map of the room, with icons depict-
ing people and identi"cation tags.

We used the US National Institute of Standards and Technol-
ogy’s (NIST) Data Flow System II (NDFS-II) as the middleware to
connect the many components needed for the project, and its
interface was intuitive and easy to use. Its cross-platform capabil-
ity was essential because several hosts running both Linux and
Windows drove our sensors. On the other hand, we discovered
that communication between clients could become a major bot-
tleneck. Also, different clients’ frame rates needed adjustment,
depending on the resources at hand. In general, the modules
written before the workshop by different groups operated under
different assumptions, and integrating them quickly was a sig-
ni"cant challenge. Nevertheless, using the NDFS-II middleware
at this workshop was a stimulating, thoroughly satisfying experi-
ence for all the involved parties.

REFERENCE

 1. R. Morros et al., “Event Recognition for Meaningful Human-
Computer Interaction in a Smart Environment,” Proc. 3rd
eNTERFACE Workshop, Bogaziçi Univ., 2007, pp. 71–86.

Event Recognition
in Sensor-Based Smart Environments

Authorized licensed use limited to: NIST Research Library. Downloaded on August 11, 2009 at 10:51 from IEEE Xplore. Restrictions apply.

JULY–SEPTEMBER 2009 PERVASIVE computing 81

or client node consumption rates. A
hybrid push/pull system regularizes
data transport. Each client node has a
queue per "ow running in a separate
thread. When a producer pushes a data
block, this data isn’t sent immediately
but instead is enqueued. The separate
thread then dequeues the data to shared
memory when noti!ed by the duplica-
tor, which sends the data to remote peer
duplicators if necessary. If no consumer
subscribes to the "ow, the data block is
dropped. If a consumer does subscribe,
the "ow thread symmetrically retrieves
a data block from the shared memory
and enqueues it in the consumer "ow
queue. The consumer can then pull the
data from the queue.

This queue mechanism allows data
transport with quality of service (QoS)
and is ef!cient: when a consumer cli-
ent node requests a buffer, it will of-
ten already be in that node’s queue and
thus available immediately. Moreover,
queues can be customized as either
blocking or nonblocking. In the lat-
ter case, queues can drop the oldest
or newest buffer to make room. The
API also provides dedicated methods
for handling !les when a loss of blocks
can’t be tolerated.

Sensor Fusion to Illustrate
Operational Concepts
An example of audiovisual sensor
fusion illustrated NDFS-II’s opera-
tional concepts. Using parallel signal-
processing pipelines, we processed
data captured live from a 64-channel
NIST Mark-III microphone array and
a high-de!nition video camera. As the
large box in Figure 3 shows, an NDFS-
II client estimates the speaker’s bearing
from the array beamformer (top right),
evaluates a speech activity model (mid-
dle right), and identi!es facial regions
and marks them with a white bounding
box. In the !nal fusion step, upon de-
tecting speech activity and matching the
speaker’s bearing with the face position
angles relative to the array broadside is
marked the active speaker’s face with a
red bounding box. This example uses

well-known algorithms such as steered-
response beamforming and Viola-Jones
face localization.

Figure 4 shows the system element
"ow graph, as rendered by the con-
trol center. Capture_Audio_Array reads the
64-channel audio pipeline. Monitor_Audio
displays the array audio. Pre!lter_Multi-
channel_Audio applies a band-pass !lter
to attenuate wavelengths exceeding
the array diameter and high frequen-
cies that would be spatially aliased.
Transform_to_Beamspace and Estimate_Trigauss-
ian_SNR operate on !ltered audio and of-
fer "ows to Display_Tracked_Speaker, which
uses trigaussian SNR (signal-to-noise
ratio) parameters for speech activity de-
tection to decide when to use the room
sound !eld’s beamspace representation
to estimate speaker direction.

The video pipeline begins with
Capture_Camera_Video, which offers an
MPEG-2 video "ow for subscription.

Monitor_Video displays the video input at
the user interface. Track_Faces then pro-
duces bounding-box coordinates for
the faces and offers them for subscrip-
tion to Display_Tracked_Speaker.

Next, Display_Tracked_Speaker fuses the
audio and video features. Estimate_Trigauss-
ian_SNR indicates probable speech in the
audio signal. Transform_to_Beamspace com-
putes a fan of beams at increments of
approximately 3 degrees, along with
each beam’s average power, over suc-
cessive windows. This steered-response
beamformer computes power as a func-
tion of angle. The speaker bearing is im-
puted to the angle of the dominant en-
ergy, corresponding to a face in video.
Then, if the trigaussian-SNR threshold
is consistent with speech energy in the
dominant beam, a speaker’s presence
and location are suggested.

Thus, we used NDFS-II to coordi-
nate the distributed clients for data

Figure 3. Using NIST Data Flow System (NDFS) to perform real-time sensor fusion
of a high-de!nition MPEG-2 video "ow from a camera and a multichannel audio
"ow from a 64-channel NIST Mark-III microphone array. NDFS correlates the faces’
bounding boxes with the sound source’s estimated bearing and then denotes the
speaker with a red bounding box. (a) The right side of this panel shows audio signal
processing for beamforming and speech activity detection. The surrounding panels
show (b) the video tracks, (c) beamspace waterfall, (d) array raw data, (e) beam, and
(f) audio tracks.

Authorized licensed use limited to: NIST Research Library. Downloaded on August 11, 2009 at 10:51 from IEEE Xplore. Restrictions apply.

82 PERVASIVE computing www.computer.org/pervasive

PERVASIVE MIDDLEWARE

acquisition, computing, sensor fusion,
and display functions. This example
application "ow graph (which is avail-
able with our open source project at
www.nist.gov/smartspace) consists of
modular entities that can be reused—
for example, to create a testbed host-
ing various research algorithms. Ad-
ditional functional elements such as
monitoring or recording nodes can
be added dynamically at runtime to
the flow graph. Built-in data trans-
port mechanisms such as blocking and
nonblocking queuing, along with the
advanced-synchronization API, help
model a wide spectrum of distributed
applications. In this case, we used non-
blocking data transport functionality
because of the application’s real-time
processing character.

Lessons Learned
The earlier NDFS used a pull mecha-
nism for data transport and had a single
server for publish-subscribe "ow man-
agement. The former required flow
block pools at producing clients with
reference-count garbage collection. So,
a consumer client failure would even-
tually block all clients subscribing to a
given "ow because the reference counts
couldn’t reach 0 for garbage collection.
The latter introduced a single point of
failure, which could stop all of a run-
ning application’s clients.

We addressed these issues with a

hybrid push/pull mechanism using
duplicators, and a peer-to-peer server
protocol. Thus, we avoided the single
server and made the "ows nonblock-
ing in the event of client failures. The
control center is now simply another
client node with display and commu-
nication services, and it doesn’t main-
tain a central "ow publish-subscribe
directory, as with NDFS-I. We based
"ows on C++ classes, dynamic librar-
ies, and shared memory, which allows
concurrent reading and avoids redun-
dant copy operations. It also minimizes
network bandwidth by transmitting
one copy per remote host even if there
are multiple consuming-client nodes.
Implementing core functionalities with
multiplatform libraries allows cross-
platform development, which insulates
NDFS-II from changes in the various
target operating systems.

L aboratories worldwide are
developing the recognition
and classi!cation technolo-
gies needed for future perva-

sive interfaces. NDFS-II can host com-
munity-based research that facilitates
plugging algorithms into standard
and open data-"ow graphs. This will
enable complex multimodal interface
evaluations of collaboratively devel-
oped systems. Our data-"ow middle-
ware, already in use in our collabora-

tive research programs, can further
aid researchers as they collaboratively
specify, build, and evaluate advanced
multimodal systems using standard
corpora, performance measurement
tools, and system designs.

ACKNOWLEDGMENTS
Speci"c commercial products or open source
software projects mentioned by name are offered
for information to the reader. Such references
don’t imply any endorsement by the US National
Institute of Standards and Technology, and no
product mentioned is implied to be superior to
others mentioned in the article.

REFERENCES
 1. J.G. Fiscus et al., “The Rich Transcription

2006 Spring Meeting Evaluation,” Proc.
3rd Int’l Workshop Machine Learning
for Multimodal Interaction, LNCS 4299,
Springer, 2006, pp. 309–322.

 2. R. Stiefelhagen, R. Bowers, and J. Fis-
cus, eds., Multimodal Technologies for
Perception of Humans, LNCS 4625,
Springer, 2008.

 3. R. Want, M. Weiser, and E. Mynatt,
“Activating Everyday Objects,” Proc.
DARPA/NIST Smart Space Workshop,
US Nat’l Inst. Standards and Technology,
1998, pp. 7-140–7-143.

 4. J.D. Flanagan et al., “Multimodal
Human/Machine Communication,” Proc.
DARPA/NIST Smart Space Workshop,
US Nat’l Inst. Standards and Technology,
1998, pp. 7-30–7-37.

Figure 4. The NDFS control center, showing the
application graph and the allocation of the client
list (lower center) to distributed hosts (right). NDFS
establishes and transports buffered data "ows to
allow the sensor fusion and display results. Audio
array capture, beamformed speech acquisition,
bearing estimation, video capture, and sensor fusion
demonstrate the function of distributed clients
connected by "ows.

Authorized licensed use limited to: NIST Research Library. Downloaded on August 11, 2009 at 10:51 from IEEE Xplore. Restrictions apply.

JULY–SEPTEMBER 2009 PERVASIVE computing 83

 5. J.D. Flanagan and V. Stanford, “Situa-
tion Awareness in Smart Spaces,” Proc.
DARPA/NIST Smart Space Workshop,
US Nat’l Inst. Standards and Technology,
1998, pp. 3-1–3-13.

 6. J. Heidemann, R. Govindan, and D.
Estrin, “Configuration Challenges for
Smart Spaces,” Proc. DARPA/NIST
Smart Space Workshop, US Nat’l Inst.
Standards and Technology, 1998, pp.
7-30–7-37.

 7. S. Basu et al., “Beyond Audio-Based
Speech Recognition for Natural Human
Computer Interaction,” Proc. DARPA/
NIST Smart Space Workshop, US Nat’l
Inst. Standards and Technology, 1998, pp.
7-8–7-13.

 8. V. Stanford et al., Continuous Speech
Recognition and Voice Response System
and Method to Enable Conversational
Dialogues with Microprocessors, US pat-
ent 5615296, 1997.

 9. J. McBride and V. Stanford, “The Graph
Analysis and Design Technique: A Visu-
ally Oriented Systems Development Envi-
ronment,” Proc. 5th Computers in Aero-
space Conf., Am. Inst. Aeronautics and
Astronautics, 1985, pp. 509–514.

 10. D.T. Ross, “Structured Analysis (SA): A
Language for Communicating Ideas,”
IEEE Trans. Software Eng., vol. 3, no. 1,
1977, pp. 16–34.

For more information on this or any other com-
puting topic, please visit our Digital Library at
www.computer.org/csdl.

the AUTHORS
Antoine Fillinger is a system engineer with Dakota Consulting at the US Na-
tional Institute of Standards and Technology (NIST) Smart Space Laboratory
and the software team leader for NDFS II. His research interests include distrib-
uted and parallel computing, sensor-based networks, and system and software
engineering. Fillinger has a master’s in computer science from Ecole Supérieure
d’Informatique et Applications de Lorraine (ESIAL). Contact him at antoine.
"llinger@nist.gov.

Imad Hamchi is a researcher at the NIST Smart Space Laboratory. His research
interests include multimodal data-transport infrastructure and distributed
complex systems, especially parallel distributed complex systems in agent-
based optimization problems. Hamchi has a master’s in computer, network,
and telecommunication sciences from ESIAL. Contact him at imad.hamchi@
nist.gov.

Stéphane Degré was a member of the NIST Smart Space Laboratory, and he
has participated in the design and development of the NIST Data Flow System.
His research interests included high-performance computing and networking
as applied to distributed agent-based optimization. Degré has a master’s in
computer science from ESIAL. Contact him at stephane.degre@blue-erp.com.

Lukas L. Diduch is a research engineer at the NIST Smart Space Laboratory.
His research interests include array signal processing, speech recognition, com-
puter vision, statistical pattern recognition, multisensor data fusion, distributed
sensor networks, and ambient intelligence. Diduch has a Dipl-Ing in electrical
engineering and information technology from the Technical University of Mu-
nich. Contact him at lukas.diduch@nist.gov.

Travis Rose is a member of the NIST Multimodal Information Group. His re-
search interests include multimodal interaction and interfaces, grid comput-
ing, and computer vision technology evaluation, as applied to gesture, speech,
and gaze recognition and processing. Rose has a master’s in computer science
from Virginia Tech. Contact him at travis.rose@nist.gov.

Jonathan Fiscus is a computer scientist in the NIST Multimodal Information
Group. His research interests include performance assessment methods for
speech and video content extraction technologies. Fiscus has an MS in com-
puter science from the Johns Hopkins University. Contact him at jonathan.
"scus@nist.gov.

Vincent Stanford manages research on multimodal interfaces and distrib-
uted computing at the NIST Smart Space Laboratory. His research interests
include statistical signal processing, pattern recognition, parallel processing,
and systems engineering. He has applied these to speech recognition, speaker
identi"cation, electrocardiograms, phonocardiograms, acoustics, radar, sonar,
and seismic signature analysis in distributed sensor-based systems. Stanford
has a bachelor’s degree in mathematics from Indiana University. Contact him
at vincent.stanford@nist.gov.

Visit

on the Web

www.computer.org/pervasive

MOBILE AND UBIQUITOUS SYSTEMS

Authorized licensed use limited to: NIST Research Library. Downloaded on August 11, 2009 at 10:51 from IEEE Xplore. Restrictions apply.

