
lEEE
Std 610.121990
(Revision and reddgnation of
IEEEstd7921983)

IEEE Standard Glossary of
Software Engineering Terminology

Sponsor

standardscoordinatingcodttee
of the

Computer Society of the IEEE

Approved September 28,1990

IEEEStandardsBOard

Abstract: IEEE Std 610.12-1990, IEEE Standard Glossary of Software Engineering Terminology,
identifies terms currently in use in the field of Software Engineering. Standard definitions for
those terms are established.
Keywords: Software engineering; glossary; terminology; definitions; dictionary

ISBN 1-55937467-X

Copyright 0 1990 by

The Institute of Electrical and Electronics Engineers
345 East 47th Street, New York, NY 10017, USA

No part of this document may be reproduced in any form,
in an electronic retrieval system or otherwise,

without the prior written permission of the publisher.

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

IEEE Standards documents are developed within the Technical
Committees of the IEEE Societies and the Standards Coordinating
Committees of the IEEE Standards Board. Members of the committees
serve voluntarily and without compensation. They are not necessar-
ily members of the Institute. The standards developed within IEEE
represent a consensus of the broad expertise on the subject within the
Institute as well as those activities outside of IEEE which have
expressed an interest in participating in the development of the
standard.

Use of an IEEE Standard is wholly voluntary. The existence of an
IEEE Standard does not imply that there are no other ways t o produce,
test, measure, purchase, market, o r provide other goods and services
related to the scope of the IEEE Standard. Furthermore, the viewpoint
expressed a t the time a standard is approved and issued is subject to
change brought about through developments in the state of the art and
comments received from users of the standard. Every IEEE Standard
is subjected to review a t least once every five years for revision or
reaffirmation. When a document is more than five years old, and has
not been reaffirmed, it is reasonable to conclude that its contents, al-
though still of some value, do not wholly reflect the present state of the
art. Users are cautioned to check t o determine that they have the latest
edition of any IEEE Standard.

Comments for revision of IEEE Standards are welcome from any
interested party, regardless of membership affiliation with IEEE.
Suggestions for changes in documents should be in the form of a pro-
posed change of text, together with appropriate supporting comments.

Interpretations: Occasionally questions may arise regarding the
meaning of portions of standards as they relate t o specific applica-
tions. When the need for interpretations is brought to the attention of
IEEE, the Institute will initiate action t o prepare appropriate re-
sponses. Since IEEE Standards represent a consensus of all con-
cerned interests, i t is important to ensure that any interpretation has
also received the concurrence of a balance of interests. For this reason
IEEE and the members of its technical committees are not able to
provide an instant response t o interpretation requests except in those
cases where the matter has previously received formal consideration.

Comments on standards and requests for interpretations should be
addressed to:

Secretary, IEEE Standards Board
345 East 47th Street
New York, NY 1001 7
USA

IEEE Standards documents are adopted by the Institute of Electrical
and Electronics Engineers without regard t o whether their adoption
may involve patents on articles, materials, or processes. Such adop-
tion does not assume any liability t o any patent owner, nor does i t
assume any obligation whatever to parties adopting the standards
documents.

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

Foreword

(This Foreword is not a part of IEEE Std 610.12-1990, IEEE Standard Glossary of Software Engineering Terminology.)

The computer field is continuing to expand. New terms are being generated and new meanings
are being adopted for existing terms. The IEEE Computer Dictionary project was undertaken to
document this vocabulary. Its purpose is to identify terms currently in use in the computer field
and to establish standard definitions for these terms. The dictionary is intended to serve as a
useful reference for those in the computer field and for those who come into contact with computers
either through their work or in their everyday lives.

The dictionary is being developed as a set of subject-area glossaries covering Computer
Architecture, Computer Processors, Computer Storage, Software Engineering, Mathematics of
Computing, Theory of Computation, Computer Applications, Artificial Intelligence, Data
Management, Image Processing and Pattern Recognition, Modeling and Simulation, Computer
Graphics, Computer Networking, Computer Languages, and Computer Security and Privacy. This
glossary contains the terms related to Software Engineering. I t updates IEEE Std 729-1983, IEEE
Standard Glossary of Software Engineering Terminology (ANSI).

Every effort has been made to use definitipns from established standards in this dictionary.
When existing standards were found t o be incomplete, unclear, or inconsistent with other entries
in the dictionary, however, new, revised, or composite definitions have been developed.

At the time this glossary was approved, the following people formed the steering committee of the
Computer Dictionary working group:

Jane Radatz, Chairperson, Software Engineering Glossary

Other subgroup leaders:

Anne Geraci
Freny Katki
Dr. John Lane

Louise McMonegal
Bennett Meyer
Dr. Hugh Porteous
Dr. Fredrick Springsteel

Paul Wilson
Mary Yee
John Young

Other working group members who contributed to this glossary were as follows:

Russell J. Abbott
A. Frank Ackerman
Roger R. Baldwin
H. Ronald Berlack
J. David Bezek
James H. Bradley
Kathleen L.Briggs
Homer C. Carney
Susann Chonoles
Taz Daughtrey
Frank J. Douglas
William P. Dupras

John D. Earls
Mary Forcht-Tucker
David Gelperin
A1 Gillen
Shirley A. Gloss-Soler
John A. Goetz
David A. Gustafson
Vir1 Haas
James Ingram
Gary S . Lindsay
Robert McBeth
Alicia McCurdy

Dr. Jose MuiIoz
Geraldine Neidhart
Mary Rasmussen
Max Schindler
Paul Schmid
Leonard W. Seagren
Sonja Peterson Shields
Kevin Smith
Wayne Smith
Paul U. Thompson
Andrew H. Weigel
W. Martin Wong

Special representatives to the Computer Dictionary working group were as follows:

Frank Jay, Advisor, IEEE Standards Office

Rollin Mayer, Liaison, Accredited Standards Committee X3K5

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

The following organizations supported employee participation in the development of this
standard:

Lockheed Amlied Information Development
Atfantic Consultants
Babcock and Wilcox
Burroughs Wellcome
Carney Associates
Computer Sciences Corporation
Datapoint Corporation
Dutchess Engineering Company
Edinbom University of Pennsylvania
Electronics Design Magazine
Eyring Research Institute
General Electric Company
Harris Corporation
Information Spectrum, Inc.
Institute for Zero Defect Software
International Bureau of Software Test
Kansas State University

Logicon
Marine Midland Bank
The MITRE Corporation
Perkin-Elmer Corporation
Quality Assurance Institute
Rabbitt Software Corporation
RCA
Sanders Associates
SILOGIC
Softran
Teledyne Brown Engineering
University of Wisconsin, Madison
U.S. Naval Facilities
US. Dept. of HUD
Wyse Technology

The IEEE 610 working group wishes to acknowledge the contribution of those who developed IEEE
Std 729-1 983, IEEE Standard Glossary of Software Engineering Terminology (ANSI), which
formed the basis for this glossary. The steering committee of this group had the following
members:

Shirley A. Gloss-Soler, Chair

Russell J. Abbott
Joan P. Bateman
Stephen R. Beason
Milton E. Boyd, Jr.
Kurt F. Fischer

John M. Ives
John J. McKissick, J r .
Albrecht J. Neumann
John N. Postak

Jane W. Radatz
Marilyn J. Stewart
Alan N. Sukert
Donald A. Woodmancy
David Yablon

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

The sponsor for the Computer Dictionary project is the IEEE Computer Society Standards
Coordinating Committee, which balloted this document for submission t o the IEEE Standards
Board. At the time this standard was approved, the committee had the following membership:

Harrison Beasley
H. Ronald Berlack
William Billowitch
Richard Boberg
John Boebinger
Paul L. Borrill
Terry Bowen
Elliott Brebner
J. Reese Brown, Jr .
Lin Brown
Fletcher Buckley
Randy Bush
Clyde Camp
Steve Carter
Alan Cobb
Paul Cook
Bill Corwin
Alan Davis
Steven Deller
Bulent Dervisoglu
Bob Donnan
Paul Eastman
D. Vera Edelstein
Tim Elsmore
Dick Evans
Richard Fairley
Wayne Fischer
Kester Fong
David Gelperin
Anne Geraci
A1 Gilman
John Graham
Steve Grout
Dave Gustavson
A1 Hankinson
Fred Harrison

Chris Haynes
Rick Henderson
Ken Hobday
Scott Hopkinson
John Horch
Russell Housley
Charles Hudson
Marlyn Huckeby
Mike Humphrey
John Hyde
James Isaak
David James
Hal Jesperson
Richard Kalish
Matt Kaltenbach
Hans Karlsson
Freni Katki
Guy Kelley
Kim Kirkpatrick
Bob Knighten
Stanley Krolikoski
John B. Lane
Ron Leckie
Kevin Lewis
William Lidinsky
Donald C. Loughry
A1 Lowenstein
Bill Maciejewski
Roger Martin
Philip Marriott
Colin Maunder
John McGrory
Louise McMonegal
Sunil Mehta
Paul Menchini
Jerry Mersky
Bennett Meyer

Louis Miller
James Mollenauer
J im Mooney
Gary A. Nelson
Tom Pittman
Robert M. Poston
Shlomo Pri-Tal
Jane Radatz
Michael Raynham
Gordon Robinson
Larry Saunders
Richard Schmidt
Norman Schneidewind
Rudolph Schubert
David Schultz
Karen Sheaffer
Basil Sherlund
Sava Sherr
Fred Springsteel
John Starkweather
Dennis StAnauer
Robert Sulgmve
Oryal Tanir
Michael D. Teener
Donn Terry
Pat Thaler
Joseph Toy
Leonard Tripp
Margaret Updike
Eike Waltz
John W. Walz
Camille White-Partain
Les Wibberley
Cynthia Wright
John Young
Jason Zions

When the IEEE Standards Board approved this standard on September 28, 1990, it had the
following membership:

Marco W. Migliaro, Chairman James M. Daly, Vice Chairman
Andrew G. Salem, Secretary

Dennis Bodson
Paul L. Borrill
Fletcher J. Buckley
Allen L. Clapp
Stephen R. Dillon
Donald C. Fleckenstein
Jay Forster*
Thomas L. Hannan

Kenneth D. Hendrix
John W. Horch
Joseph L. KoepBnger*
Irving Kolodny
Michael A. Lawler
Donald J. Loughry
John E. May, Jr .

Lawrence V. McCall
L. Bruce McClung
Donald T. Michael*
Stig Nilsson
Roy T. Oishi
Gary S. Robinson
Terrance R. Whittemore
Donald W. Zipse

*Member Emeritus

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

Contents
SECTION PAGE

1 . Scope .. 7

2 . Glossary Structure ... 7

3 . Definitions for Software Engineering Terms .. 7

4 . Bibliography ... 82

FIGURES

Fig 1 Block Diagram ... 13
Fig 2 Box Diagram .. 13
Fig 3 Bubble Chart ... 14
Fig 4 Call Graph ... 15
Fig 5 Case Construct .. 15
Fig 6 Data Flow Diagram .. 24
Fig 7 Data Structure Diagram ... 24
Fig 8 Directed Graph .. 27
Fig 9 Documentation Tree ... 28
Fig 10 Flowchart .. 33
Fig 11 Graph (1) ... 36
Fig 12 Graph (2) ... 36
Fig 13 If-Then-Else Construct .. 38
Fig 14 Input-Process-Output Chart ... 40
Fig 15 Sample Software Life Cycle ... 68
Fig 16 Structure Chart .. 7 l
Fig 1 7 UNTIL Construct ... 79
Fig 18 WHILE Construct .. 82

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

IEEE Standard Glossary of
Software Engineering Terminology

This glossary defines terms in the field of
Software Engineering. Topics covered in-
clude addressing; assembling, compiling,
linking, loading; computer performance
evaluation; configuration management; data
types; errors, faults, and failures; evaluation
techniques; instruction types; language types;
libraries; microprogramming; operating sys-
tems; quality attributes; software documenta-
tion; software and system testing; software
architecture; software development process;
software development techniques; and soft-
ware tools.

Every effort has been made t o include all
terms that meet these criteria. Terms were ex-
cluded if they were considered to be parochial
t o one group or organization; company propri-
etary or trademarked; multi-word terms
whose meaning could be inferred from the
definitions of the component words; or terms
whose meaning in the computer field could be
directly inferred from their standard English
meaning .

This glossary is an update and expansion of
IEEE Std 729-1983, IEEE Standard Glossary of
Software Engineering Terminology (ANSI)
L3I.l I t increases the number of terms from
approximately 500 to 1300, and updates or
refines the definitions of many te rms
included in the initial glossary. A few terms
that were included in the initial glossary have
been moved t o other glossaries in the 610
series. Some definitions have been recast in a
system, rather than software, context. Every
effort has been made to preserve the fine work
that went into the initial glossary.

“test case,” or an acronym, such a s “CM.”
Phrases are given in their natural order (test
plan) rather than in reversed order (plan,
test).

Blanks precede all other characters in al-
phabetizing. Hyphens and slashes are treated
as blanks. Alternative spellings are shown in
parentheses.

If a term has more than one definition, the
definitions are numbered. In most cases,
noun definitions are given first, followed by
verb and adjective definitions a s applicable.
Examples, notes, and illustrations have been
added to clarify selected definitions.

The following cross-references are used t o
show a term’s relationship to other terms in the
dictionary:

Contrast with refers to a term with an oppo-
site or substantially different meaning.
Syn refers to a synonymous term.
See also refers to a related term.
See refers t o a preferred term or to a term
where the desired definition can be found.

The word “deprecated” indicates a term or
definition whose use is discouraged because
such use is obsolete, misleading, or a m b i y -
ous. “DoD” refers t o usage by the U.S.
Department of Defense.

3. Definitions for Software Engineering
Terms

1GL. Acronym for f i rs t generation language.
See: machine language.

2GL. Acronym for second gene ra t ion lan-
guage. See: assembly language.

2. Glossary Structure

Entries in the glossary are arranged alpha-
betically. An entry may consist of a single
word, such a s “software,” a phrase, such a s

3GL. Acronym for third generation language.
See: high order language.

4GL. Acronym for f o u r t h generation lan-
guage.

‘Numbers in brackets correspond to those in the
Bibliography in Section 4. 5GL. Acronym for fifth generation language.

7

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 61012-1990

abend. Abbreviation for abnormal end.

IEEE STANDARD GLOSSARY OF

acceptance criteria. The criteria that a system
or component must satisfy in order to be
accepted by a user, customer, o r other
authorized entity. See also: requirement;
test criteria.

abnormal end (abend). Termination of a
process prior to completion. See also: abort;
exception.

abort. To terminate a process prior t o
completion. See also: abend; exception.

absolute address. An address tha t is
permanently assigned t o a device or storage
location and tha t identifies the device
or location without the need for translation
or calculation. Syn: explicit address;
specific address. Contrast with: r e l a t ive
address; relocatable address; symbolic
address. See also: absolute assembler;
absolute code; absolute instruction; absolute
loader.

absolute assembler. An assembler that pro-
duces absolute code. Contrast with: relocat-
ing assembler.

absolute code. Code in which all addresses are
absolute addresses. Contrast with: relocat-
able code. Syn: specific code.

absolute instruction. A computer instruction
in which all addresses are absolute ad-
dresses. See also: direct instruction; effec-
tive instruction; immediate instruction;
indirect instruction.

absolute loader. A loader that reads absolute
machine code into main memory, begin-
ning at the initial address assigned to the
code by the assembler or compiler, and
performs no address adjustments on the
code. Contrast with: relocating loader.

abstract data type. A data type for which only
the properties of the data and the operations to
be performed on the data are specified,
without concern for how the data will be
represented or how the operations will be
implemented.

abstraction. (1) A view of an object that focuses
on the information relevant t o a particular
purpose and ignores the remainder of the
information. See also: data abstraction.
(2) The process of formulating a view as
in (1).

acceptance testing. (1) (IEEE Std 1012-1986 U211
Formal testing conducted to determine
whether or not a system satisfies its accep-
tance criteria and to enable the customer to
determine whether or not to accept the
system.
(2) Formal testing conducted t o enable a
user, customer, or other authorized entity to
determine whether t o accept a system or
component.
Contrast with: development testing. See also:
operational testing; qualification testing.

accuracy. (1) A qualitative assessment of
correctness, or freedom from error.
(2) A quantitative measure of the magnitude
of error.
Contrast with: precision.

active redundancy. In fault tolerance, the use
of redundant elements operating simulta-
neously t o prevent, or permit recovery from,
failures. Contrast with: s t a n d b y redun-
dancy.

actual instruction.* See: effective instruction.
* Deprecated.

actual parameter. See: argument (3).

Ada. Note: Ada and other specific computer
languages are defined in P610.13 [171.

adaptability. See: flexibility.

adaptation data. Data used to adapt a program
to a given installation site or to given condi-
tions in its operational environment.

adaptation parameter. A variable that is given
a specific value t o adapt a program t o a given
installation site or to given conditions in its
operational environment; for example, the
variable Installation-Site-Latitude.

a d a p t i v e maintenance. Software mainte-
nance performed t o make a computer pro-
gram usable in a changed environment.

8

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

SOFTWARE ENGINEERING TERMINOLOGY
IEEE

Std 610.12-1990

Contrast with: corrective maintenance;
perfective maintenance. tion.

protect ion exception; underf low excep-

address. (1) A number, character, or group of
characters that identifies a given device or
storage location.
(2) To refer to a device or storage location by
an identifying number, character, or group
of characters.
See also: absolute address; e f fec t ive
address; implied addressing; indirect
address; relative address; relocatable
address; symbolic address; virtual address.

address field. Any of the fields of a computer
instruction tha t contain addresses, infor-
mation necessary to derive addresse;, or
values of operands. S y n : address part.
Contrast with: operation field.

address f o r m a t . (1) The number and ar-
rangement of address fields in a computer
instruction. See also: n-address instruc-
tion; n-plus-one address instruction.
(2) The number and arrangement of
elements within a n address, such as the
elements needed t o identify a particular
channel, device, disk sector, and record in
magnetic disk storage.

address modification. Any arithmetic, logi-
cal, or syntactic operation performed on an
address. See also: effective address; in-
dexed address; relative address; relocatable
address.

address part. See: address field.

address space. (1) The addresses that a
computer program can access. Note: In
some systems, this may be the set of physical
storage locations that a program can access,
disjoint from other programs, together with
the set of virtual addresses referring to those
storage locations, which may be accessible
by other programs.
(2) The number of memory locations that a
central processing unit can address.

addressing except ion . An exception that
occurs when a program calculates a n
address outside the bounds of the storage
available t o it. See also: data except ion;
operation exception; overflow exception;

afferent. Pertaining t o a flow of data or control
from a subordinate module to a superordi-
nate module in a software system. Contrast
with: efferent.

algebraic language. A programming lan-
guage that permits the construction of
statements resembling algebraic expres-
sions, such as Y = X + 5. For example,
FORTRAN. See also: algorithmic lan-
guage; list processing language; logic
programming language.

a l g o r i t h m . (1) A finite set of well-defined
rules for the solution of a problem in a finite
number of steps; for example, a complete
specification of a sequence of arithmetic
operations for evaluating sine x t o a given
precision.
(2) Any sequence of operations for
performing a specific task.

a lgori thmic language. A programming lan-
guage designed for expressing algorithms;
for example, ALGOL. See also: algebraic
language; list processing language; logic
programming language.

a l loca ted baseline. In configuration man-
agement, the initial approved specifications
governing the development of configuration
items that are part of a higher level configu-
ration item. Contrast with: developmental
configuration; functional baseline; product
baseline. See also: allocated configuration
identification.

allocated configuration identification. In con-
figuration management, the current ap-
proved specifications governing the de-
velopment of configuration items that are
part of a higher level configuration item.
Each specification defines the functional
characteristics that are allocated from those
of the higher level configuration item, estab-
lishes the tests required t o demonstrate
achievement of i t s allocated functional
characteristics, delineates necessary inter-
face requirements with other associated
configuration items, and establishes design
constraints, if any. Contrast with: f u n c -

9

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 610.12-1990 IEEE STANDARD GLOSSARY OF

architecture. The organizational structure of a
system or component. See also: component;
module; subprogram; routine.

tional configuration identification; product
configuration identification. See also:
allocated baseline.

allocation. (1) The process of distributing
requirements, resources, or other entities
among the components of a system or
program.
(2) The result of the distribution in (1).

anomaly. (IEEE Std 1012-1986 [121) Anything
observed in the documentation or operation
of software tha t deviates from expectations
based on previously verified software
products or reference documents.

anticipatory buffering. A buffering technique
in which data are stored in a buffer in
anticipation of a need for the data. See also:
dynamic buffering; simple buffering.

anticipatory paging. A storage allocation
technique in which pages are transferred
from auxiliary storage t o main storage in
anticipation of a need for those pages.
Contrast with: demand paging.

application generator. A code generator that
produces programs to solve one or more
problems in a particular application area;
for example, a payroll generator.

application-oriented language. A computer
language with facilities or notations
applicable primarily t o a single application
area; for example, a language for computer-
assisted instruction or hardware design.
See also: authoring language; specification
language; query language; simulation
language.

application software. Software designed to
fulfill specific needs of a user; for example,
software for navigation, payroll, or process
control. Contrast with: support software;
system software.

architectural design. (1) The process of
defining a collection of hardware and
software components and their interfaces to
establish the framework for the development
of a computer system. See also: functional
design.
(2) The result of the process in (1).

argument. (1) An independent variable; for
example, the variable m in the equation
E = mc2.
(2) A specific value of an independent
variable; for example, the value m = 24 kg.
(3) A constant, variable, o r expression used
in a call t o a software module to specify data
or program elements to be passed t o that
module. Syn: actual parameter. Contrast
with: formal parameter.

array. An n-dimensional ordered set of data
items identified by a single name and one
or more indices, so tha t each element of
the set is individually addressable. For
example, a matrix, table, or vector.

artificial intelligence. Note: P610.8 [151 de-
fines terminology pertaining t o artificial
intelligence.

artificial language. See: formal language.

assemble. To translate a computer program
expressed in an assembly language into its
machine language equivalent. Cont ras t
with: compile; disassemble; interpret.

assemble-and-go. An operating technique in
which there are no stops between the assem-
bling, linking, loading, and execution of a
computer program.

assembled origin. The address of the initial
storage location assigned to a computer pro-
gram by an assembler, a compiler, o r a
linkage editor. Contrast with: loaded
origin. See also: offset (1); starting address.

assembler. A computer program that trans-
lates programs expressed in assembly
language into their machine language
equivalents. See also: absolute assembler;
cross-assembler; relocating assembler.
Contrast with: compiler; interpreter.

assembler code. See: assembly code.

assembler language. See: assembly lan-
guage.

10

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

SOFTWARE ENGINEERING TERMINOLOGY

assembly code. Computer instructions and
data definitions expressed in a form that
can be recognized and processed by an
assembler. Syn: assembler code. Contrast
with: compiler code; in t e rp re t ive code;
machine code.

IEEE
Std 610.12-1590

for computer-assisted instruction. See also:
authoring system.

a s sembly language. A programming lan-
guage that corresponds closely to the instruc-
tion set of a given computer, allows symbolic
naming of operations and addresses, and
usually results in a one-to-one translation
of program instructions into machine in-
structions. Syn: assembler language; low
level language; second generation lan-
guage. Contrast with: fifth generation lan-
guage; fou r th generation language; h igh
order language; machine language. Note:
Specific languages are defined in P610.13
D71.

assertion. A logical expression specifying a
program state that must exist or a set of
conditions tha t program variables must
satisfy a t a particular point during program
execution. Types include input assertion,
loop assertion, output assertion. See also:
invariant; proof of correctness.

ass ignment statement. A computer program
statement that assigns a value to a variable;
for example, Y := X - 5. Contrast with:
control statement; declaration. See also:
clear; initialize; reset.

atomic type. A data type, each of whose mem-
bers consists of a single, nondecomposable
data item. Syn: pr imi t ive type. Contrast
with: composite type.

attribute. A characteristic of an item; for ex-
ample, the item's color, size, or type. See
also: quality attribute.

audit. An independent examination of a
work product or set of work products to
assess compliance with specifications,
standards, contractual agreements, o r
other criteria. See also: f u n c t i o n a l
configuration audit; physical configuration
audit.

authoring language. A high level program-
ming language used to develop courseware

a u t h o r i n g system. A programming system
that incorporates an authoring language.

automated verification system. (1) A software
tool that accepts as input a computer program
and a representation of its specification and
produces, possibly with human help, a proof
or disproof of the correctness of the program.
(2) Any software tool that automates part or
all of the verification process.

availability. The degree t o which a system or
component is operational and accessible
when required for use. Often expressed as a
probability. See also: error tolerance; fault
tolerance; robustness.

back-to-back testing. Testing in which two or
more variants of a program are executed
with the same inputs, the outputs are
compared, and errors are analyzed in case
of discrepancies. See also: mutation testing.

background. In job scheduling, the computing
environment in which low-priority pro-
cesses or those not requiring user interac-
tion are executed. Contrast with: f o r e -
ground. See also: background processing.

background processing. The execution of a
low-priority process while higher priority
processes are not using computer resources,
or the execution of processes tha t do not
require user interaction. Contrast with:
foreground processing.

backup. (1) A system, component, file,
procedure, or person available t o replace or
help restore a primary item in the event of a
failure or externally caused disaster.
(2) To create o r designate a system,
component, file, procedure, or person a s
in (1).

backup programmer. The assistant leader of a
chief programmer team; responsibilities
include contributing significant portions of
the software being developed by the team,
aiding the chief programmer in reviewing
the work of other team members,
substituting for the chief programmer when

11

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 610.12-1990 IEEE STANDARD GLOSSARY OF

additional input o r user interaction.
Contrast with: conversational; interactive;
online; real time.

necessary, and having an overall technical
understanding of t he software being
developed. See also: chief programmer.

b a c k w a r d execution. See: reversible
execution.

backward recovery. (1) The reconstruction of
a file t o a given state by reversing all
changes made to the file since i t was in that
state.
(2) A type of recovery in which a system,
program, database, or other system resource
is restored to a previous state in which it can
perform required functions.
Contrast with: forward recovery.

base address. An address used as a reference
point to which a relative address is added to
determine the address of the storage location
to be accessed. See also: indexed address;
relative address; self-relative address.

baseline. (1) A specification or product that has
been formally reviewed and agreed upon,
that thereafter serves as the basis for further
development, and that can be changed only
through formal change control procedures.
(2) A document or a set of such documents
formally designated and fixed a t a specific
time during the life cycle of a configuration
item. N o t e : Baselines, plus approved
changes from those baselines, constitute the
current configuration identification. See
also: allocated baseline; developmenta l
configuration; functional baseline; product
baseline.
(3) Any agreement o r result designated and
fixed a t a given time, from which changes
require justification and approval.

b a s e l i n e m a n a g e m e n t . In configuration
management, the application of technical
and administrative direction to designate
the documents and changes t o those docu-
ments tha t formally identify and establish
baselines a t specific times during the life
cycle of a configuration item.

batch. Pertaining t o a system or mode of
operation in which inputs are collected and
processed all a t one time, rather than being
processed a s they arrive, and a job, once
started, proceeds t o completion without

bathtub curve. A graph of the number of fail-
ures in a system or component as a function
of time. The name is derived from the usual
shape of the graph: a period of decreasing
failures (the early-failure period), followed
by a relatively steady period (the constant-
failure period), followed by a period of
increasing failures (the wearout-failure
period).

b e n c h m a r k . (1) A standard against which
measurements o r comparisons can be
made.
(2) A procedure, problem, or test that can be
used t o compare systems or components t o
each other or t o a standard as in (1).
(3) A recovery file.

big-bang testing. A type of integration testing
in which software elements, hardware ele-
ments, or both are combined all a t once into
an overall system, rather than in stages.

binary digit (bit).(l) A unit of information that
can be represented by either a zero or a one.
(2) An element of computer storage that can
hold a unit of information as in (1).
(3) A numeral used t o represent one of the
two digits in the binary numeration system;
zero (0) or one (1).
See also: byte; word.

bind. To assign a value t o an identifier. For
example, to assign a value to a parameter or
to assign an absolute address to a symbolic
address in a computer program. See also:
dynamic binding; static binding.

bit. Acronym for b inary digit.

bit steering. A microprogramming technique
in which the meaning of a field in a
microinstruction is dependent on the value
of another field in the microinstruction.
Syn: i m m e d i a t e cont ro l . Contrast with:
residual control. See also: t w o - l e v e l
encoding.

black box. (1) A system or component whose
inputs, outputs, and general function are

12

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

SOFTWARE ENGINEERING TERMINOLOGY

known but whose contents or implementa-
tion are unknown or irrelevant. Contrast
with: glass box.
(2) Pertaining to an approach that treats a
system or component a s in (1). See also:
encapsulation.

black-box testing. See: functional testing (1).

block. (1) A group of contiguous storage
locations, computer program statements,
records, words, characters, or bits that are
treated as a unit. See also: block-structured
language; delimiter.
(2) To form a group as in (1). Contrast with:
deblock.

block allocation. See: paging (1).

block diagram. A diagram of a system, com-
puter, or device in which the principal parts
are represented by suitably annotated geo-
metrical figures to show both the functions
of the parts and their functional relation-
ships. Syn: configuration diagram; system
resources chart. See also: box diagram; bub-
ble chart; flowchart; graph; input-process-
output chart; s t r u m chart.

Card Mainframe
Reader Com pu ter

(Z$&yJ Printer

Fig 1
Block Diagram

block-structured language. A design or pro-
gramming language in which sequences of
statements, called blocks, are defined,
usually with begin and end delimiters, and
variables or labels defined in one block are
not recognized outside that block. Examples
include Ada, ALGOL, PL/I. See also: struc-
tured programming language.

I

IEEE
Std 610.12-1990

bootstrap. (1) A short computer program that is
permanently resident or easily loaded into a
computer and whose execution brings a
larger program, such a s an operating
system or its loader, into memory.
(2) To use a program as in (1). Syn: i n i t i a l
program load.

bootstrap loader. A short computer program
used to load a bootstrap.

bottom-up. Pertaining to an activity that starts
with the lowest-level components of a hier-
archy and proceeds through progressively
higher levels; for example, bottom-up
design; bottom-up testing. Contrast with:
top-down. See also: critical piece first.

boundary value. A data value that corresponds
to a minimum or maximum input, internal,
or output value specified for a system or
component. See also: stress testing.

box diagram. A control flow diagram consist-
ing of a rectangle that is subdivided to show
sequential steps, if-then-else conditions,
repetition, and case conditions. Syn: Chapin
chart; Nassi-Shneiderman chart; program
structure d iagram. See also: block dia-
gram; bubble chart; flowchart; graph; input-

gram; structure chart.
p ~ s s - o u t p u t chart; program ~ t r u c h ~ ? dia-

Do while there are transaction records

blocking fac to r . The number or records,
words, characters, or bits in a block.

boot. To initialize a computer system by clear-
ing memory and reloading the operating
system. Derived from bootstrap.

Read transaction record

Check for errors

Update salary I Display error msg
Excess sick

Cease processing
Print this record

~~

Print check I
Fig 2

Box Diagram

branch. (1) A computer program construct in
which one of two or more alternative sets of

13

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 610.12-1990

program statements is selected for execu-
tion. See also:case; jump; go to; if-then-
else.
(2) A point in a computer program a t which
one of two or more alternative sets of pro-
gram statements is selected for execution.
Syn: branchpoint.
(3) Any of the alternative sets of program
statements in (1).
(4) To perform the selection in (1).

branch testing. Testing designed t o execute
each outcome of each decision point in a
computer program. Contrast with: path
testing; statement testing.

branchpoint. See: branch (2).

breakpoint. A point in a computer program a t
which execution can be suspended to permit
manual o r automated monitoring of pro-
gram performance or results. Types include
code breakpoint, data breakpoint, dynamic
breakpoint, epilog breakpoint, program-
mable breakpoint, prolog breakpoint, static
breakpoint. Note: A breakpoint is said to be
set when both a point in the program and an
event that will cause suspension of execution
a t that point are defined; i t is said to be
initiated when program execution is sus-
pended.

bubble chart. A data flow, data structure, or
other diagram in which entities are depicted
with circles (bubbles) and relationships are
represented by links drawn between the
circles. See also: block diagram; box
diagram; flowchart; graph; input-process-
output chart; s t r u m chart.

Update Q inventory

Pull items

shelf

bled ~

order

order
items.

IEEE STANDARD GLOSSARY OF

buffer. (1) A device or storage area used t o
store data temporarily t o compensate for
differences in rates of data flow, time of
occurrence of events, or amounts of data that
can be handled by the devices or processes
involved in the transfer or use of the data.
(2) A routine that accomplishes the objectives
in (1).
(3) To allocate, schedule, or use devices or
storage areas a s in (1). See also: anticipa-
tory buffering; dynamic buffering; simple
buffering.

billing Update
account data

Fig 3
Bubble Chart

bug. See: error; fault.

bug seeding. See: error seeding.

build. An operational version of a system or
component that incorporates a specified sub-
set of the capabilities that the final product
will provide.

burn-in period. See: early-failure period.

busy. Pertaining to a system or component that
is operational, in service, and in use. See
also: down; idle; up.

busy time. In computer performance engi-
neering, the period of time during which a
system or component is operational, in
service, and in use. See also: down time;
idle time; set-up time; up time.

byte. (1) A group of adjacent binary digits
operated upon a s a unit and usually shorter
than a computer word (frequently connotes a
group of eight bits).
(2) An element of computer storage that can
hold a group of bits as in (1).
See also: bit; word.

cal l . (1) A transfer of control from one
software module t o another, usually with
the implication that control will be returned
t o the calling module. Contrast wi th:
go
(2) A computer instruction tha t transfers
control from one software module to another
as in (1) and, often, specifies the parameters
to be passed to and from the module.
(3) To transfer control from one software
module to another as in (1) and, often, to pass

14

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

SOFTWARE ENGINEERING TERMINOLOGY

parameters t o the other module. S y n :
cue.
See also: call by name; call by reference;
call by value; call list; calling sequence.

IEEE
Std 610.12-1990

call by address. See: call by reference.

call by location. See: call by reference.

call by name. A method for passing
parameters, in which the calling module
provides to the called module a symbolic
expression representing the parameter
to be passed, and a service routine evalu-
a tes t he expression and provides the
resulting value t o t he called module.
Note: Because the expression is evaluated
each t ime i t s corresponding formal
parameter is used in the called module,
the value of the parameter may change
during the execution of the called module.
Contrast with: call by reference; call by
value.

call by reference. A method for passing
parameters, in which the calling module
provides to the called module the address
of the parameter t o be passed. N o t e :
With th i s method, t he called module
has the ability to change the value of
the parameter stored by the calling module.
Syn: call by address; call by location.
Contrast with: call by name; call by value.

call by value. A method of passing
parameters, in which the calling module
provides t o the called module the actual
value of t he parameter t o be passed.
Note: With this method, the called mod-
ule cannot change the value of the para-
meter as stored by the calling module.
Contrast wi th: call by name; call by
reference.

call graph. A diagram tha t identifies the
modules in a system or computer program
and shows which modules call one another.
Note: The result is not necessarily the same
as that shown in a structure chart. Syn: call
tree; tier chart. Contrast with: structure
chart. See also: control flow diagram; data
flow diagram; data structure diagram; state
diagram.

Main
Program

Fig 4
Call Graph

call list. The ordered list of arguments used in
a call to a software module.

call trace. See: subroutine trace.

call tree. See: call graph.

calling sequence. A sequence of computer
instructions and, possibly, data necessary to
perform a call to another module.

CASE. Acronym for computer-aided software
engineering.

case. A single-entry, single-exit multiple-
way branch that defines a control expres-
sion, specifies the processing t o be performed
for each value of the control expression, and
returns control in all instances to the state-
ment immediately following the overall
construct. Syn: multiple exclusive selective
construct. Contrast with: go to; jump; if-
then-else. See also: multiple inclusive
selective construct.

\- I

Fig 5
Case Construct

15

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

JEEE
Std 610.12-1990 IEEE STANDARD GLOSSARY OF

catastrophic failure. A failure of critical
software.

Contrast with: enumeration type; integer
type; logical type; real type.

CCB. (1) Acronym for configuration control
board.
(2) Acronym for change control board. See:
configuration control board.

CDR Acronym for critical design review.

certification. (1) A written guarantee that a
system or component complies with its speci-
fied requirements and is acceptable for
operational use. For example, a written au-
thorization that a computer system is secure
and is permitted t o operate in a defined
environment.
(2) A formal demonstration that a system or
component complies with i ts specified re-
quirements and is acceptable for operational
use.
(3) The process of confirming that a system
or component complies with its specified re-
quirements and is acceptable for operational
use.

change control. See: configuration control.

change control board. See: configuration
control board.

change dump. A selective dump of those
storage locations whose contents have
changed since some specified time or event.
Syn: differential dump. See also: dynamic
dump; memory dump; postmortem dump;
selective dump; snapshot dump; static
dump.

channel capacity. The maximum amount of
information tha t can be transferred on a
given channel per unit of time; usually
measured in bits per second or in baud. See
also: memory capacity; storage capacity.

Chapin chart. See: box diagram.

character. A letter, digit, or other symbol that
is used to represent information.

character type. A data type whose members
can assume the values of specified
characters and can be operated on by
character operators, such as concatenation.

characteristic. (IEEE Std 1008-1987 [lo]) See:
data characteristic; softwam characteristic.

checkout. Testing conducted in the operational
or support environment to ensure tha t a
software product performs as required after
installation.

checkpoint. A point in a computer program a t
which program state, status, or results are
checked or recorded.

chief programmer. The leader of a chief pro-
grammer team; a senior-level programmer
whose responsibilities include producing
key portions of the software assigned to the
team, coordinating the activities of the team,
reviewing the work of the other team mem-
bers, and having an overall technical un-
derstanding of the software being developed.
See also: backup programmer; chief pro-
grammer team.

chief programmer team. A software develop-
ment group t h a t consists of a chief
programmer, a backup programmer, a
secretaryllibrarian, and additional pro-
grammers and specialists as needed, and
tha t employs procedures designed to en-
hance group communication and to make
optimum use of each member's skills. See
also: backup programmer; chief program-
mer; egoless programming.

CI. Acronym for configuration item.

clear. To set a variable, register, or other
storage location to zero, blank, or other null
value. See also: initialize; reset.

closed loop. A loop that has no exit and whose
execution can be interrupted only by
intervention from outside the computer
program or procedure in which the loop is
located. Contrast with: UNTIL; WHILE.

closed subroutine. A subroutine that is stored
at one given location rather than being
copied into a computer program at each place
that it is called. Contrast with: open subrou-
tine.

16

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

SOFTWARE ENGINEERING TERMINOLOGY

CM. Acronym for configuration manage-
ment.

IEEE
Std 610.12-1990

coding. (1) In software engineering, the
process of expressing a computer program in
a programming language.
(2) (IEEE Std 1002-1987 [91) The trans-
forming of logic and data from design
specifications (design descriptions) into a
programming language.
See also: software development process.

code. (1) In software engineering, computer
instructions and data definitions expressed
in a programming language or in a form
output by an assembler, compiler, or other
translator. See also: source code; object
code; machine code; microcode.
(2) To express a computer program in a
programming language.
(3) A character or bit pattern that is assigned
a particular meaning; for example, a status
code.

code breakpoint. A breakpoint that is initiated
upon execution of a given computer instruc-
tion. Syn: control breakpoint. Contrast aith:
data breakpoint. See also: dynamic break-
point; epilog breakpoint; programmable
breakpoint; pmlog breakpoint; static break-
point.

code generator. (1) A routine, often part of a
compiler, t h a t transforms a computer
program from some intermediate level of
representation (often the output of a root
compiler or parser) into a form that is closer
to the language of the machine on which the
program will execute.
(2) A software tool that accepts a s input the
requirements o r design for a computer
program and produces source code tha t
implements the requirements or design.
Syn: source code generator. See also:
application generator.

d e inspection. See: inspection.

code of ethics standard. (IEEE Std 1002-1987
[SI) A standard that describes the character-
istics of a set of moral principles dealing
with accepted standards of conduct by,
within, and among professionals.

code review. A meeting a t which software code
is presented to project personnel, managers,
users, customers, or other interested parties
for comment or approval. Contrast with:
design review; formal qualification
review; requirements review; test readiness
review.

d e trace. See: execution trace.

cohesion. The manner and degree to which the
tasks performed by a single software mod-
ule are related to one another. Types include
coincidental, communicational, functional,
logical, procedural, sequential, and tempo-
ral. Syn: module strength. Contrast with:
coupling.

coincidental cohesion. A type of cohesion in
which the tasks performed by a software
module have no functional relationship t o
one another. Contrast with: communica-
tional cohesion; functional cohesion; logi-
cal cohesion; procedural cohesion; sequen-
tial cohesion; temporal cohesion.

command. An expression that can be input to a
computer system to initiate an action or
affect the execution of a computer program;
for example, the “log on” command to
initiate a computer session.

command-driven. Pertaining t o a system or
mode of operation in which the user directs
the system through commands. Contrast
with: menu-driven.

command language. A language used t o
express commands to a computer system.
See also: command-driven.

comment. Information embedded within a
computer program, job control statements, or
a set of data, tha t provides clarification t o
human readers but does not affect machine
interpretation.

common. See: common storage.

common area. See: common storage.

common block. See: common storage.

common coupling. See: common-environ-
ment coupling.

17

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 610.12-1990

common data. See: global data.

IEEE STANDARD GLOSSARY OF

compiler. A computer program that translates
programs expressed in a high order lan-
guage into their machine language equiva-
lents. Contrast with: assembler; interpreter.
See also: cross-compiler; incremental com-
piler; root compiler.

common-environment coupling. A type of
coupling in which two software modules
access a common data area. Syn: common
coupling. Contrast with: content coupling;
control coupling; data coupling; hybrid
coupling; pathological coupling.

common storage. A portion of main storage
that can be accessed by two or more modules
in a software system. Syn: common area;
common block. See also: global data.

communicational cohesion. A type of cohesion
in which the tasks performed by a software
module use the same input data or contribute
t o producing the same output data. Contrast
with: coincidental cohesion; functional
cohesion; logical cohesion; procedural
cohesion; sequential cohesion; temporal
cohesion.

compaction. In microprogramming, the pro-
cess of converting a microprogram into
a functionally equivalent microprogram
that is faster or shorter than the original.
See also: local compaction; global com-
paction.

comparator. A software tool that compares
two computer programs, files, or sets of data
to identify commonalities or differences.
Typical objects of comparison are similar
versions of source code, object code, data
base files, or test results.

compatibility. (1) The ability of two or more
systems or components t o perform their
required functions while sharing the same
hardware or software environment.
(2) The ability of two o r more systems or
components to exchange information.
See also: interoperability.

compile. To translate a computer program
expressed in a high order language into its
machine language equivalent. Contras t
with: assemble; decompile; interpret.

compile-and-go. An operating technique in
which there are no stops between the
compiling, linking, loading, and execution
of a computer program.

compiler code. Computer instructions and
data definitions expressed in a form that
can be recognized and processed by a com-
piler. Contrast with: assembly code; inter-
pmtive code; machine code.

compiler compiler. See: compiler generator.

compiler generator. A translator or inter-
preter used to construct par t or all of a
compiler. Syn: compiler compiler; meta-
compiler.

completion code. A code communicated to a job
stream processor by a batch program t o
influence the execution of succeeding steps
in the input stream.

complexity. (1) The degree t o which a system
or component has a design o r implementa-
tion tha t is difficult t o understand and
verify. Contrast with: simplicity.
(2) Pertaining to any of a set of structure-
based metrics that measure the attribute
in (1).

component. One of the parts that make up
a system. A component may be hardware
or software and may be subdivided into other
components. Note: The terms “module,”
“component,” and “unit” are often used
interchangeably or defined t o be sub-
elements of one another in different ways
depending upon the context. The rela-
tionship of these terms is not yet stan-
dardized.

component standard. (IEEE Std 1002-1987 193)
A standard that describes the characteristics
of data or program components.

component testing. Testing of individual
hardware or software components or groups
of related components. Syn: module testing.
See also: integration testing; interface
testing; system testing; unit testing.

18

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

SOFTWARE ENGINEERING TERMINOLOGY

composi te type. A data type each of whose
members is composed of multiple da ta
items. For example, a data type called
PAIRS whose members are ordered pairs
(xy) . Contrast with: atomic type.

IEEE

c o m p u t e r program conf igu ra t ion i t e m
(CPCD.* See: computer software configura-
tion item.
*Deprecated.

Std 610.12-1990

computer-aidedsoftware engineering (CASE).
The use of computers to aid in the soft-
ware engineering process. May include
the application of software tools to software
design, requirements tracing, code pro-
ducti on, testing, document generation,
and other software engineering activ-
ities.

compute r instruction. (1) A statement in a
programming language, specifying an
operation t o be performed by a computer and
the addresses or values of the associated
operands; for example, Move A t o B. S e e
also: instruction format; instruction set.
(2) Loosely, any executable statement in a
computer program.

compute r language. A language designed to
enable humans to communicate with com-
puters. See also: design language; que ry
language; programming language. Note:
P610.13 [171 defines specific computer lan-
gu age s.

c o m p u t e r p e r f o r m a n c e evaluation. An
engineering discipline tha t measures the
performance of computer systems and
investigates methods by which that perfor-
mance can be improved. See also: s y s t e m
profile; throughput; utilization; workload
model.

computer program. A combination of computer
instructions and data definitions that en-
able computer hardware to perform computa-
tional or control functions. See also: so f t -
ware.

computer p rogram abstract. A brief descrip-
tion of a computer program that provides
sufficient information for potential users to
determine the appropriateness of the pro-
gram to their needs and resources.

computer program component (CPC).* See:
computer software component.
*Deprecated.

compute r resource allocation. The assign-
ment of computer resources t o current and
waiting jobs; for example, the assignment of
main memory, input/output devices, and
auxiliary storage t o jobs executing concur-
rently in a computer system. See also:
dynamic resource allocation; storage allo-
cation.

computer resources. The computer equipment,
programs, documentation, services, facili-
ties, supplies, and personnel available for a
given purpose. See also: computer resource
allocation.

computer security. Note: P610.9 [161 defines
terminology pertaining to computer secu-
rity.

computer software component (CSC). A func-
tionally or logically distinct par t of a
computer software configuration item, typi-
cally an aggregate of two or more software
units.

computer software configuration item (CSCI).
An aggregation of software tha t is desig-
nated for configuration management and
treated a s a single entity in the configura-
tion management process. Contrast with:
h a r d w a r e conf igura t ion i tem. See also:
configuration item.

computer system. A system containing one or
more computers and associated software.

computer word. See: word.

c o m p u t i n g c e n t e r . A facility designed t o
provide computer services to a variety of
users through the operation of computers and
auxiliary hardware and through services
provided by the facility's staff.

concept phase. (1) (IEEE Std 1002-1987 [91) The
period of time in the software development
cycle during which the user needs are
described and evaluated through documen-
tation (for example, statement of needs,

19

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 610.12-1990 IEEE STANDARD GLOSSARY OF

interface control; notice of revision; speci-
fication change notice; waiver.

advance planning report, project initiation
memo, feasibility studies, system defini-
tion, documentation, regulations, proce-
dures, or policies relevant to the project).
(2) (IEEE Std 1012-1986 [121) The initial
phase of a software development project, in
which the user needs are described and
evaluated through documentation (for
example, statement of needs, advance
planning report, project initiation memo,
feasibility studies, system definition,
documentation, regulations, procedures, or
policies relevant to the project).

concurrent. Pertaining t o the occurrence
of two o r more activities within the same
interval of time, achieved either by inter-
leaving the activities or by simultaneous
execution. Syn: parallel (2). Contrast with:
simultaneous.

condition code. See: status code.

conditional branch.* See: conditional jump.
*Deprecated.

conditional jump. A jump that takes place
only when specified conditions are met.
Contrast with: unconditional jump.

configuration. (1) The arrangement of a
computer system or component as defined by
the number, nature, and interconnections of
its constituent parts.
(2) In configuration management, the
functional and physical characteristics of
hardware o r software a s set forth in
technical documentation o r achieved in a
product. See also: configuration item; form,
fit and function; version.

configuration audit. See: functional configu-
ration audit; physical configuration audit.

configuration control. An element of configu-
ration management, consisting of the eval-
uation, coordination, approval or disap-
proval, and implementation of changes t o
configuration items after formal establish-
ment of their configuration identification.
Syn: change control. Contrast with: config
uration identification; configuration status
accounting. See also: configuration control
board; deviation; engineering change;

configuration control board (CCB). A group of
people responsible for evaluating and ap-
proving or disapproving proposed changes to
configuration items, and for ensuring im-
plementation of approved changes. S y n :
change control board. See also: configura-
tion control.

configuration diagram. See: block diagram.

configuration identification. (1) An element
of configuration management, consisting of
selecting the configuration items for a sys-
tem and recording their functional and
physical characteristics in technical docu-
mentation. Contrast with: configuration
control; configuration status accounting.
(2) The current approved technical docu-
mentation for a configuration item as set
forth in specifications, drawings, associated
lists, and documents referenced therein. See
also: allocated configuration identification;
functional configuration identification;
product configuration identification; base-
line.

configuration index. A document used in con-
figuration management, providing an ac-
counting of the configuration items tha t
make up a product. See also: configuration
item development record; configuration
status accounting.

configuration item (CI). An aggregation of
hardware, software, or both, tha t is desig-
nated for configuration management and
treated a s a single entity in the configura-
tion management process. See also: hard-
ware configuration item; computer softwan?
configuration item; configuration identifi-
cation; critical item.

configuration item development record. A
document used in configuration manage-
ment, describing the development status of a
configuration item based on the results of
configuration audits and design reviews.
See also: configuration index; configura-
tion status accounting.

configuration management (CM). A disci-
pline applying technical and administra-

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

SOFTWARE ENGINEERING TERMINOLOGY

tive direction and surveillance to: identify
and document the functional and physical
characteristics of a configuration item,
control changes t o those characteristics,
record and report change processing and
implementation status, and verify compli-
ance with specified requirements. See also:
baseline; configuration identification; con-
figuration control; configuration status
accounting, configuration audit.

IEEE

contiguous allocation. A storage allocation
technique in which programs o r data to be
stored are allocated a block of storage of
equal o r greater size, so t ha t logically
contiguous programs and data are assigned
physically contiguous storage locations.
Contrast with: paging (1).

Std 610.12-1990

configuration status accounting. An element
of configuration management, consisting of
the recording and reporting of information
needed t o manage a configuration effec-
tively. This information includes a listing
of the approved configuration identification,
the status of proposed changes to the configu-
ration, and the implementation status of
approved changes. Contrast with: configu-
ration control; configuration identification.
See also: configuration index; configura-
tion item development record.

consecutive. Pertaining t o the occurrence of
two sequential events or items without the
intervention of any other event or item; that
is, one immediately after the other.

consistency. The degree of uniformity, stan-
dardization, and freedom from contradic-
tion among the documents or parts of a
system or component. See also: traceability.

constant. A quantity or data item whose value
cannot change; for example, the data item
FIVE, with an unchanging value of 5.
Contrast with: variable. See also: figurative
constant; literal.

constant-failure period. The period of time in
the life cycle of a system or component
during which hardware failures occur a t an
approximately uniform rate. Contrast with:
early-failure period; wearout-failure pe-
riod. See also: bathtub curve.

content coupling. A type of coupling in which
some or all of the contents of one software
module a re included in the contents of
another module. Contrast with: common-
environment coupling; control coupling;
data coupling; hybrid coupling; pathological
coupling.

continuous iteration. A loop that has no exit.

control bwakpoint. See: code breakpoint.

control coupling. A type of coupling in which
one software module communicates infor-
mation to another module for the explicit
purpose of influencing the latter module's
execution. Contrast with: common-envi-
ronment coupling; content coupling; data
coupling; hybrid coupling; pathological
coupling.

control data. Data that select an operating
mode, direct the sequential flow of a pro-
gram, or otherwise directly influence the
operation of software; for example, a loop
control variable.

control flow. The sequence in which opera-
tions are performed during the execution of
a computer program. Syn: flow of control.
Contrast with: data flow.

control flow diagram. A diagram that depicts
the set of all possible sequences in which
operations may be performed during the
execution of a system or program. Types
include box diagram, flowchart, input-
process-output char t , s t a t e diagram.
Contrast with: data flow diagram. See also:
call graph; S t r u c t w - e chart.

control flow trace. See: execution trace.

control language. See: job control language.

control program. See: supervisory program.

control statement. A program statement that
selects among alternative sets of program
statements or affects the order in which
operations are performed. For example, if-
then-else, case. Contrast with: assignment
statement; declaration.

23

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 610.12-1990

control store. In a microprogrammed com-
puter, the computer memory in which micro-
programs reside. See also: microword;
nanostore.

IEEE STANDARD GLOSSARY OF

correctness. (1) The degree to which a sys-
tem or component is free from faults in
its specification, design, and implementa-
tion.
(2) The degree to which software, documen-
tation, o r other items meet specified re-
quirements.
(3) The degree to which software, documen-
tation, or other items meet user needs and
expectations, whether specified or not.

contml variable. See: loop-control variable.

conventions. (IEEE Std 983-1986 [71)
Requirements employed t o prescribe a
disciplined uniform approach to providing
consistency in a software product, that is,
uniform patterns o r forms for arranging
data. See also: practices; standards.

conversational. Pertaining to an interactive
system or mode of operation in which the
interaction between the user and the system
resembles a human dialog. Contrast with:
batch. See also: interactive; on-line; real
time.

conversational compiler. See: incremental
compiler.

conversion. Modification of existing software
to enable i t to operate with similar func-
tional capability in a different environ-
ment; for example, converting a program
from Fortran t o Ada, converting a program
that runs on one computer to run on another.

copy. (1) To read data from a source, leaving
the source data unchanged, and to write
the same data elsewhere in a physical form
that may differ from that of the source. For
example, t o copy data from a magnetic
disk onto a magnetic tape. Contrast with:
move.
(2) The result of a copy process as in (1). For
example, a copy of a data file.

core dump.* See: memory dump.
*Deprecated.

coroutine. A routine that begins execution a t
the point a t which operation was last
suspended, and that is not required to return
control to the program or subprogram that
called it. Contrast with: subroutine.

corrective maintenance. Maintenance per-
formed t o correct faults in hardware or soft-
ware. Contrast with: adaptive maintenance;
perfective maintenance.

correctness pmf. See: p m f of correctness.

counter. A variable used to record the number
of occurrences of a given event during
the execution of a computer program; for
example, a variable that records the number
of times a loop is executed.

coupling. The manner and degree of interde-
pendence between software modules. Types
include common-environment coupling,
content coupling, control coupling, data
coupling, hybrid coupling, and pathological
coupling. Contrast with: cohesion.

CPC. Acronym for computer program compo-
nent. See: computer software component.

CPCI. Acronym for computer program config-
uration item. See: computer software con-
figuration item.

crash. The sudden and complete failure of a
computer system or component. See also:
hard failure.

critical design review (CDR). (1) A review
conducted to verify that the detailed design
of one or more configuration items satisfy
specified requirements; to establish the
compatibility among the configuration
items and other items of equipment, facili-
ties, software, and personnel; to assess risk
areas for each configuration item; and, as
applicable, t o assess the results of pro-
ducibility analyses, review preliminary
hardware product specifications, evaluate
preliminary test planning, and evaluate the
adequacy of preliminary operation and
support documents. See also: preliminary
design review; system design review.
(2) A review as in (1) of any hardware or
software Component.

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

SOFTWARE ENGINEERING TERMINOLOGY

critical item. In configuration management,
an item within a configuration item that,
because of special engineering or logistic
considerations, requires an approved speci-
fication to establish technical or inventory
control a t the component level.

IEEE
Std 610.12-1990

critical piece first. A system development ap-
proach in which the most critical aspects of a
system are implemented first. The critical
piece may be defined in terms of services
provided, degree of risk, difficulty, or other
criteria. See also: bottom-up; top-down.

critical software. (IEEE Std 1012-1986 [123)
Software whose failure could have an impact
on safety, or could cause large financial or
social loss.

criticality. The degree of impact tha t a
requirement, module, error, fault, failure,
or other item has on the development or
operation of a system. Syn: severity.

cross-assembler. An assembler that executes
on one computer but generates machine code
for a different computer.

cross-compiler. A compiler that executes on
one computer but generates machine code for
a different computer.

cross-reference generator. A software tool that
accepts as input the source code of a computer
program and produces as output a listing
that identifies each of the program's vari-
ables, labels, and other identifiers and indi-
cates which statements in the program
define, set, or use each one. S y n : cross-
referencer.

cross-reference list. A list that identifies each
of the variables, labels, and other identifiers
in a computer program and indicates which
statements in the program define, set, or use
each one.

cross-referencer. See: cross-reference gener-
ator.

CSC. Acronym for computer software compo-

CSCL Acronym for computer software config-

nent.

uration item.

cue. See: call (3).

curriculum standard. (IEEE Std 1002-1987 [91)
A standard that describes the characteristics
of a course of study on a body of knowledge
that is offered by an educational institution.

cycle. (1) A period of time during which a set of
events is completed. See also: software
development cycle; software life cycle.
(2) A set of operations that is repeated regu-
larly in the same sequence, possibly with
variations in each repetition; for example, a
computer's read cycle. See also: pass.

cycle stealing. The process of suspending the
operation of a central processing unit for one
or more cycles to permit the occurrence of
other operations, such as transferring data
from main memory in response t o an output
request from an input/output controller.

cyclic search. A storage allocation technique
in which each search for a suitable block of
storage begins with the block following the
one last allocated.

data. (1) A representation of facts, concepts, or
instructions in a manner suitable for com-
munication, interpretation, or processing by
humans or by automatic means. See also:
data type.Note: IEEE Std 610.5-1990 [21
defines terminology pertaining t o data
management.
(2) Sometimes used as a synonym for docu-
mentation.

data abstraction. (1) The process of extracting
the essential characteristics of data by
defining data types and their associated
functional characteristics and disregard-
ing representation details. See also: encap-
sulation; information hiding.
(2) The result of the process in (1).

data breakpoint. A breakpoint that is initiated
when a specified data item is accessed. Syn:
storage breakpoint. Contrast with: code
breakpoint. See also: dynamic breakpoint;
epilog breakpoint; programmable break-
point; prolog breakpoint; static breakpoint.

data characteristic. (IEEE Std 1008-1987 [lo])
An inherent, possibly accidental, trait ,

23

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 610.12-1990

quality, o r property of data (for example,
arrival rates, formats, value ranges, o r
relationships between field values).

Emp,
No.
(41)

IEEE STANDARD GLOSSARY OF

data flowchart (flow chart). See: data flow
diagram.

Emp. Name Dept. Ernp.

First Mid. Last Street City State Zip No'
(1OC) (1C) (16C) (20C) (20C) (2C) (el) l3') (41)

data coupling. A type of coupling in which
output from one software module serves as
input t o another module. Syn: input-output
coupling. Contrast with: common-envi-
ronment coupling, content coupling; control
coupling; hybrid coupling; pathological
coupling.

data definition. Note: This term is defined in
IEEE Std 610.5-1990 [23.

data exception. An exception that occurs when
a program attempts to use or access data in-
correctly. See also: addressing exception;
operation exception; overflow exception;
pmtection exception; underflow exception.

data flow. The sequence in which data trans-
fer, use, and transformation are performed
during the execution of a computer program.
Contrast with: control flow.

data flow diagram (DF'D). A diagram that de-
picts data sources, data sinks, data storage,
and processes performed on data as nodes,
and logical flow of data a s links between the
nodes. Syn: data flowchart; data flow graph.
Contrast with: control flow diagram; data
structure diagram.

I -invalid Reports 2 I
Valid

Reports

1

Fig 6
Data Flow Diagram

data flow graph. See: data flow diagram.

data flow trace. See: variable trace.

data input sheet. User documentation that de-
scribes, in a worksheet format, the required
and optional input data for a system or
component. See also: user manual.

data-sensitive fault. A fault that causes a fail-
ure in response to some particular pattern of
data. Syn: pattern-sensitive fault. Contrast
with: program-sensitive fault.

data structure. A physical or logical relation-
ship among data elements, designed to sup-
port specific data manipulation functions.
Note: IEEE Std 610.5-1990 121 defines specific
data structures.

data structure-centered design. A software
design technique in which the architecture
of a system is derived from analysis of the
structure of the data sets with which the
system must deal. See also: input-process-
output; modular decomposition; object-
oriented design; rapid prototyping; stepwise
refinement; structure clash; structured
design; transaction analysis; transform
analysis.

data structure diagram. A diagram that de-
picts a set of data elements, their attributes,
and the logical relationships among them.
Contrast with: data flow diagram. See also:
entity-relationship diagram.

Employee Record I

I - Integer C - Character

Fig 7
Data S t r u m Diagram

data trace. See: variable trace.

data type. A class of data, characterized by the
members of the class and the operations that
can be applied t o them. For example,
character type, enumeration type, integer
type, logical type, real type. See also: strong
typing.

24

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

SOFTWARE ENGINEERING TERMINOLOGY

database. A collection of interrelated data
stored together in one or more computerized
files. Note: IEEE Std 610.5-1990 121 defines
terminology pertaining to databases.

IEEE
Std 610.12-1990

decoupling. The process of making software
modules more independent of one another t o
decrease the impact of changes to, and errors
in, the individual modules. See also: COU-
pling.

datum. Singular for data.

deadlock. A situation in which computer
processing is suspended because two or more
devices o r processes are each awaiting
resources assigned to the others. See also:
lockout.

deassembler.* See: disassembler.
* Deprecated.

deblock. To separate the parts of a block.
Contrast with: block (2).

debug. To detect, locate, and correct faults in a
computer program. Techniques include use
of breakpoints, desk checking, dumps,
inspection, reversible execution, single-step
operation, and traces.

decision table. A table used to show sets of
conditions and the actions resulting from
them.

de cl ar a t i on . A non-exe cut a ble program
statement that affects the assembler or com-
piler's interpretation of other statements in
the program. For example, a statement that
identifies a name, specifies what the name
represents, and, possibly, assigns i t an
initial value. Contrast with: assignment
statement; control statement. See also:
pseudo instruction.

declarative language. A nonprocedural lan-
guage that permits the user to declare a set of
facts and to express queries or problems that
use these facts. See also: interactive lan-
guage; rule-based language.

decompile. To translate a compiled computer
program from its machine language ver-
sion into a form that resembles, but may
not be identical t o , the original high
order language program. Contrast with:
compile.

decompiler. A software tool that decompiles
computer programs.

delimiter. A character or set of characters
used t o denote the beginning or end of a
group of related bits, characters, words, or
statements.

delivery. Release of a system or component to
its customer or intended user. See also:
software life cycle; system life cycle.

demand paging. A storage allocation tech-
nique in which pages are transferred from
auxiliary storage to main storage only when
those pages are needed. Contrast with:
anticipatory paging.

demodularization. In software design, the
process of combining related software mod-
ules, usually t o optimize system perfor-
mance. See also: downward compression;
lateral compression; upward compression.

demonstration. A dynamic analysis tech-
nique that relies on observation of system or
component behavior during execution, with-
out need for post-execution analysis, t o detect
errors, violations of development standards,
and other problems. See also: testing.

derived type. A data type whose members and
operations are taken from those of another
data type according t o some specified rule.
See also: subtype.

description standard. (IEEE Std 1002-1987 [SI)
A standard that describes the characteristics
of product information or procedures pro-
vided t o help understand, test, install, oper-
ate, or maintain the product.

design. (1) The process of defining the archi-
tecture, components, interfaces, and other
characteristics of a system or component.
See also: architectural design; preliminary
design; detailed design.
(2) The result of the process in (1).

design description. A document that describes
the design of a system or component.

25

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 610.12-1990

Typical contents include system or compo-
nent architecture, control logic, data struc-
tures, input/ output formats, interface de-
scriptions, and algorithms. Syn: design
document; design specification. See also:
product specification. Contrast with: re-
quirements specification.

IEEE STANDARD GLOSSARY OF

design review, system design review.
Contrast with: code review; formal qualifi-
cation review; requirements review; test
readiness review.

design document. See: design description.

design element. (IEEE Std 990-1987 [81) A basic
component or building block in a design.

design entity. (IEEE Std 1016-1987 [131) An
element (component) of a design that is
structurally and functionally distinct from
other elements and that is separately named
and referenced.

design inspection. See: inspection.

design language. A specification language
with special constructs and, sometimes, ver-
ification protocols, used to develop, analyze,
and document a hardware o r software
design. Types include hardware design
language, program design language. S e e
also: requirements specification language.

design level. (IEEE Std 829-1983 [51) The
design decomposition of the software item
(for example, system, subsystem, program,
or module).

design phase. The period of time in the soft-
ware life cycle during which the designs for
architecture, software components, inter-
faces, and data are created, documented,
and verified t o satisfy requirements. See
also: detailed design; preliminary design.

design requirement. A requirement that spec-
ifies or constrains the design of a system or
system component. Contrast with: func-
tional re quiremen t; implementation re-
quirement; interface requirement; perfor-
mance requirement; physical requirement.

design review. A process or meeting during
which a system, hardware, or software de-
sign is presented t o project personnel, man-
agers, users, customers, or other interested
parties for comment o r approval. Types
include critical design review, preliminary

design specification. See: design description.

design standard. (IEEE Std 1002-1987 [91) A
standard that describes the characteristics of
a design or a design description of data or
program components.

design unit. (IEEE Std 990-1987 [81) A logically
related collection of design elements. In an
Ada PDL, a design unit is represented by an
Ada compilation unit.

design view. (IEEE Std 1016-1987 [131) A subset
of design entity attribute information that is
specifically suited to the needs of a software
project activity.

desk checking. A static analysis technique in
which code listings, test results, or other
documentation are visually examined, usu-
ally by the person who generated them, t o
identify errors, violations of development
standards, or other problems. See also:
inspection; walk-through.

destination address. The address of the device
or storage location t o which data is to be
transferred. Contrust with: source address.

destructive read. A read operation that alters
the data in the accessed location. Contrast
with: nondestructive read.

detailed design. (1) The process of refining
and expanding the preliminary design of a
system or component t o the extent that the
design is sufficiently complete t o be imple-
mented. See also: software development
pmcess.
(2) The result of the process in (1).

development cycle. See: software development
cycle.

development life cycle. See: software devel-
opment cycle.

development specification. See: requirements
specification.

26

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

SOFTWARE ENGINEERING TERMINOLOGY

development testing. Formal or informal test-
ing conducted during the development of a
system or component, usually in the devel-
opment environment by the developer.
Contrast with: acceptance testing; opera-
tional testing. See also: qualification
testing.

IEEE
Std610.12-1990

operator manual; programmer manual;
support manual; user manual.

developmental baseline.* See: developmental
configuration.
*Deprecated.

developmental configuration. In configura-
tion management, the software and associ-
ated technical documentation that define the
evolving configuration of a computer soft-
ware configuration item during develop-
ment. Note: The developmental configura-
tion is under the developer’s control, and
therefore is not called a baseline. Contrast
with: allocated baseline; functional base-
line; product baseline.

deviation. (1) A departure from a specified
requirement.
(2) A written authorization, granted prior to
the manufacture of an item, t o depart from a
particular performance or design require-
ment for a specific number of units or a
specific period of time. Note: Unlike an
engineering change, a deviation does not
require revision of the documentation
defining the affected item. See also: config
uration control. Contrast with: engineering
change; waiver.

device. A mechanism or piece of equipment
designed to serve a purpose or perform a
function.

DFD. Acronym for data flow diagram.

diagnostic. Pertaining t o the detection and
isolation of faults or failures; for example, a
diagnostic message, a diagnostic manual.

diagnostic manual. A document that presents
the information necessary to execute diag-
nostic procedures for a system or component,
identify malfunctions, and remedy those
malfunctions. Typically described are the
diagnostic features of the system or compo-
nent and the diagnostic tools available for
its support. See also: installation manual;

diagonal microinstruction. A microinstruc-
tion capable of specifying a limited number
of simultaneous operations needed t o carry
out a machine language instruction. Note:
Diagonal microinstructions fall, in size
and functionality, between horizontal mi-
croinstructions and vertical microinstruc-
tions. The designation “diagonal” refers t o
this compromise rather than t o any physical
characteristic of the microinstruction. Con-
trast with: horizontal microinstruction;
vertical microinstruction.

differential dump. See: change dump.

digraph. See: directed graph.

direct address. An address that identifies the
storage location of an operand. Syn: one-
level address. Contrast with: immediate
data; indirect address; n-level address. See
also: direct instruction.

direct insert subroutine. See: open subroutine.

direct instruction. A computer instruction that
contains the direct addresses of i t s
operands. Contrast with: immediate in-
struction; indirect instruction. See also:
absolute instruction; effective instruction.

directed graph. A graph (sense 2) in which
direction i s implied in the internode
connections. Syn: digraph. Contrast with:
undirected graph.

W’

Fig 8
Dimcted Graph

27

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 610.12-1990

directory. A list of data items and information
about those data items. Note: IEEE Std
610.5-1990 [21 defines Data Management
terms.

IEEE STANDARD GLOSSARY OF

shows their relationships to one another. See
also: specification tree.

disassemble. To translate an assembled com-
puter program from its machine language
version into a form that resembles, but
may not be identical t o , the original
assembly language program. Contrast with:
assemble.

disassembler. A software tool that disassem-
bles computer programs. Syn: deassembler.

discrete type. A data type whose members can
assume any of a set of distinct values. A
discrete type may be an enumeration type or
an integer type.

diverse redundancy. See: diversity.

diversity. In fault tolerance, realization of the
same function by different means. For
example, use of different processors, storage
media, programming languages, algo-
rithms, or development teams. See also:
software diversity.

do-nothing operation. See: no-operation.

document. (1) A medium, and the information
recorded on it, tha t generally has perma-
nence and can be read by a person or a
machine. Examples in software engineer-
ing include project plans, specifications, test
plans, user manuals.
(2) To create a document as in (1).
(3) To add comments t o a computer program.

documentation. (1) A collection of documents
on a given subject.
(2) Any written o r pictorial information
describing, defining, specifying, reporting,
or certifying activities, requirements, pro-
cedures, or results.
(3) The process of generating or revising a
document.
(4) The management of documents, includ-
ing identification, acquisition, processing,
storage, and dissemination.

documentation tree. A diagram that depicts all
of the documents for a given system and

Software Documentation

User c Program Data

Fig 9
Documentation Tree

double-operand instruction. See: two-address
instruction.

down. Pertaining to a system or component
that is not operational or has been taken out
of service. Contrast with: up. See also: busy;
crash; idle.

down time. The period of time during which a
system or component is not operational or
has been taken out of service. Contrast with:
up time. See also: busy time; idle time;
mean time to repair; set-up time.

downward compatible. Pertaining to hard-
ware or software that is compatible with an
earlier or less complex version of itself; for
example, a program that handles files
created by an earlier version of itself.
Contrast with: upward compatible.

downward compression. In software design, a
form of demodularization in which a super-
ordinate module is copied into the body of a
subordinate module. Contrast with: lateral
compression; upward compression.

driver. (1) A software module that invokes
and, perhaps, controls and monitors the
execution of one or more other software
modules. See also: test driver.
(2) A computer program tha t controls a
peripheral device and, sometimes, refor-
mats data for transfer t o and from the
device.

28

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

SOFTWARE ENGINEERING TERMINOLOGY

'dual coding. See: software diversity.

IEEE
Std 610.12-1990

Contrast with: static dump. See also: change
dump; memory dump; postmortem dump;
selective dump; snapshot dump. dump. (1) A display of some aspect of a com-

puter program's execution state, usually the
contents of internal storage or registers.
Types include change dump, dynamic
dump, memory dump, postmortem dump, se-
lective dump, snapshot dump; static dump.
(2) A display of the contents of a file or
device.
(3) To copy the contents of internal storage to
an external medium.
(4) To produce a display or copy as in (l), (2),
or (3).

dyadic selective construct. An if-then-else
construct in which processing is specified
for both outcomes of the branch. Contrast
with: monadic selective construct.

dynamic. Pertaining to an event or process
tha t occurs during computer program
execution; for example, dynamic analysis,
dynamic binding. Contrast with: static.

dynamic allocation. See: dynamic resource
allocation.

dynamic analysis. The process of evaluating
a system or component based on its behavior
during execution. Contrast with: static
analysis. See also: demonstration; testing.

dynamic binding. Binding performed during
the execution of a computer program.
Contrast with: static binding.

dynamic breakpoint. A breakpoint whose pre-
defined initiation event is a runtime char-
acteristic of the program, such as the execu-
tion of any twenty source statements. Con-
trast with: static breakpoint. See also: code
breakpoint; data breakpoint; epilog break-
point; programmable breakpoint; prolog
breakpoint.

dynamic buffering. A buffering technique in
which the buffer allocated t o a computer pro-
gram varies during program execution,
based on current need. Contrast with: sim-
ple buffering.

dynamic dump. A dump that is produced
during the execution of a computer program.

dynamic error. An error that is dependent on
the time-varying na ture of an input.
Contrast with: static error.

dynamic relocation. Relocation of a computer
program during its execution.

dynamic resource allocation. A computer re-
source allocation technique in which the re-
sources assigned t o a program vary during
program execution, based on current need.

dynamic restructuring. The process of re-
structuring a database, data structure, com-
puter program, o r set of system components
during program execution.

dynamic storage allocation. A storage alloca-
tion technique in which the storage assigned
t o a computer program varies during pro-
gram execution, based on the current needs
of the program and of other executing
programs.

E-R diagram. Acronym for entity-relation-
ship diagram.

early-failure period. The period of time in the
life cycle of a system o r component during
which hardware failures occur a t a decreas-
ing rate a s problems are detected and
repaired. Contrast with: constant-failure
period; wearout-failure period. Syn: burn-
in period. See also: bathtub curve.

echo. (1) To return a transmitted signal to its
source, often with a delay to indicate that
the signal is a reflection rather than the
original.
(2) A returned signal, as in (1).

ECP. Acronym for engineering change
ProposaL

edit. To modify the form or format of computer
code, data, or documentation; for example, to
insert, rearrange, or delete characters.

editor. (1) See: text editor.
(2) See: linkage editor.

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 610.12-1990

effective address. The address that results
from performing any required indexing,
indirect addressing, or other address modi-
fication on a specified address. Note: If the
specified address requires no modification,
it is also the effective address. See also: gen-
erated address; indirect address; relative
address.

IEEE STANDARD GLOSSARY OF

(2) The process of developing or using a
model as in (1).

effective instruction. The computer instruc-
tion tha t results from performing any
required indexing, indirect addressing, or
other modification on the addresses in a
specified computer instruction. Note: If the
specified instruction requires no modifica-
tion, i t is also the effective instruction. See
also: absolute instruction; direct instruc-
tion; immediate instruction; ind i rec t in-
struction.

efferent. Pertaining to a flow of data or control
from a superordinate module t b a subordi-
nate module in a software system. Contrast
with: afferent.

efficiency. The degree t o which a system or
component performs its designated func-
tions with minimum consumption of re-
sources. See also: execu t ion efficiency;
storage efficiency.

egoless programming. A software develop-
ment technique based on the concept of team,
rather than individual, responsibility for
program development. Its purpose is t o
prevent individual programmers from
identifying so closely with their work that
objective evaluation is impaired.

embedded c o m p u t e r system. A computer
system tha t is part of a larger system and
performs some of the requirements of that
system; for example, a computer system
used in an aircraft or rapid transit system.

embedded software. Software that is part of a
larger system and performs some of the
requirements of tha t system; for example,
software used in an aircraft or rapid transit
system.

emulation. (1) A model that accepts the same
inputs and produces the same outputs as a
given system. See also: simulation.

e m u l a t o r . A device, computer program, or
system tha t accepts the same inputs and
produces the same outputs as a given system.
See also: simulator.

encapsulation. A software development
technique that consists of isolating a system
function o r a set of data and operations on
those data within a module and providing
precise specifications for the module. See
also: data abstraction; information hiding.

engineering. The application of a systematic,
disciplined, quantifiable approach t o struc-
tures, machines, products, systems, or pro-
cesses.

engineer ing change. In configuration man-
agement, an alteration in the configuration
of a configuration item or other designated
item after formal establishment of i ts
configuration identification. See also: con-
f igura t ion control; engineering change
proposal. Contrast with: deviation; waiver.

engineering change proposal (ECP). In con-
figuration management, a proposed engi-
neering change and the documentation by
which the change is described and sug-
gested. See also: configuration control.

en t i ty . In computer programming, any item
that can be named or denoted in a program.
For example, a data item, program state-
ment, or subprogram.

en t i ty attribute. (IEEE Std 1016-1987 D31) A
named characteristic or property of a design
entity. I t provides a statement of fact about
the entity.

en t i ty - re la t ionship (E-R) diagram. A dia-
gram that depicts a set of real-world entities
and the logical relationships among them.
Syn: entity-relationship map. See also: data
structure diagram.

entity-relationship (E-R) map. See: entity-
relationship diagram.

entrance. See: entry point.

30

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

SOFTWARE ENGINEERING TERMINOLOGY

entry. See: entry point.

E E E
Std 610.12-1990

similar characteristics of a system. S y n :
error prediction model.

entry point. A point in a software module a t
which execution of the module can begin.
Contrast with: exit. Syn: entrance; entry.
See also: reentry point.

enumeration type. A discrete data type whose
members can assume values tha t are
explicitly defined by the programmer. For
example, a data type called COLORS with
possible values RED, BLUE, and YELLOW.
Contrast with: character type; integer type;
logical type; real type.

epilog breakpoint. A breakpoint that is initi-
ated upon exit from a given program or
routine. Syn: postamble breakpoint. Con-
trast with: prolog breakpoint. See also: code
breakpoint; data breakpoint; dynamic
breakpoint; programmable breakpoint;
static breakpoint.

equivalent faults. Two or more faults that
result in the same failure mode.

error. (1) The difference between a computed,
observed, or measured value or condition
and the true, specified, or theoretically
correct value or condition. For example, a
difference of 30 meters between a computed
result and the correct result.
(2) An incorrect step, process, or data defini-
tion. For example, an incorrect instruction
in a computer program.
(3) An incorrect result. For example, a
computed result of 12 when the correct result
is 10.
(4) A human action tha t produces an
incorrect result. For example, an incorrect
action on the part of a programmer or
operator.
N o t e : While all four definitions are
commonly used, one distinction assigns
definition 1 to the word “error,” definition 2
to the word “fault,” definition 3 t o the word
“failure,” and definition 4 t o the word
“mistake.” See a2so: dynamic error; fatal
error; indigenous error; semantic error;
syntactic error; static error; transient error.

error model. In software evaluation, a model
used t o estimate or predict the number of
remaining faults, required test time, and

error prediction. A quantitative statement
about the expected number or nature of faults
in a system o r component. See a1so:error
model; error seeding.

error prediction model. See: error model.

error seeding. The process of intentionally
adding known faults t o those already in a
computer program for the purpose of moni-
toring the rate of detection and removal, and
estimating the number of faults remaining
in the program. Syn: bug seeding; fault
seeding. See also: indigenous error.

error tolerance. The ability of a system or
component t o continue normal operation
despite the presence of erroneous inputs. See
also: fault tolerance; robustness.

exception. An event that causes suspension of
normal program execution. Types include
addressing exception, data exception, opera-
tion exception, overflow exception, protection
exception, underflow exception.

execute. To carry out an instruction, process,
or computer program.

execution efficiency. The degree t o which a
system or component performs its desig-
nated functions with minimum consump-
tion of time. See also: execution time; stor-
age efficiency.

execution monitor. See: monitor (1).

execution time. The amount of elapsed time or
processor time used in executing a computer
program. Note: Processor time is usually
less than elapsed time because the processor
may be idle (for example, awaiting needed
computer resources) or employed on other
tasks during the execution of a program.
Syn: run time (3); running time. See also:
overhead time.

execution trace. A record of the sequence of
instructions executed during the execution
of a computer program. Often takes the form
of a list of code labels encountered as the

31

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 610.12-1990

program executes. Syn: code trace; control-
flow trace. See also: retrospective trace; sub-
routine trace; symbolic trace; variable
trace.

executive. See: supervisory program.

executive program. See: supervisory program.

executive state. See: supervisor state.

exit. A point in a software module a t which
execution of the module can terminate.
Contrast wi th: entry point. See also:
return.

exit routine. A routine that receives control
when a specified event, such a s an error,
occurs.

expandability. See: extendability.

explicit address. See: absolute address.

extendability. The ease with which a system or
component can be modified t o increase its
storage or functional capacity. S y n : ex-
pandability; extensibility. See also: flexi-
bility; maintainability.

extensibility. See: extendability.

factoring. (1) The process of decomposing a
system into a hierarchy of modules. See
also: modular decomposition.
(2) The process of removing a function from
a module and placing i t into a module of its
own.

fail safe. Pertaining t o a system or component
tha t automatically places itself in a safe
operating mode in the event of a failure; for
example, a traffic light tha t reverts t o
blinking red in all directions when normal
operation fails. Contrast with: fail soft. See
also: fault secure; fault tolerance.

fail soft. Pertaining to a system or component
that continues to provide partial operational
capability in the event of certain failures;
for example, a traffic light that continues to
alternate between red and green if the
yellow light fails. Contrast with: fail safe.
See also: fault secure; fault tolerance.

failure. The inability of a system or compo-
nent to perform i ts required functions

IEEE STANDARD GLOSSARY OF

within specified performance require-
ments. Note: The fault tolerance discipline
distinguishes between a human action (a
mistake), its manifestation (a hardware or
software fault), the result of the fault (a fail-
ure), and the amount by which the result is
incorrect (the error). See also: crash; depen-
dent failure; exception; failure mode; fail-
ure rate; hard failure; incipient failure;
independent failure; random failure; soft
failure; stuck failure.

failure mode. The physical o r functional
manifestation of a failure. For example, a
system in failure mode may be character-
ized by slow operation, incorrect outputs, or
complete termination of execution.

failure rate. The ratio of the number of
failures of a given category to a given unit of
measure; for example, failures per unit of
time, failures per number of transactions,
failures per number of computer runs. Syn:
failure ratio.

failure ratio. See: failure rate.

fatal error. An error tha t results in the
complete inability of a system or component
to function.

fault. (1) A defect in a hardware device or
component; for example, a short circuit or
broken wire.
(2) An incorrect step, process, or data defini-
tion in a computer program. Note: This
definition is used primarily by the fault
tolerance discipline. In common usage, the
terms “error” and “bug” are used t o express
this meaning. See also: data-sensitive
fault; program sensitive fault; equivalent
faults; fault masking; intermittent fault.

fault dictionary. A list of faults in a system or
component, and the tests tha t have been
designed to detect them.

fault masking. A condition in which one fault
prevents the detection of another.

fault secure. Pertaining to a system or
component in which no failures are
produced from a prescribed set of faults. See
also: fault tolerance; fail safe; fail soft.

fault seeding. See: error seeding.

32

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

SOFTWARE ENGINEERING TERMINOLOGY

fault tolerance. (1) The ability of a system or
component t o continue normal operation
despite the presence of hardware or software
faults. See also: error tolerance; fail safe;
fail soft; fault secure; robustness.
(2) The number of faults a system or
component can withstand before normal
operation is impaired.
(3) Pertaining t o the study of errors, faults,
and failures, and of methods for enabling
systems to continue normal operation in the
presence of faults. See also: recovery;
redundancy; restart.

fault tolerant. Pertaining to a system or
component that is able to continue normal
operation despite the presence of faults.

FCA. Acronym for functional configuration’
audit.

f eas ib i l i ty . The degree t o which the
requirements, design, or plans for a system
or component can be implemented under
existing constraints.

IEEE
Std 610.12-1990

firmware. The combination of a hardware
device and computer instructions and data
that reside as read-only software on that
device. Notes: (1) This term is sometimes
used to refer only t o the hardware device
or only t o the computer instructions or
data, but these meanings are deprecated.
(2) The confusion surrounding this term has
led some t o suggest tha t i t be avoided
altogether.

first generation language (1GL). S e e :
machine language.

flag. A variable that is set to a prescribed state,
often “true” or “false,” based on the results
of a process or the occurrence of a specified
condition. See also: indicator; semaphore.

flexibility. The ease with which a system or
component can be modified for use in
applications or environments other than
those for which i t was specifically designed.
Syn: adaptability. See also: extendability;
maintainability.

flow diagram. See: flowchart.

flow of control. See: control flow.

feature. (IEEE SM 1008-1987 1101) See: software
feature.

fetch. To locate and load computer instruc-
tions or data from storage. See also: move;
Store.

fifth generation language (5GL). A computer
language that incorporates the concepts of
knowledge-based systems, expert systems,
inference engines, and natural language
processing. Contrast with: assembly lan-
guage; fourth generation language; high
order language; machine language.
Note: Specific languages are defined in
P610.13 E171.

figurative constant. A data name that is
reserved for a specific constant in a
programming language. For example, the
data name THREE may be reserved t o
represent the value 3. See also: literal.

file. A set of related records treated as a unit.
For example, in stock control, a file could
consist of a set of invoice records.

finite state machine. A computational model
consisting of a finite number of states and
transitions between those states, possibly
with accompanying actions.

flowchart (flow chart). A control flow diagram
in which suitably annotated geometrical
figures are used to represent operations,
data, or equipment, and arrows are used
to indicate the sequential flow from one t o
another. Syn: flow diagram. See also: block
diagram; box diagram; bubble chart; graph;
input-process-output chart; structure chart.

START

INPUT

RECORD? CWNTER

Fig 10
Flowchart

33

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

IEEE

flowcharter. A software tool that accepts a s
input a design or code representation of a
program and produces as output a flowchart
of the program.

Std 610.12-1990 IEEE STANDARD GLOSSARY OF

have been reviewed and approved by a cus-
tomer, user, or designated level of man-
agement. Contrast with: informal testing.

foreground. In job scheduling, the computing
environment in which highpriority pro-
cesses or those requiring user interaction
are executed. Contrast with: background.
See also: foreground processing.

foreground processing. The execution of a
high-priority process while lower-priority
processes await the availability of computer
resources, or the execution of processes that
require user interaction. Contrast with:
background processing.

form, fit, and function. In configuration man-
agement, that configuration comprising the
physical and functional characteristics of
an item as an entity, but not including any
characteristics of the elements making up
the item. See also: configuration identifica-
tion.

formal language. A language whose rules are
explicitly established prior to its use. Exam-
ples include programming languages and
mathematical languages. Contrast with:
natural language.

formal parameter. A variable used in a soft-
ware module to represent data or program
elements that are to be passed to the module
by a calling module. Contrast with: argu-
ment (3).

formal qualification review (FQR). The test,
inspection, or analytical process by which a
group of configuration items comprising a
system are verified t o have met specific
contractual performance requirements.
Contrast with: code review; design review;
requirements review; test readiness review.

formal specification. (1) A specification writ-
ten and approved in accordance with estab-
lished standards.
(2) A specification written in a formal nota-
tion, often for use in proof of correctness.

formal testing. Testing conducted in accor-
dance with test plans and procedures that

forward recovery. (1) The reconstruction of a
file to a given state by updating an earlier
version, using data recorded in a chronolog-
ical record of changes made to the file.
(2) A type of recovery in which a system,
program, database, or other system resource
is restored t o a new, not previously occupied
state in which i t can perform required func-
tions.
Contrast with: backward recovery.

four-address instruction. A computer instruc-
tion tha t contains four address fields. For
example, an instruction to add the contents
of locations A, B, and C, and place the result
in location D. Contrast with: one-address
instruction; two-address instruction; three-
address instruction; zero-address instruc-
tion.

four-plus-one address instruction. A computer
instruction that contains five address fields,
the fifth containing the address of the in-
struction t o be executed next. For example,
an instruction to add the contents of loca-
tions A, B, and C, place the results in loca-
tion D, then execute the instruction a t loca-
tion E. Contrast with: one-plus-one address
instruction; two-plus-one address instruc-
tion; three-plus-one address instruction.

fourth generation language (4GL). A computer
language designed t o improve the produc-
tivity achieved by high order (third genera-
tion) languages and, often, to make comput-
ing power available to non-programmers.
Features typically include an integrated
database management system, query lan-
guage, report generator, and screen defini-
tion facility. Additional features may in-
clude a graphics generator, decision support
function, financial modeling, spreadsheet
capability, and statistical analysis func-
tions. Contrast with: machine language;
assembly language; high order language;
fifth generation language. Note: Specific
languages are defined in P610.13 D71.

FQR. Acronym for formal qualification
review.

34

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

SOFTWARE ENGINEERING TERMINOLOGY

function. (1) A defined objective or character-
istic action of a system or component. For
example, a system may have inventory
control as its primary function. See also:
functional requirement; functional specifi-
cation; functional testing.
(2) A software module tha t performs a
specific action, is invoked by the appearance
of its name in an expression, may receive
input values, and returns a single value.
See also: subroutine.

IEEE
Std 610.12-1990

with: allocated configuration identifica-
tion; product configuration identification.
See also: functional baseline.

function field. See: operation field.

functional baseline. In Configuration man-
agement, the initial approved technical
documentation for a configuration item.
Contrast with: allocated baseline; de-
velopmental configuration; product base-
line. See also: functional configuration
item.

functional cohesion. A type of cohesion in
which the tasks performed by a software
module all contribute to the performance of a
single function. Contrast with: coincidental
cohesion; communicational cohesion; logi-
cal cohesion; procedural cohesion; sequen-
tial cohesion; temporal cohesion.

functional configuration audit (FCA). An
audit conducted to verify that the develop-
ment of a configuration item has been
completed satisfactorily, that the item has
achieved the performance and functional
characteristics specified in the functional or
allocated configuration identification, and
that its operational and support documents
are complete and satisfactory. See also: con-
figuration management; physical configu-
ration audit.

functional configuration identification. In
configuration management, the current
approved technical documentation for a
configuration item. I t prescribes all
necessary functional characteristics, the
tests required t o demonstrate achievement of
specified functional characteristics, the
necessary interface characteristics with
associated Configuration items, the configu-
ration item's key functional characteristics
and its key lower level configuration items,
if any, and design constraints. Contras t

functional decomposition. A type of modular
decomposition in which a system is broken
down into components tha t correspond to
system functions and subfunctions. S e e
also: hierarchical decomposition; stepwise
refinement.

functional design. (1) The process of defining
the working relationships among the com-
ponents of a system. See also: architectural
design.
(2) The result of the process in (1).

functional language. A programming lan-
guage used t o express programs a s a
sequence of functions and function calls.
Examples include LISP.

functional requirement. A requirement that
specifies a function that a system o r system
component must be able to perform, Contrast
with: design requirement; implementation
requirement; interface requirement; per-
formance requirement; physical require-
ment.

functional specification. A document that
specifies the functions tha t a system or
component must perform. Often part of a
requirements specification.

functional testing. (1) Testing that ignores
the internal mechanism of a system or
component and focuses solely on the outputs
generated in response t o selected inputs
and execution conditions. S y n : black-
box testing. Contrast with: structural
testing.
(2) Testing conducted t o evaluate the
compliance of a system or component with
specified functional requirements. See also:
performance testing.

garbage collection. In computer resource
management, a synonym f o r memory
compaction (1).

generality. The degree t o which a system or
component performs a broad range of
functions. See also: reusability.

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 610.12-1990

generated address. An address tha t has
been calculated during the execution of a
computer program. Syn: synthetic address.
See also: absolute address; effective v)

address: relative address: indirect ad- Q)

IEEE STANDARD GLOSSARY OF

dress.
L
3
(d
- .-
l i

generic program unit. A software module
tha t is defined in a general manner and
tha t requires substitution of specific data,
instructions, or both in order t o be used
in a computer program. See also: instanti-
ation.

glass box. (1) A system or component whose
internal contents o r implementation are
known. Syn: white box. Contrast with: black
box
(2) Pertaining t o an approach that treats a
system or component as in (1).

glass-box testing. See: structural testing.

global compaction. In microprogramming,
compaction in which microoperations
may be moved beyond the boundaries of the
single entry, single exit sequential blocks
in which they occur. Contrast w i th : loca l
compaction.

global data. Data that can be accessed by two
or more non-nested modules of computer
program without being explicitly passed
a s parameters between the modules.
Syn: common data. Contrast with: local
data.

I
Time

Fig 11
Graph (1)

(2) A diagram or other representation con-
sisting of a finite set of nodes and internode
connections called edges o r arcs. See also:
block diagram; box diagram; bubble chart;
directed graph; flowchart; input-process-
output chart; s t r u m chart.

Fig 12
Graph (2)

globa1 variable* A variable tha t can be lawe A guideline formulated by
H. R. J. Grosch, stating tha t the computing
power of a computer increases proportion-
ally to the square of the cost of the computer.
See also: computer performance evaluation.

accessed by two or more non-nested modules
of a computer program without being
explicitly passed as a parameter between
the modules. Contrast with: local vari-
able.

go to. A computer program statement tha t
causes a jump. Contrast with: call; case;
if-then-else. See also: branch.

graph. (1) A diagram tha t represents the
variation of a variable in comparison
with tha t of one or more other variables;
for example, a graph showing a bathtub
curve.

halt. (1) Most commonly, a synonym for stop.
(2) Less commonly, a synonym for pause.

hard failure. A failure that results in complete
shutdown of a system. Contrast w i th : so f t
failure.

hardware. Physical equipment used t o pro-
cess, store, or transmit computer programs
or data. Contrast with: software.

36

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

SOFTWARE ENGINEERING TERMINOLOGY
IEEE

Std 610.12-1990

hardware configuration item (HWCI). An
aggregation of hardware that is designated
for configuration management and treated
as a single entity in the configuration man-
agement process. Contrast with: computer
software configuration item. See also: con-
figuration item. modeling.

hierarchy. A structure in which components
are ranked into levels of subordination;
each component has zero, one, or more
subordinates; and no component has more
than one superordinate component. See also:
hierarchical decomposition; hierarchical

hardware design language (HDL). A
language with special constructs and, some-
times, verification protocols, used t o de-
velop, analyze, and document a hardware
design. See also: program design lan-
guage.

hardware monitor. (1) A device that measures
or records specified events or characteristics
of a computer system; for example, a device
tha t counts the occurrences of various
electrical events or measures the time
between such events.
(2) A software tool that records or analyzes
hardware events during the execution of a
computer program.
See also: monitor; software monitor.

HDL. Acronym for hardware design lan-
guage. See: design language.

header. (1) A block of comments placed a t the
beginning of a computer program or rou-
tine.
(2) Identification or control information
placed at the beginning of a file or message.
Contrast with: trailer.

hierarchical decomposition. A type of modular
decomposition in which a system is broken
down into a hierarchy of components
through a series of top-down refinements.
See also: functional decomposition; stepwise
refinement.

hierarchical input-process-output (HIPO).
See: input-process-output.

hierarchical modeling. A technique used in
computer performance evaluation, in which
a computer system is represented as a hier-
archy of subsystems, the subsystems are
analyzed t o determine their performance
characteristics, and the results are used to
evaluate the performance of the overall
sys tem.

hierarchy chart. See: structum chart.

high level language. S e e : high order
language.

high order language (HOL). A programming
language tha t requires little knowledge of
the computer on which a program will run,
can be translated into several different ma-
chine languages, allows symbolic naming
of operations and addresses, provides
features designed to facilitate expression of
data structures and program logic, and
usually results in several machine instruc-
tions for each program statement. Examples
include Ada, COBOL, FORTRAN, ALGOL,
PASCAL. Syn: high level language; higher
order language; third generation language.
Contrast with: assembly language; fifth
generation language; fourth generation
language; machine language. Note: Spe-
cific languages are defined in P610.13 D71.

higher order language. See: high order
language.

HLL. Acronym for high level language. See:
high order language.

HMI. Acronym for human-machine inter-
face. See: user interface.

HOL. Acronym for high order language.

homogeneous redundancy. In fault tolerance,
realization of the same function with identi-
cal means, for example, use of two identical
processors. Contrast with: diversity.

horizontal microinstruction. A microinstruc-
tion tha t specifies a set of simultaneous
operations needed to carry out a given
machine language instruction. N o t e :
Horizontal microinstructions are relatively
long, often 64 bits or more, and are called
“horizontal” because the set of simultaneous

37

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 610.12-1990

operations that they specify are written on a
single line, rather than being listed sequen-
tially down the page. Contrast with: diago-
nal microinstruction; vertical microin-
struction.

other computer. Contrast with: target ma-
chine (2).

IEEE STANDARD GLOSSARY OF

if-then-else. A single-entry, single-exit two-
way branch that defines a condition, speci-
fies the processing to be performed if the
condition is met and, optionally, if i t is not,
and returns control in both instances to the
statement immediately following the over-
all construct. Contrast with: case; jump; go
to. See also: dyadic selective construct;
monadic selective construct.

-

host machine. (1) A computer used to develop
software intended for another computer.
Contrast with: target machine (1).
(2) A computer used t o emulate an-

(3) The computer on which a program or file
is installed.
(4) In a computer network, a computer that
provides processing capabilities to users of
the network.).

- b

housekeeping operation. A computer operation
tha t establishes o r reestablishes a set of
initial conditions to facilitate the execution
of a computer program; for * example,
initializing storage areas, clearing flags,
rewinding tapes, opening and closing files.
Syn: overhead operation.

Fig 13
If-Then-Else Construct

immediate address.* See: immediate data.
* Deprecated.

human-machine interface (HMI). See: user
interface. immediate control. See: bit steering.

HWCI. Acronym for hardware configuration
item.

hybrid coupling. A type of coupling in which
different subsets of the range of values that a
data item can assume are used for different
and unrelated purposes in different software
module. Contrast with: common-environ-
ment coupling; content coupling; control
coupling; data coupling; pathological
coupling.

identifier. The name, address, label, or
distinguishing index of an object in a
computer program.

idle. Pertaining to a system or component that
is operational and in service, but not in use.
See also: busy; down; up.

immediate data. Data contained in the ad-
dress field of a computer instruction. Con-
trast with: direct address; indirect address;
n-level address. See also: immediate in-
struction.

immediate instruction. A computer instruc-
tion whose address fields contain the values
of the operands rather than the operands'
addresses. Contrast with: direct instruction;
indirect instruction. See also: absolute
instruction; effective instruction; immedi-
ate data.

imperative construct. A sequence of one or
more steps not involving branching or
iteration.

imperative statement. See: instruction.

idle time. The period of time during which a implementation. (1) The process of translat-
system or component is operational and in ing a design into hardware components,
service, but not in use. Syn: standby time. software components, or both. See also:
See also: busy time; down time; set-up time;
up time.

coding.
(2) The result of the process in (1).

38

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

SOFTWARE ENGINEERING TERMINOLOGY

implementation phase. The period of time in
the software life cycle during which a
software product is created from design
documentation and debugged.

IEEE
Std 610.12-1590

independent verification and validation
(IV&V). Verification and validation per-
formed by an organization that is techni-
cally, managerially, and financially inde-
pendent of the development organization.

implementation requirement. A requirement
tha t specifies o r constrains the coding or
construction of a system or system compo-
nent. Contrast with: design requirement;
functional requirement; interface require-
ment; performance requirement; physical
requirement.

implied addressing. A method of addressing
in which the operation field of an computer
instruction implies the address of the
operands. For example, if a computer has
only one accumulator, an instruction that
refers to the accumulator needs no address
information describing it. Types include
one-ahead addressing, repetitive address-
ing. See also: direct address; indirect
address; relative address.

incident. (IEEE Std 1008-1987 [lo]) See: soft-
ware test incident.

incipient failure. A failure that is about to
occur.

incremental compiler. A compiler that
completes as much of the translation of each
source statement as possible during the input
o r scanning of the source statement.
Typically used for on-line computer pro-
gram development and checkout. S y n :
conversational compiler; interactive com-
piler; on-line compiler.

incremental development. A software devel-
opment technique in which requirements
definition, design, implementation, and
testing occur in an overlapping, iterative
(rather than sequential) manner, resulting
in incremental completion of the overall
software product. Contrast with: waterfall
model. See also: data structure-centered
design; input-process-output; modular de-
composition; object-oriented design; rapid
prototyping; spiral model; stepwise refine-
ment; structured design; transaction anal-
ysis; transform analysis.

indexed address. An address that must be
added to the contents of an index register t o
obtain the address of the storage location to
be accessed. See also: offset (2); relative
address; self-relative address.

indicator. A device or variable that can be set
to a prescribed state based on the results of a
process or the occurrence of a specified con-
dition. For example, a flag or semaphore.

indigenous error. A computer program error
that has not been purposely inserted as part
of an error-seeding process.

indirect address. An address that identifies
the storage location of another address. The
designated storage location may contain the
address of the desired operand or another
indirect address; the chain of addresses
eventually leads t o the operand. S y n :
multilevel address. Contrast with: direct
address; immediate data. See also: indirect
instruction; n-level address.

indirect instruction. A computer instruction
tha t contains indirect addresses for i ts
operands. Contrast with: direct instruction;
immediate instruction. See also: absolute
instruction; effective instruction.

inductive assertion method. A proof of
correctness technique in which assertions
are written describing program inputs,
outputs, and intermediate conditions, a set of
theorems is developed relating satisfaction
of the input assertions t o satisfaction of the
output assertions, and the theorems are
proved o r disproved using proof by
induction.

infant mortality. The set of failures that occur
during the early-failure period of a system
or component.

informal testing. Testing conducted in
accordance with test plans and procedures
that have not been reviewed and approved by

39

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 610.12-1990

a customer, user, or designated level of
management. Contrast wi th: formal
testing.

IEEE STANDARD GLOSSARY OF

identifying the inputs to and outputs from
each step. Note: A refinement called hierar-
chical input-process-output identifies the
steps, inputs, and outputs at both general and
detailed levels of detail. See also: data
structurecentered design; input-process-
output chart; modular decomposition; objec-
briented design; rapid pmbtyping; stepwise
refinement; structured design; transaction
analysis; transform analysis.

information hiding. A software development
technique in which each module's inter-
faces reveal a s little a s possible about the
module's inner workings and other mod-
ules are prevented from using information
about the module that is not in the module's
interface specification. See also: encapsu-
lation.

inherited error. An error carried forward
from a previous step in a sequential process.

initial program load. See: bootstrap.

initial program loader. A bootstrap loader
used to load that part of an operating system
needed t o load the remainder of the
operating system.

initialize. To set a variable, register, or other
storage location to a starting value. See also:
clear; reset.

inline code. A sequence of computer
instructions tha t is physically contiguous
with the instructions that logically precede
and follow it.

input. (1) Pertaining to data received from an
external source.
(2) Pertaining t o a device, process, o r
channel involved in receiving data from an
external source.
(3) To receive data from an external source.
(4) To provide data from an external source.
(5) Loosely, input data.
Contrast with: output.

input assertion. A logical expression
specifying one or more conditions tha t
program inputs must satisfy in order t o be
valid. Contrast with: loop assertion; output
assertion. See also: inductive assertion
method.

input-output coupling. See: data coupling.

input-process-output. A software design tech-
nique that consists of identifying the steps
involved in each process to be performed and

input-process-output (P O) chart. A diagram of
a software system or module, consisting of a
rectangle on the left listing inputs, a
rectangle in the center listing processing
steps, a rectangle on the right listing outputs,
and arrows connecting inputs to processing
steps and processing steps to outputs. See
also: block diagram; box diagram; bubble
chart; flowchart; graph; structure chart.

Input Process output

For each order:

1. Validate order form

2. Decrement item

Inventory Inventory
File

counts in inventory
file

U
3. Generate customer

Orders

Fig 14
Input-ms-output chart

inspection. A static analysis technique that
relies on visual examination of develop-
ment products t o detect errors, violations of
development standards, and other problems.
Types include code inspection; design
inspection.

installation and checkout phase. The period of
time in the software life cycle during which
a software product is integrated into its
operational environment and tested in this
environment t o ensure that it performs as
required.

installation manual. A document tha t
provides the information necessary t o
install a system or component, set initial
parameters, and prepare the system or
component for operational use. See also:
diagnostic manual; operator manual;

40

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

SOFTWARE ENGINEERING TERMINOLOGY

programmer manual; support manual; user
manual.

IEEE
SM 610.12-1990

operations, such as addition, subtraction,
and multiplication. Contrast with: charac-
ter type; enumeration type; logical type; real
type. instantiation. The process of substituting

specific data, instructions, or both into a
generic program unit to make i t usable in a
computer program.

instruction. See: computer instruction.

instruction counter. A register that indicates
the location of the next computer instruction
to be executed. Syn: program counter.

instruction cycle. The process of fetching a
computer instruction from memory and
executing it. See also: instruction time.

instruction format. The number and
arrangement of fields in a computer
instruction. See also: address field; address
format; operation field.

instruction length. The number of words,
bytes, or bits needed t o store a computer
instruction. See also: instruction format.

instruction modifier. A word or part of a word
used to alter a computer instruction.

instruction repertoire. See: instruction set.

instruction set. The complete set of instruc-
tions recognized by a given computer or pro-
vided by a given programming language.
Syn: instruction repertoire.

instruction time. The time it takes a computer
to fetch an instruction from memory and
execute it. See also: instruction cycle.

instrument. In software and system testing, to
install or insert devices or instructions into
hardware o r software t o monitor the
operation of a system or component.

instrumentation. Devices or instructions
installed or inserted into hardware o r
software to monitor the operation of a system
or component.

integer type. A data type whose members can
assume only integer values and can be
operated on only by integer arithmetic

integration. The process of combining soft-
ware components, hardware components, or
both into an overall system.

integration testing. Testing in which software
components, hardware components, or both
are combined and tested t o evaluate the in-
teraction between them. See also: component
testing; interface testing; system testing;
unit testing.

integrity. The degree t o which a system or
component prevents unauthorized access to,
or modification of, computer programs or
data.

interactive. Pertaining t o a system or mode of
operation in which each user entry causes a
response from or action by the system. Con-
trast with: batch. See also: conversational;
on-line; real time.

interactive compiler. See: incremental corn-
piler.

interactive language. A nonprocedural lan-
guage in which a program is created as a
result of interactive dialog between the user
and the computer system. The system
provides questions, forms, and so on, to aid
the user in expressing the results t o be
achieved. See also: declarative language;
rule-based language.

interface. 1) A shared boundary across which
information is passed.
(2) A hardware or software component that
connects two or more other components for
the purpose of passing information from one
to the other.
(3) To connect two or more components for
the purpose of passing information from one
to the other.
(4) To serve as a connecting or connected
component as in (2).

interface control. (1) (IEEE Std 828-1983 [41) In
configuration management, the process of:
(a) identifying all functional and physical

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

E E E
Std 610.12-1990

characteristics relevant to the interfacing of
two or more configuration items provided by
one or more organizations, and (b) ensuring
that proposed changes t o these characteris-
tics are evaluated and approved prior t o
implementation.
(2) (DOD usage) In configuration manage-
ment, the administrative and technical
procedures and documentation necessary t o
identify functional and physical character-
istics between and within configuration
items provided by different developers, and
to resolve problems concerning the specified
interfaces. See also: configuration control.

IEEE STANDARD GLOSSARY OF

program before translating and executing
the next. Contrast with: assemble; com-
pile.

interface requirement. A requirement that
specifies an external item with which a sys-
tem o r system component must interact, or
tha t sets forth constraints on formats,
timing, or other factors caused by such an
interaction. Contrast with: design require-
ment; functional requirement; implemen-
tation requirement; performance require-
ment; physical requirement.

interface specification. A document that
specifies the interface characteristics of an
existing or planned system or component.

interface testing. Testing conducted t o evalu-
ate whether systems or components pass data
and control correctly t o one another. S e e
also: component testing; integration test-
ing; system testing; unit testing.

interleave. To alternate the elements of one
sequence with the elements of one or more
other sequences so tha t each sequence
retains its identity; for example, t o alter-
nately perform the steps of two different
tasks in order to achieve concurrent opera-
tion of the tasks.

intermittent fault. A temporary or unpre-
dictable fault in a component. See also:
random failure; transient error.

interoperability. The ability of two or more
systems or components t o exchange infor-
mation and t o use the information that has
been exchanged. See also: compatibility.

interpret. To translate and execute each
statement o r construct of a computer

interpreter. A computer program that trans-
lates and executes each statement o r
construct of a computer program before
translating and executing the next. Contrast
with: assembler; compiler.

interpretive code. Computer instructions and
data definitions expressed in a form that
can be recognized and processed by an
interpreter. Contrast with: assembly code;
compiler code; machine code.

interrupt. (1) The suspension of a process to
handle an event external to the process. Syn:
interruption. See also: interrupt latency;
interrupt mask; interrupt priority; interrupt
service routine; priority interrupt.
(2) To cause the suspension of a process.
(3) Loosely, an interrupt request.

interrupt latency. The delay between a
computer system's receipt of an interrupt
request and its handling of the request. See
also: interrupt priority.

interrupt mask. A mask used to enable or
disable interrupts by retaining o r sup-
pressing bits tha t represent interrupt re-
que st s.

interrupt priority. The importance assigned to
a given interrupt request. This importance
determines whether the request will cause
suspension of the current process and, if
there are several outstanding interrupt
requests, which will be handled first.

interrupt request. A signal or other input
requesting tha t the currently executing
process be suspended to permit performance
of another process.

interrupt service routine. A routine that
responds to interrupt requests by storing the
contents of critical registers, performing the
processing required by the interrupt request,
restoring the register contents, and restart-
ing the interrupted process.

interruption. See: interrupt.

42

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

SOFTWARE ENGINEERING TERMINOLOGY

invariant. An assertion that should always be
true for a specified segment or a t a specified
point of a computer program.

IEEE
Std 610.12-1990

statements are being executed. S y n :
transfer.
(2) A program statement tha t causes a
departure as in (1). Contrast with: case; if-
then-else. See also: branch; go to.
(3) The departure described in (1). See also:
conditional jump; unconditional jump.

P O chart. Acronym for input-process-output
chart.

IPSE. Acronym for integrated programming
support environment. See: programming
support environment.

iteration. (1) The process of performing a
sequence of steps repeatedly. See also: loop;
recursion.
(2) A single execution of the sequence of
steps in (1).

iterative construct. See: loop.

IV&V. Acronym for independent verification
and validation.

JCL. Acronym for job control language.

job. A user-defined unit of work that is to be
accomplished by a computer. For example,
the compilation, loading, and execution of a
computer program. See also: job control
language; job step; job stream.

job control language (JCL). A language used
to identify a sequence of jobs, describe their
requirements t o an operating system, and
control their execution.

job function. (IEEE Std 1002-1987 [91) A group of
engineering processes that is identified as a
unit for the purposes of work organization,
assignment, or evaluation. Examples are
design, testing, o r configuration manage-
ment.

job step. A user-defined portion of a job,
explicitly identified by a job control
statement. A job consists of one or more job
steps.

job stream. A sequence of programs or jobs set
up so that a computer can proceed from one to
the next without the need for operator
intervention. Syn: run stream.

jump. (1) To depart from the implicit or
declared order in which computer program

kernel. (1) That portion of an operating
system that is kept in main memory a t all
times. S y n : nucleus; resident control
program
(2) A software module that encapsulates an
elementary function o r functions of a
system. See also: security kernel.

K O P S . Acronym f o r kilo-operations per
second; that is, thousands of operations per
second. A measure of computer processing
speed. See also: MFLOPS; MIPS.

label. (1) A name or identifier assigned to a
computer program statement to enable other
statements to refer to that statement.
(2) One or more characters, within o r
attached t o a set of data, that identify or
describe the data.

language. (1) A systematic means of commu-
nicating ideas by the use of conventional-
ized signs, sounds, gestures, or marks and
rules for the formation of admissible
expressions.
(2) (IEEE Std 830-1984 [SI) A means of com-
munication, with syntax and semantics,
consisting of a set of representations,
conventions, and associated rules used to
convey information.
See also: computer language.

language processor. A computer program that
translates, interprets, or performs other
tasks required t o process statements ex-
pressed in a given language. See also:
assembler; compiler; interpreter; trans-
lator.

language standard. (IEEE Std 1002-1987 191) A
standard that describes the characteristics of
a language used to describe a requirements
specification, a design, or test data.

latency. The time interval between the instant
a t which an instruction control unit issues a

43

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 610.12-1990

call for data and the instant at which the
transfer of data is started.

IEEE STANDARD GLOSSARY OF

modules, and, in some cases, adjusts the
addresses t o reflect the storage locations into
which the code has been loaded. See also:
absolute loader; relocating loader; linkage
editor.

lateral compression. In software design, a
form of demodularization in which two or
more modules that execute one after the other
are combined into a single module. Contrast
with: d o w n w a r d compression; u p w a r d
compression.

leading decision. A loop control that is
executed before the loop body. Contrast with:
trailing decision. See also: WHILE.

library. See: software library.

licensing standard. (IEEE Std 1002-1987 191)
A standard that describes the characteristics
of an authorization given by an official or a
legal authority to an individual or organi-
zation t o do or own a specific thing.

life cycle. See: software life cycle; system life
cycle.

link. (1) To create a load module from two
or more independently translated object
modules or load modules by resolving cross-
references among them. See also: linkage
editor.
(2) A part of a computer program, often a
single instruction or address, that passes
control and parameters between separate
modules of the program. Syn: linkage.
(3) To provide a link as in (2).

linkage. See: link (2) .

linkage editor. A computer program that
creates a single load module from two or
more independently t ranslated object
modules or load modules by resolving cross-
references among the modules and,
possibly, by relocating elements. May be
part of a loader. S y n : linker. See also:
l inking loader.

linker. See: linkage editor.

list. (1) A set of data items, each of which has
the same data definition.
(2) To print or otherwise display a set of data
items.
Note: IEEE Std 610.5-1990 121 defines Data
Management terms.

list processing language. A programming
language designed to facilitate the manipu-
lation of data expressed in the form of lists.
Examples are LISP and IPL. See also:
algebraic language; algorithmic language;
logic programming language.

listing. An ordered display or printout of
data items, program statements, o r other
information.

literal. In a source program, a n explicit
representation of the value of an item; for
example, the word FAIL in the instruction:
If x = 0 then print “FAIL”. See also:
immediate data; figurative constant.

l o a d . (1) To read machine code into main
memory in preparation for execution and,
in some cases, t o perform address adjust-
ment and linking of modules. See also:
loader.
(2) To copy computer instructions or data
from external storage to internal storage or
from internal storage to registers. Contrast
with: store (2). See also: fetch; move.

load-and-go. An operating technique in which
there are no stops between the loading and
execution phases of a computer program.

load map. A computer-generated list that
identifies the location or size of all o r
selected parts of memory-resident code or
data.

linking loader . A computer program that load module. A computer program or
reads one or more object modules into main subprogram in a form suitable for loading
memory in preparation for execution, into main storage for execution by a
creates a single load module by resolving computer; usually the output of a linkage
cross-references among the separate editor. See also: object module.

44

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

SOFTWARE ENGINEERING TERMINOLOGY

loaded origin. The address of the initial
storage location of a computer program at the
time the program is loaded into main
memory. Contrast with: assembled origin.
See also: offset (1); starting address.

IEEE
Std 610.12-1990

logical trace. An execution trace that records
only branch or jump instructions. S e e
also: execution trace; retrospective trace;
subroutine trace; symbolic trace; variable
trace.

loader. (1) A computer program that reads
machine code into main memory in
preparation for execution and, in some
cases, adjusts the addresses and links the
modules. Types include absolute loader,
linking loader, relocating loader. See also:
bootstrap; linkage editor.
(2) Any program tha t reads programs or
data into main memory.

local compaction. In microprogramming,
compaction in which microoperations are
not moved beyond the boundaries of the
single entry, single exit sequential blocks
in which they occur. Contrast with: global
compaction.

local data. Data that can be accessed by only
one module or set of nested modules in a
computer program. Contrast with: global
data.

local variable. A variable that can be accessed
by only one module or set of nested modules
in a computer program. Contrast wi th:
global variable.

lockout. A computer resource allocation
technique in which shared resources
(especially data) are protected by permitting
access by only one device or process a t a
time. See also: deadlock; semaphore.

logic programming language. A program-
ming language used to express programs in
terms of control constructs and a restricted
predicate calculus; for example, PROLOG.
See also: algebraic language; algorithmic
language; list processing language.

logical cohesion. A type of cohesion in which
the tasks performed by a software module
perform logically similar functions; for
example, processing of different types of
input data. Contrast with: coincidental
cohesion; communicational cohesion;
functional cohesion; procedural cohesion;
sequential cohesion; temporal cohesion.

logical type. A data type whose members can
assume only logical values (usually TRUE
and FALSE) and can be operated on only by
logical operators, such as AND, OR, and
NOT. Contrust with: character type; enu-
meration type; integer type; real type.

loop. (1) A sequence of computer program
statements that is executed repeatedly until a
given condition is met or while a given con-
dition is true. Syn: iterative construct. See
also: loop body; loop control; UNTIL;
WHILE.
(2) To execute a sequence of computer pro-
gram statements as in (1).

loop assertion. A logical expression specify-
ing one or more conditions that must be met
each time a particular point in a program
loop is executed. Syn: loop invariant. Con-
trast with: input assertion; output assertion.
See also: inductive assertion method.

loop body. The part of a loop that accomplishes
the loop's primary purpose. Contrast with:
loop controL

loop control. The part of a loop that determines
whether t o exit from the loop. Contrast with:
loop body. See also: leading decision;
trailing decision.

loop-control variable. A program variable
used t o determine whether to exit from a
loop.

loop invariant. See: loop assertion.

loopback testing. Testing in which signals
or data from a test device are input to a
system or component, and results are
returned t o the test device for measurement
or comparison.

low level language. See: assembly language.

machine address.* See: absolute address.
*Deprecated.

45

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 610.12-1990

machine code. Computer instructions and
data definitions expressed in a form that
can be recognized by the processing unit of a
computer. Contrast with: assembly code;
compiler code; interpretive code.

IEEE STANDARD GLOSSARY OF

macroassembler. An assembler that includes,
or performs the functions of, a macrogen-
erator.

machine dependent. Pertaining t o software
that relies on features unique to a particular
type of computer and therefore executes only
on computers of that type. Contrast with:
machine independent.

machine independent. Pertaining to software
that does not rely on features unique t o a
particular type of computer, and therefore
executes on computers of more than one type.
Contrast with: machine dependent. See also:
portability.

machine language. A language that can be
recognized by the processing unit of a com-
puter. Such a language usually consists of
patterns of 1 s and Os, with no symbolic nam-
ing of operations or addresses. Syn: first-
generation language; machine-oriented
language. Contrast with: assembly lan-
guage; fifth-generation language; fourth
generation language; high order language;
symbolic language.

machine-oriented language. See: machine
language.

machine readable. Pertaining t o data in a
form that can be automatically input t o a
computer; for example, data encoded on a
diskette.

macro. In software engineering a predefined
sequence of computer instructions tha t is
inserted into a program, usually during
assembly or compilation, a t each place that
its corresponding macroinstruction appears
in the program. Syn: macro definition. See
also: macroinstruction; macrogenerator;
open subroutine.

macro definition. See: macro.

macro generating program. See: macrogen-
erator.

macro library. A collection of macros
available for use by a macrogenerator. See
also: system library.

macrogenerator. A routine, often part of an
assembler or compiler, tha t replaces each
macroinstruction in a source program with
the predefined sequence of instructions that
t he macroinstruction represents. S y n .-
ma- generating program.

macroinstruction. A source code instruction
that is replaced by a predefined sequence of
source instructions, usually in the same
language as the rest of the program and
usually during assembly or compilation.
See also: macro; macrogenerator.

macroprocessor. A routine or set of routines
provided in some assemblers and compilers
to support the definition and use of macros.

macroprogramming. Computer program-
ming using macros and macroinstructions.

main program. A software component that
is called by the operating system of a
computer and tha t usually calls other
software components. See also: routine;
subprogram.

maintainability. (1) The ease with which a
software system or component can be modi-
fied to correct faults, improve performance
or other attributes, or adapt to a changed en-
vironment. See also: extendability; flexi-
bility.
(2) The ease with which a hardware system
or component can be retained in, or restored
to, a state in which i t can perform its re-
quired functions.

maintenance. (1) The process of modifying a
software system or component after delivery
to correct faults, improve performance or
other attributes, o r adapt to a changed envi-
ronment. Syn: software maintenance. See
also: adaptive maintenance; corrective
maintenance; perfective maintenance.
(2) The process of retaining a hardware
system or component in, or restoring i t to, a
state in which it can perform its required
functions. See also: preventive mainte-
nance.

46

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

SOFTWARE ENGINEERING TERMINOLOGY

maintenance manual. See: support manual.

IEEE
Std 610.12-1990

memory capacity. The maximum number of
items that can be held in a given computer
memory; usually measured in words o r
bytes. See also: channel capacity; storage
capacity.

man-machine in t e r f ace (MMI). See: user
interface.

m a n u f a c t u r e . In software engineering, the
process of copying software t o disks, chips,
or other devices for distribution to customers
or users.

manufacturing phase. (IEEE SM 1002-1987 [91)
The period of time in the software life cycle
during which the basic version of a software
product is adapted t o a specified set of
operational environments and is distributed
to a customer base.

m a p program. A software tool, often part of a
compiler or assembler, that generates a load
map.

mask. A pattern of bits or characters designed
to be logically combined with an unknown
data item t o retain or suppress portions of the
data item; for example, the bit string
“00000011” when logically ANDed with an
eight-bit data item, gives a result tha t
retains the last two bits of the data item and
has zero in all the other bit positions. See
also: in te r rupt mask.

mas te r library. A software library containing
master copies of software and documenta-
tion from which working copies can be made
for distribution and use. Contrast with:
production library; software development
l ibrary; sof tware repository; system li-
brary.

master state. See: supervisor state.

mean time between failures (MTBF). The ex-
pected or observed time between consecutive
failures in a system or component. See also:
up time.

mean time to repair (M“R). The expected or
observed time required to repair a system or
component and return i t to normal opera-
tions. See also: down time.

measurement standard. (IEEE Std 1002-1987
[91) A standard that describes the character-
istics of evaluating a process of product.

memory compaction. (1) A storage allocation
technique in which the contents of all
allocated storage areas are moved t o the
beginning of the storage space and the
remaining storage blocks are combined into
a single block. Syn: garbage collection.
(2) A storage allocation technique in which
contiguous blocks of nonallocated storage
are combined to form single blocks.

memory dump. A display of the contents of all
or part of a computer’s internal storage,
usually in binary, octal, or hexadecimal
form. See also: change dump; d y n a m i c
dump; port mortem dump; selective dump;
snapshot dump; static dump.

memory map. A diagram that shows where
programs and da ta a re stored in a
computer’s memory.

m e n u by-pass. In a menu-driven system, a
feature tha t permits advanced users t o
perform functions in a command-driven
mode without selecting options from the
menus.

menu-driven. Pertaining to a system or mode
of operation in which the user directs the
system through menu selections. See also:
m e n u by-pass. Contrast with: c o m m a n d -
driven.

metacompiler. See: compiler generator.

m e t a l a n g u a g e . A language used to specify
some or all aspects of a language; for
example, Backus-Naur form. See also:
stratified language; unstratified language.

method standard. (IEEE Std 1002-1987 [91) A
standard that describes the characteristics of
the orderly process or procedure used in the
engineering of a product or performing a
service,

metric. A quantitative measure of the degree to
which a system, component, o r process

47

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 610.12-1990

possesses a given attribute. See also: quality
metric.

IEEE STANDARD GLOSSARY OF

microprogramming. The process of design-
ing and implementing the control logic of a
computer by identifying the basic operations
needed to carry out each machine language
instruction and representing these opera-
tions as sequences of instructions in a
special memory called control store. This
method is an alternative to hard wiring the
control signals necessary to carry out each
machine language instruction. Techniques
include bit steering, compaction, residual
control, single-level encoding, two-level
encoding. See also: microcode; microin-
struction; microprogram

MFLOPS. Acronym for millions of floating
point operations per second. A measure of
computer processing speed. See also: KOPS;
MIPS.

microarchitecture. The microword definition,
data flow, timing constraints, and prece-
dence constraints tha t characterize a given
microprogrammed computer.

microcode. A collection of microinstructions,
comprising part of, all of, o r a set of micro-
programs.

microcode assembler. A computer program
that translates microprograms from sym-
bolic form to binary form.

microinstruction. In microprogramming, an
instruction that specifies one or more of the
basic operations needed t o carry out a ma-
chine language instruction. Types include
diagonal microinstruction; horizontal mi-
croinstruction; vertical microinstruction.
See also: microcode; microoperation; mi-
-PWP=l.

microoperation. In microprogramming, one
of the basic operations needed to carry out a
machine language instruction. See also:
microinstruction.

microprogram. A sequence of instructions,
called microinstructions, specifying the
basic operations needed t o carry out a
machine language instruction.

microprogrammable computer. A micropro-
grammed computer in which micropro-
grams can be created or altered by the
user.

microprogrammed computer. A computer in
which machine language instructions are
implemented by microprograms rather than
by hard-wired logic. N o t e : A micropro-
grammed computer may or may not be a mi-
crocomputer; the concepts are not related de-
spite the similarity of the terms, S e e
also: microarchitecture; microprogram-
mable computer.

microword. An addressable element in the
control store of a microprogrammed com-
puter.

minimum delay programming. A program-
ming technique in which storage locations
for computer instructions and data are
chosen so that access time is minimized.

MIPS. Acronym for million instructions per
second. A measure of computer processing
speed. See also: KOPS; MFLOPS.

mistake. A human action that produces an
incorrect result. Note: The fault tolerance
discipline distinguishes between the human
action (a mistake), i ts manifestation (a
hardware or software fault), the result of the
fault (a failure), and the amount by which
the result is incorrect (the error).

mixed mode. Pertaining to an expression that
contains two or more different data types.
For example, Y := X + N , where X and Y are
floating point variables and N is an integer
variable. Syn: mixed type.

mixed type. See: mixed mode.

MMI. Acronym for man-machine interface.
See: user interface.

modular. Composed of discrete parts. See also:
modular decomposition; modular pro-
gramming.

modular decomposition. The process of break-
ing a system into components to facilitate
design and development; an element of

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

SOFTWARE ENGINEERING TERMINOLOGY

modular programming. Syn: modulariza-
tion. See also: cohesion; coupling; demodu-
larization; factoring; functional decompo-
sition; hierarchical decomposition; pack-
aging.

IEEE
Std 610.12-1990

move. (1) To read data from a source, altering
the contents of the source location, and t o
write the same data elsewhere in a physical
form that may differ from that of the source.
For example, t o move data from one file to
another. Contrast with: copy.
(2) Sometimes, a synonym for copy.
See also: fetch; load; store.

modular programming. A software develop-
ment technique in which software is devel-
oped as a collection of modules. See also:
data structure-centered design; input-
process-output; modular decomposition;
object-oriented design; rapid prototyping;
stepwise refinement; structured design;
transaction analysis; transform analysis.

modularity. The degree t o which a system
or computer program is composed of discre4e
components such tha t a change t o one
component has minimal impact on other
components. See also: cohesion; coupling.

modularization. See: modular decomposition.

module. (1) A program unit that is discrete
and identifiable with respect t o compiling,
combining with other units, and loading;
for example, the input to, o r output from, an
assembler, compiler, linkage editor, or
executive routine.
(2) A logically separable part of a program.
Note: The terms “module,” “component,”
and “unit” are often used interchangeably
or defined t o be sub-elements of one another
in different ways depending upon the
context. The relationship of these terms is
not yet standardized.

module strength. See: cohesion.

module testing. See: component testing.

monadic selective construct. An if-then-else
construct in which processing is specified
for only one outcome of the branch, the other
outcome resulting in skipping this pro-
cessing. Contrast with: dyadic selective
construct.

monitor. A software tool or hardware device
that operates concurrently with a system or
component and supervises, records, ana-
lyzes, or verifies the operation of the system
or component. Syn: execution monitor. See
also: hardware monitoq software monitor.

MTBF. Acronym for mean time between
failures.

M’ITR. Acronym for mean time to repair.

multiaddress instruction. A computer instruc-
tion that contains more than one address
field. Syn: multiple-address instruction.
Contrast with: one-address instruction.

multilevel address. See: indirect address.

multilevel storage. See: virtual storage.

multiple-address instruction. See: multiad-
dress instructions.

multiple exclusive selective construct. See:
case.

multiple inclusive selective construct. A
special instance of the case construct in
which two or more different values of the
control expression result in the same
processing. For example, values 1 and 2
cause one branch, 3 and 4 cause another, and
so on.

multiprocessing. A mode of operation in
which two or more processes are executed
concurrently by separate processing units
tha t have access (usually) t o a common
main storage. Contrast with: multipro-
gramming. See also: multitasking; time
sharing.

multiprogramming. A mode of operation in
which two or more computer programs are
executed in an interleaved manner by a
single processing unit. Contrast wi th:
multiprocessing. See also: multitasking;
time sharing.

multitasking. A mode of operation in which
two or more tasks are executed in an

49

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

EEE
Std 610.12-1990

interleaved manner. See also: multipro-
cessing; multiprogramming; time sharing.

IEEE STANDARD GLOSSARY OF

mutation. See: program mutation.

mu ta t ion testing. A testing methodology in
which two or more program mutations are
executed using the same test cases t o
evaluate the ability of the test cases to detect
differences in the mutations.

n-address instruction. A computer instruction
that contains n address fields, where n may
be any non-negative integer. See also: one-
address instruction; two-address instruc-
tion; etc. Contrast with: n-plus-one address
instruction.

n- leve l address. An indirect address tha t
specifies the first of a chain of n storage
locations, the first n-1 of which contain the
address of the next location in the chain and
the last of which contains the desired
operand. For example, a two-level address.
Contrast with: direct address; immedia te
data.

n-plus-one address instruction. A computer
instruction that contains n+l address fields,
the last containing the address of the
instruction to be executed next. See also:
one-plus-one address instruction; two-plus-
one address instruction; etc. Contrast with:
n-address instruction.

nanocode. A collection of nanoinstructions.

nanoinstruction. In a two-level implemen-
tation of microprogramming, an instruc-
tion that specifies one or more of the basic
operations needed t o carry out a microin-
struction.

nanos to re . In a two-level implementation of
microprogramming, a secondary control
store in which nanoinstructions reside.

Nassi-Shneiderman chart. See: box diagram.

natural language . A language whose rules
are based on usage rather than being pre-
established prior t o the language's use.
Examples include German and English.
Contrast with: formal language.

nest. To incorporate a computer program
construct into another construct of the same
kind. For example, to nest one subroutine,
block, o r loop within another; to nest one
data structure within another.

no-op. Abbreviation for no-operation.

no-operation. A computer operation whose
execution has no effect except to advance the
instruction counter t o the next instruction.
Used to reserve space in a program or, if
executed repeatedly, to wait for a given
event. Often abbreviated no-op. S y n : d o -
nothing operation.

node. (1) In a diagram, a point, circle, or other
geometric figure used to represent a state,
event, or other item of interest. See also:
graph (2).
(2) Note: The meaning of this term in the
context of computer networks is covered in
P610.7-1990 [141.

nomenclature standard. (IEEE S M 1002-1987
[91) A standard that describes the character-
istics of a system or set of names, o r
designations, or symbols.

nondes t ruc t ive read. A read operation that
does not erase the data in the accessed
location. Contrast with: destructive read.

nonprocedural l anguage . A language in
which the user states what is to be achieved
without having to state specific instructions
that the computer must execute in a given
sequence. Contrast with: procedural lan-
guage. See also: declarative language;
interactive language; rule-based language.

NOR. (1) In configuration management, an
acronym for notice of revision.
(2) Note: The meaning of this term as a
logical operator is given in IEEE Std
610.1/1084-1986 [l, 111.

notation standard. (IEEE Std 1002-1987 [91) A
standard that describes the characteristics of
formal interfaces within a profession.

notice of rev is ion (NOR). A form used in
configuration management to propose revi-
sions t o a drawing or list, and, after

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

SOFTWARE ENGINEERING TERMINOLOGY

approval, t o notify users that the drawing or
list has been, or will be, revised accord-
ingly. See also: c o n f i g u r a t i o n control;
engineering change; specification change
notice.

IEEE
Std 610.12-1990

off-line. Pertaining to a device or process that
is not under the direct control of the central
processing unit of a computer. Contras t
with: on-line (2).

nucleus. See: kernel (1).

object. (1) Pertaining t o the outcome of
an assembly or compilation process. See
also: object code; object module; object pro-
gram.
(2) A program constant or variable.
(3) An encapsulation of data and services
that manipulate that data. See also: object-
oriented design.

object code. Computer instructions and data
definitions in a form output by an assembler
or compiler. An object program is made up
of object code. Contrast with: source code.

object language. See: target language.

object module. A computer program or subpro-
gram that is the output of an assembler or
compiler. See also: load module; object
program.

object-oriented design. A software
development technique in which a system or
component is expressed in terms of objects
and connections between those objects. See
also: data structure-centered design; input-
process-output; modular decomposition;
rapid prototyping; stepwise refinement;
structured design; t ransac t ion analysis;
transform analysis.

object-oriented language. A programming
language that allows the user to express a
program in terms of objects and messages
between those objects. Examples include
Smalltalk and LOGO.

object program. A computer program that is the
output of an assembler or compiler. Contrast
with: source program. Syn: target program.
See also: object module.

occupational title standard. (IEEE Std 1002-
1987 [91) A standard tha t describes the
characteristics of the general areas of work
or profession.

offset. (1) The difference between the loaded
origin and the assembled origin of a
computer program. Syn: relocation factor.
(2) A number that must be added to a relative
address to determine the address of the
storage location to be accessed. This number
may be the difference defined in (1) o r
another number defined in the program. See
also: base address; indexed address;
relative address; self-relative address.

on-line. (1) Pertaining to a system o r mode of
operation in which input data enter the
computer directly from the point of origin or
output data are transmitted directly t o the
point where they are used. For example, an
airline reservation system. Contrast with:
batch. See also: conversational; interactive;
real time.
(2) Pertaining to a device or process that is
under the direct control of the central
processing unit of a computer.
Contrast with: off-line.

on-line compiler. See: incremental compiler.

one-address i n s t r u c t i o n . A computer
instruction that contains one address field.
For example, an instruction t o load the
contents of location A. Syn: single-address
instruction; single-operand instruction.
Contrast with: mult iaddress instruction;
two-address instruction; three-address
instruction; four-address instruction; zero-
address instruction.

one-ahead addressing. A method of implied
addressing in which the operands for a
computer instruction are understood t o be in
the storage locations following the locations
of the operands used for the last instruction
executed. Contrast with: repetitive ad-
dressing.

one-level address. See: direct address.

one-plus-one address instruction. A computer
instruction that contains two address fields,
the second containing the address of the

51

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 610.12-1990

instruction t o be executed next. For example,
an instruction to load the contents of location
A, then execute the instruction at location B.
Contrast with: two-plus-one address instruc-
tion; three-plus-one address instruction;
four-plus-one address instruction.

IEEE STANDARD GLOSSARY OF

example, the code BNZ to designate the
operation '%ranch if not zero." Syn: op code.

op code (opcode). See: operation code.

open subroutine. A subroutine that is copied
into a computer program a t each place that i t
is called. Syn: direct insert subroutine.
Contrast with: closed subroutine. See also:
inline code; macro.

operand. A variable, constant, or function
upon which an operation is to be performed.
For example, in the expression A = B + 3, B
and 3 are the operands.

operating system. A collection of software,
firmware, and hardware elements tha t
controls the execution of computer programs
and provides such services as computer
resource allocation, job control, input/output
control, and file management in a computer
system.

operation. (1) In computer mathematics, the
action specified by an operator on one or
more operands. For example, in the
expression A = B + 3, the process of adding B
to 3 to obtain A.
(2) In programming, a defined action that
can be performed by a computer system; for
example, addition, comparison , branching.
Note: Unlike the mathematical meaning,
such an operation may not involve an
operator o r operands; for example, the
operation Halt.
(3) The process of running a computer
system in i ts intended environment t o
perform its intended functions.

operation and maintenance phase. The period
of time in the software life cycle during
which a software product is employed in its
operational environment, monitored for
satisfactory performance, and modified as
necessary to correct problems o r to respond to
changing requirements.

operation code. A character or set of characters
tha t specifies a computer operation; for

operation exception. An exception that occurs
when a program encounters an invalid
operation code. See also: addressing excep-
tion; data exception; overflow exception;
pmtection exception; underflow exception.

operation field. The field of a computer
instruction that specifies the operation to be
performed. Syn: function field; operation
part. Contrast with: address field.

operation part. See: operation field.

operational. (1) Pertaining to a system or
component tha t is ready for use in i ts
intended environment.
(2) Pertaining to a system or component that
is installed in its intended environment.
(3) Pertaining to the environment in which
a system or component is intended to be
used.

operational testing. Testing conducted t o
evaluate a system or component in i ts
operational environment. Contrast wi th:
development testing. See also: acceptance
testing; qualification testing.

operator. (1) A mathematical o r logical
symbol tha t represents a n action t o be
performed in an operation. For example, in
the expression A = B + 3, + is the operator,
representing addition.
(2) A person who operates a computer
system.

operator field. See: operation field.

operator manual. A document that provides the
information necessary t o init iate and
operate a system or component. Typically
described are procedures for preparation,
operation, monitoring, and recovery. Note:
An operator manual is distinguished from a
user manual when a distinction is made
between those who operate a computer system
(mounting tapes, etc.) and those who use the
system for its intended purpose. See also:
diagnostic manual; installation manual;
programmer manual; support manual; user
manual.

52

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

SOFTWARE ENGINEERING TERMINOLOGY

order clash. In software design, a type of
structure clash in which a program must
deal with two or more data sets that have
been sorted in different orders. See also:
data structurecentered design.

IEEE

into main storage when needed, overwriting
other segments not currently in use.
(3) To load a computer program segment
from auxiliary storage t o main storage in
such a way tha t other segments of the
program are overwritten.

Std 610.1 2-1 990

origin. The address of the initial storage
location assigned to a computer program in
main memory. See also: assembled origin;
loaded origin. Contrast with: starting
address.

output. (1) Pertaining to data transmitted to an
external destination.
(2) Pertaining t o a device, process, o r
channel involved in transmitting data t o an
external destination.
(3) To transmit da ta t o an external
destination.
(4) Loosely, output data.
Contrast with: input.

output assertion. A logical expression specify-
ing one or more conditions tha t program
outputs must satisfy in order for the program
to be correct. Contrast with: input assertion;
loop assertion. See also: inductive assertion
method.

overflow exception. An exception that occurs
when the result of an arithmetic operation
exceeds the size of the storage location des-
ignated t o receive it. See also: addressing
exception; data exception; operation excep-
tion; protection exception; underflow excep
tion.

overhead operation. See: housekeeping
operation.

overhead time. The amount of time a computer
system spends performing tasks that do not
contribute directly to the progress of any user
task; for example, time spent tabulating
computer resource usage for billing
purposes.

overlay. (1) A storage allocation technique in
which computer program segments are
loaded from auxiliary storage t o main
storage when needed, overwriting other
segments not currently in use.
(2) A computer program segment tha t is
maintained in auxiliary storage and loaded

overlay supervisor. A routine that controls the
sequencing and positioning of overlays.

overload. To assign an operator, identifier, or
literal more than one meaning, depending
upon the data types associated with it a t any
given time during program execution.

.

pack. To store data in a compact form in a
storage medium, using known characteris-
tics of the data and medium in such a way as
to permit recovery of the data. Contrast with:
unpack.

package. A separately compilable software
component consisting of related data types,
data objects, and subprograms. See also:
data abstraction; encapsulation; informa-
tion hiding.

packaging. In software development, the
assignment of modules t o segments t o be
handled a s distinct physical units for
execution by a computer.

padding. (1) The technique of filling out a
fixed-length block of da ta with dummy
characters, words, or records.
(2) Dummy characters, words, o r records
used to fill out a fixed-length block of data.

page. (1) A fixed-length segment of data or of a
computer program treated a s a unit in
storage allocation. See also: paging.
(2) In a virtual storage system, a fixed-
length segment of data o r of a computer
program that has a virtual address and is
transferred a s a unit between main and
auxiliary storage.
(3) A screenful of information on a video
display terminal.

page breakage. A portion of main storage that
is unused when the last page of data or of a
computer program does not fill the entire
block of storage allocated t o it. See also:
paging.

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 610.12-1990

page frame. A block of main storage having
the size of, and used to hold, a page. See also:
paging.

IEEE STANDARD GLOSSARY OF

parameter. (1) A variable that is given a
constant value for a specified application.
See also: adaptation parameter.
(2) A constant, variable, or expression that is
used to pass values between software mod-
ules. See also: argument; formal parame-
ter.

page swapping. The exchange of pages
between main storage and auxiliary
storage. See also: paging.

page table. A table that identifies the location
of pages in storage and gives significant
attributes of those pages. See also: paging.

page turning. See: paging (3).

page zero. In the paging method of storage
allocation, the first page in a series of
pages.

pager. A routine that initiates and controls the
transfer of pages between main and
auxiliary storage. See also: paging.

paging. (1) A storage allocation technique in
which programs or data are divided into
fixed-length blocks called pages, main stor-
age is divided into blocks of the same length
called page frames, and pages are stored in
page frames, not necessarily contiguously
or in logical order. Syn: block allocation.
Contrast with: contiguous allocation.
(2) A storage allocation technique in which
programs or data are divided into fixed-
length blocks called pages, main storage is
divided into blocks of the same length called
page frames, and pages are transferred
between main and auxiliary storage a s
needed. See also: anticipatory paging; de-
mand paging; virtual storage.
(3) The transfer of pages as in (2). Syn: page
turning.
See also: page; page breakage; page frame;
page swapping; page table; page zero; pager;
working set.

parallel. (1 Pertaining to the simultaneous
transfer, occurrence, or processing of the
individual parts of a whole, such a s the bits
of a character, using separate facilities for
the various parts. Contrast with: serial (1).
(2) See: concurrent.

parallel construct. A program construct
consisting of two o r more procedures tha t
can occur simultaneously.

parse. To determine the syntactic structure of
a language unit by decomposing i t into more
elementary subunits and establishing the
relationships among the subunits. For ex-
ample, to decompose blocks into statements,
statements into expressions, expressions
into operators and operands.

parser. A software tool that parses computer
programs or other text, often as the first step
of assembly, compilation, interpretation, or
analysis.

partial correctness. In proof of correctness, a
designation indicating tha t a program's
output assertions follow logically from its
input assertions and processing steps.
Contrast with: total correctness.

partitioning. (IEEE Std 830-1984 [SI) Decom-
position; the separation of the whole into its
parts.

pass. A single cycle in the processing of a set
of data, usually performing par t of an
overall process. For example, a pass of an
assembler through a source program; a pass
of a sort program through a set of data.

pass/fail criteria. (IEEE Std 829-1983 [51)
Decision rules used to determine whether a
software item or a software feature passes or
fails a test. See also: test criteria.

patch. (1) A modification made directly to an
object program without reassembling o r
recompiling from the source program.
(2) A modification made to a source program
as a last-minute fix or afterthought.
(3) Any modification to a source or object
program.
(4) To perform a modification a s in (11, (21,
or (3).

path. (1) In software engineering, a sequence
of instructions that may be performed in the

54

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

SOFTWARE ENGINEERING TERMINOLOGY

execution of a computer program.
(2) In file access, a hierarchical sequence of
directory and subdirectory names specify-
ing the storage location of a file.

IEEE
Std 610.12-1990

performance. The degree to which a system or
component accomplishes i ts designated
functions within given constraints, such as
speed, accuracy, or memory usage.

path analysis. Analysis of a computer pro-
gram to identify all possible paths through
the program, to detect incomplete paths, or to
discover portions of the program that are not
on any path.

path condition. A set of conditions that must be
met in order for a particular program path to
be executed.

path expression. A logical expression indicat-
ing the input conditions that must be met in
order for a particular program path t o be
executed.

path testing. Testing designed to execute all or
selected paths through a computer program.
Contrast with: branch testing; statement
testing.

pathological coupling. A type of coupling
in which one software module affects
or depends upon the internal implemen-
tation of another. Contrast with: common-
environment coupling; content coupling;
control coupling; data coupling; hybrid
coupling.

pattern-sensitive fault. See: data-sensitive
fault.

pause. To suspend the execution of a computer
program. Syn: halt (2). Contrast with:
h P *

PCA. Acronym for physical configuration
audit.

PDL. Acronym for program design language.

PDR. Acronym for preliminary design
review.

perfective maintenance. Software mainte-
nance performed to improve the perfor-
mance, maintainability, or other attributes
of a computer program. Contrast wi th:
adaptive maintenance; corrective mainte-
nance.

performance requirement. A requirement that
imposes conditions on a functional re-
quirement; for example a requirement that
specifies the speed, accuracy, or memory
usage with which a given function must be
performed. Contrast with: design require-
ment; functional requirement; implemen-
tation requirement; interface requirement;
physical requirement.

performance specification. A document that
specifies the performance characteristics
that a system or component must possess.
These characteristics typically include
speed, accuracy, and memory usage. Often
part of a requirements specification.

performance testing. Testing conducted to
evaluate the compliance of a system o r
component with specified performance
requirements. See also: functional testing.

Petri net. An abstract, formal model of infor-
mation flow, showing static and dynamic
properties of a system. A Petri net is usually
represented as a graph having two types of
nodes (called places and transitions)
connected by arcs, and markings (called
tokens) indicating dynamic properties.

physical configuration audit (PCA). An audit
conducted t o verify tha t a configuration
item, as built, conforms t o the technical
documentation tha t defines it. See also:
functional configuration audit.

physical requirement. A requirement that
specifies a physical characteristic that a
system or system component must possess;
for example, material, shape, size, weight.
Contrast with: design requirement; func-
tional requirement; implementation re-
quirement; interface requirement; perfor-
mance requirement.

pipeline. A software or hardware design
technique in which the output of one process
serves as input to a second, the output of the
second process serves a s input to a third, and

55

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 610.12-1990

so on, often with simultaneity within a
single cycle time.

LEEE STANDARD GLOSSARY OF

precis ion. The degree of exactness o r
discrimination with which a quantity is
stated; for example, a precision of 2 decimal
places versus a precision of 5 decimal
places. Contrast with: accuracy.

plan standard. (IEEE Std 1002-1987 [91) A stan-
dard that describes the characteristics of a
scheme for accomplishing defined objec-
tives or work within specified resources.

playback. See: reversible execution.

pointer. A data item that specifies the location
of another data item; for example, a data
item that specifies the address of the next
employee record to be processed.

port-to-port time. The elapsed time between the
application of a stimulus t o an input
interface and the appearance of the response
a t an output interface. See also: response
time; think time; turnaround time.

portability. The ease with which a system or
component can be transferred from one
hardware o r software environment t o
another. Syn: t r anspor t ab i l i t y . See also:
machine independent.

post-tested iteration. See: UNTIL.

postamble breakpoint. See: epilog breakpoint.

pos tmor tem dump. A dump that is produced
upon abnormal termination of a computer
program. See also: change dump; dynamic
dump; memory dump; selective dump;
snapshot dump; static dump.

postprocessor. A computer program or routine
that carries out some final processing step
after the completion of the primary process;
for example, a routine that reformats data
for output. Contrast with: preprocessor.

practices. (IEEE Std 983-1986 [71) Require-
ments employed t o prescribe a disciplined
uniform approach to the software develop-
ment process. See also: conventions; s tan-
dards.

pragma. See: pseudo-instruction.

precompiler. A computer program or routine
tha t processes source code and generates
equivalent code that is acceptable to a com-
piler. For example, a routine that converts
structured FORTRAN t o ANSI-standard
FORTRAN. See also: preprocessor.

p re l imina ry design. (1) The process of ana-
lyzing design alternatives and defining the
architecture, components, interfaces, and
timing and sizing estimates for a system or
component. See also: detailed design.
(2) The result of the process in (1).

p re l imina ry design rev iew (PDR). (1) A
review conducted to evaluate the progress,
technical adequacy, and risk resolution of
the selected design approach for one or more
configuration items; t o determine each
design's compatibility with the require-
ments for the configuration item; to evaluate
the degree of definition and assess the
technical risk associated with the selected
manufacturing methods and processes; to
establish the existence and compatibility of
the physical and functional interfaces
among the configuration items and other
items of equipment, facilities, software and
personnel; and, as applicable, to evaluate the
preliminary operational and support
documents. See also: critical design review;
system design review.
(2) A review as in (1) of any hardware or
software component.

preprocessor. A computer program or routine
that carries out some processing step prior to
the primary process; for example, a precom-
piler or other routine that reformats code or
data for processing. Contrast with: postpro-
cessor.

prestore. To store data that are required by a
computer program or routine before the
program or routine is entered.

pre-tested iteration. See: WHILE.

preamble breakpoint. See: pmlog breakpoint.

prettyprinting. The use of indentation, blank
lines, and other visual cues to show the
logical structure of a program.

56

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

SOFTWARE ENGINEERING TERMINOLOGY

preventive maintenance. Maintenance per-
formed for t he purpose of preventing
problems before they occur.

IEEE

language; list processing language; logic
programming language.

Std 610.12-1990

primitive type. See: atomic type.

priority. The level of importance assigned to
an item.

priority interrupt. An interrupt performed to
permit execution of a process tha t has a
higher priority than the process currently
executing.

private type. A data type whose structure and
possible values are defined but are not
revealed to the user of the type. See also;
information hiding.

privileged instruction. A computer instruction
that can be executed only by a supervisory
program.

privileged state. See: supervisor state.

problem-oriented language. A programming
language designed for the solution of a
given class of problems. Examples are list
processing languages, information re-
trieval languages, simulation languages.

problem state. In the operation of a computer
system, a state in which programs other than
the supervisory program can execute. Syn:
slave state; user state. Contrast with: super-
visor state.

procedural cohesion. A type of cohesion in
which the tasks performed by a software
module all contribute to a given program
procedure, such as an iteration or decision
process. Contrust with: coincidental cohe-
sion; communicational cohesion; func-
tional cohesion; logical cohesion; sequen-
tial cohesion; temporal cohesion.

procedural language. A programming lan-
guage in which the user states a specific set
of instructions tha t the computer must
perform in a given sequence. All widely-
used programming languages are of this
type. Syn: procedure-oriented language.
Contrast with: nonprocedural language. See
also: algebraic language; algorithmic

procedure. (1) A course of action to be taken to
perform a given task.
(2) A written description of a course of action
as in (1); for example, a documented test
procedure.
(3) A portion of a computer program that is
named and that performs a specific action.

procedure-oriented language. See: procedural
language.

process. (1) A sequence of steps performed for a
given purpose; for example, the software
development process.
(2) An executable unit managed by an
operating system scheduler. See also: task;
job.
(3) To perform operations on data.

process management. (IEEE Std 1002-1987 [91)
The direction, control, and coordination or
work performed t o develop a product or
perform a service. Example is quality
assurance.

process standard. (IEEE Std 1002-1987 [91) A
standard that deals with the series of actions
or operations used in making or achieving a
product.

product analysis. (IEEE SM 1002-1987 [91) The
process of evaluating a product by manual or
automated means to determine if the product
has certain characteristics.

product baseline. In configuration manage-
ment, the initial approved technical docu-
mentation (including, for software, the
source code listing) defining a configura-
tion item during the production, operation,
maintenance, and logistic support of its life
cycle. Contrast with: allocated baseline;
developmental configuration; functional
baseline. See also: product configuration
identification.

product configuration identification. The cur-
rent approved o r conditionally approved
technical documentation defining a config-
uration item during the production, opera-
tion, maintenance, and logistic support

57

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

LEEE
Std 610.12-1990 IEEE STANDARD GLOSSARY OF

phases of i ts life cycle. I t prescribes all
necessary physical o r form, fit and function
characteristics of a configuration item, the
selected functional characteristics desig-
nated for production acceptance testing, and
the production acceptance tests. Contrast
with: allocated configuration identifica-
tion; functional configuration identifica-
tion. See also: product baseline.

product engineering. (IEEE Std 1002-1987 [91)
The technical processes to define, design,
and construct or assemble a product.

product management. (IEEE Std 1002-1987 [91)
The definition, coordination, and control of
the characteristics of a product during its
development cycle. Example is configura-
tion management.

product specification. (1) A dacument that
specifies the design that production copies of
a system o r component must implement.
Note: For software, this document describes
the as-built version of the software. See also:
design description.
(2) A document that describes the character-
istics of a planned or existing product for
consideration by potential customers o r
users.

product standard. (IEEE Std 1002-1987 [91) A
standard that defines what constitutes com-
pleteness and acceptability of items that are
used or produced, formally or informally,
during the software engineering process.

product support. (IEEE Std 1002-1987 [91) The
providing of information, assistance, and
training t o install and make software
operational in i ts intended environment
and t o distribute improved capabilities t o
users.

production library. A software library
containing software approved for current
operational use. Contrast wi th: master
library; software development library;
software repositow, system library.

professional standard. (IEEE Std 1002-1987 191)
A standard that identifies a profession as a
discipline and distinguishes i t from other
professions.

program. (1) See: computer program.
(2) To write a computer program.

program counter. See: instruction counter.

program definition language. See: program
design language.

program design language (PDL). A specifica-
tion language with special constructs and,
sometimes, verification protocols, used to
develop, analyze, and document a program
design. See also: hardware design lan-
guage; pseudo d e .

program flowchart (flow chart). S e e :
flowchart.

program instruction. A computer instruction
in a source program. N o t e : A program
instruction is distinguished from a com-
puter instruction that results from assembly,
compilation, or other interpretation process.

program library. See: software library.

program listing. A printout or other human
readable display of the source and, some-
times, object statements tha t make up a
computer program.

program mutation. (1) A computer program
that has been purposely altered from the
intended version to evaluate the ability of
test cases t o detect the alteration. See also:
mutation testing.
(2) The process of creating an altered
program as in (1).

program network chart. A diagram that shows
the relationship between two o r more
computer programs.

program-sensitive fault. A fault that causes a
failure when some particular sequence of
program steps is executed. Contrast with:
data-sensitive fault.

program status word (PSW). (1) A computer
word that contains information specifying
the current status of a computer program.
The information may include error indica-
tors, the address of the next instruction t o
be executed, currently enabled interrupts,

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

SOFTWARE ENGINEERING TERMINOLOGY

and so on.
(2) A special-purpose register that contains a
program status word as in (1).
Syn: status word.

program structure diagram. See: structure
chart.

IEEE
Std 610.12-1990

compilers, linkers, etc.) necessary for us-
ing these languages with a given computer
system.

program support library. See: software
development lib-.

program synthesis. The use of software tools to
aid in the transformation of a program
specification into a program that realizes
that specification.

programmable breakpoint. A breakpoint that
automatically invokes a previously speci-
fied debugging process when initiated. See
also: code breakpoint; data breakpoint;
dynamic breakpoint; epilog breakpoint;
prolog breakpoint; static breakpoint.

programmer manual. A document that
provides the information necessary t o
develop o r modify software for a given
computer system. Typically described are
the equipment configuration, operational
characteristics, programming features,
inputloutput features, and compilation or
assembly features of the computer system.
See also: diagnostic manual; installation
manual; operator manual; support manual;
user manual.

programming language. A language used to
express computer programs. See also:
assembly language; high order language;
machine language. Contrast with: query
language; specification language.

programming support environment. An inte-
grated collection of software tools accessed
via a single command language to provide
programming support capabilities through-
out the software life cycle. The environment
typically includes tools for specifying,
designing, editing, compiling, loading,
testing, configuration management, and
project management. Sometimes called in-
tegrated programming support environ-
ment. See also: scaffolding.

programming system. A set of programming
languages and the support software (editors,

project file. A central repository of material
pertinent to a project. Contents typically
include memos, plans, technical reports,
and related items. Syn: project notebook.

project library. See: software development
library.

project notebook See: project file.

project plan. A document that describes the
technical and management approach to be
followed for a project. The plan typically
describes the work to be done, the resources
required, the methods to be used, the proce-
dures t o be followed, the schedules to be met,
and the way that the project will be orga-
nized. For example, a software development
plan.

prolog breakpoint. A breakpoint that is initi-
ated upon entry into a program or routine.
Syn: preamble breakpoint. Contrast with:
epilog breakpoint. See also: code breakpoint;
data breakpoint; dynamic breakpoint; pro-
grammable breakpoint; static breakpoint.

prompt. (1) A symbol or message displayed by
a computer system, requesting input from
the user of the system.
(2) To display a symbol or message as in (1).

proof of correctness. (1) A formal technique
used t o prove mathematically t h a t a
computer program satisfies i ts specified
requirements. See also: assertion; formal
specification; inductive assertion method;
partial correctness; total correctness.
(2) A proof that results from applying the
technique in (1).

protection exception. An exception that occurs
when a program attempts to write into a pro-
tected area in storage. See also: addressing
exception; data exception; operation excep-
tion; overflow exception; underflow excep-
tion.

protocol. A set of conventions that govern the
interaction of processes, devices, and other
components within a system.

59

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

ZEEE
Std 610.12-1990 IEEE STANDARD GLOSSARY OF

(2) The degree to which a system, compo-
nent, or process meets customer or user
needs o r expectations.

prototype. A preliminary type, form, or
instance of a system that serves a s a model
for later stages or for the final, complete
version of the system.

prototyping. A hardware and software devel-
opment technique in which a preliminary
version of part or all of the hardware or
software is developed to permit user feed-
back, determine feasibility, or investigate
timing or other issues in support of the
development process. See also: rapid proto-
typing.

pseudo code (pseudocode). A combination of
programming language constructs and
natural language used to express a computer
program design. For example:
IF the data arrives faster than expected,
THEN reject every third input.
ELSE process all data received.

ENDIF

pseudo instruction. A source language in-
struction that provides information or direc-
tion t o the assembler or compiler and is not
translated into a target language instruc-
tion. For example, an instruction specifying
the desired format of source code listings.
Syn: pragma; pseudo-op; pseudo operation.

pseudo operation. See: pseudo instruction.

pseudo-op. See: pseudo instruction.

PSW. Acronym for program status word.

QA. Acronym for quality assurance.

QC. Acronym for quality control.

qualification. The process of determining
whether a system or component is suitable
for operational use.

qualification testing. Testing conducted to
determine whether a system or component is
suitable for operational use. See also:
acceptance testing; development testing;
operational testing.

quality. (1) The degree t o which a system,
component, or process meets specified
requirements.

quality assurance (QA). (1) A planned and
systematic pattern of all actions necessary
to provide adequate confidence that an item
or product conforms t o established technical
requirements.
(2) A set of activities designed to evaluate the
process by which products are developed or
manufactured. Contrast with: quality con-
trol (1).

quality attribute. A feature o r characteristic
that affects an item's quality. Syn: quality
factor. Note: In a hierarchy of quality at-
tributes, higher level attributes may be
called quality factors, lower level attributes
called quality attributes.

quality control (QO. Note: This term has no
standardized meaning in software engi-
neering a t this time. Candidate definitions
are: (1) A set of activities designed to evalu-
ate the quality of developed or manufactured
products. Contras t w i t h : quality assur-
ance (2).
(2) The process of verifying one's own work
or that of a co-worker.
(3) Synonym for quality assurance.

quality factor. See: quality attribute. Note: In
a hierarchy of quality attributes, higher
level attributes may be called quality fac-
tors, lower level attributes called quality
attributes.

quality metric. (1) A quantitative measure of
the degree t o which an item possesses a
given quality attribute.
(2) A function whose inputs are software
data and whose output is a single numerical
value that can be interpreted as the degree to
which the software possesses a given quality
attribute.

query language. A language used to access
information stored in a database. Contrast
with: programming language; specification
language.

queue. A list in which items are appended to
the last position of the list and retrieved from

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

SOFTWARE ENGINEERING TERMINOLOGY

the first position of the list. Note: IEEE Std
610.5-1990 [21 defines Data Management
terms.

IEEE
Std61012-1990

Contrast with: character type; enumeration
type; integer type; logical type.

quiescing. The process of bringing a device or
system to a halt by rejecting new requests for
work.

random failure. A failure whose occurrence is
unpredictable except in a probabilistic or
statistical sense. See also: intermittent
fault; transient error.

rapid prototyping. A type of prototyping in
which emphasis is placed on developing
prototypes early in the development process
t o permit early feedback and analysis in
support of the development process. Contrast#
with: waterfall model. See also: data struc-
ture-centered design; incremental devel-
opment; input-process-output; modular de-
composition; object-oriented design; spiral
model; stepwise refinement; structured de-
sign; transaction analysis; transform
analysis.

read. To access data from a storage device
o r data medium. See also: destructive
read; nondestructive read. Contrast with:
write.

real address. The address of a storage location
in the main storage part of a virtual storage
system. Contrast with: virtual address.

real storage. The main storage portion of a
virtual storage system. Contrast with: vir-
tual storage.

real time. Pertaining to a system or mode of
operation in which computation is per-
formed during the actual time tha t an
external process occurs, in order tha t the
computation results can be used t o control,
monitor, or respond in a timely manner t o
the external process. Contrast with: batch.
See also: conversational; interactive; inter-
rupt; on-line.

real type. A data type whose members can
assume real numbers as values and can be
operated on by real number arithmetic
operations, such a s addition, subtraction,
multiplication, division, and square root.

record. A set of related data items treated as a
unit. For example, in stock control, the data
for each invoice could constitute one record.

recovery. The restoration of a system,
program, database, or other system resource
to a state in which it can perform required
functions. See also: backward recovery;
checkpoint; forward recovery.

recursion. (1) A process in which a software
module calls itself. See also: simultaneous
recursion.
(2) The process of defining or generating a
process or data structure in terms of itself.

recursive. (1) Pertaining to a software module
that calls itself.
(2) Pertaining to a process or data structure
tha t is defined or generated in terms of
itself.

redundancy. In fault tolerance, the presence of
auxiliary components in a system t o per-
form the same or similar functions as other
elements for the purpose of preventing or
recovering from failures. See also: active
redundancy; diversity; homogeneous re-
dundancy; standby redundancy.

reenterable. See: reentrant.

reentrant. Pertaining to a software module
that can be entered a s part of one process
while also in execution a s part of another
process and still achieve the desired results.
Syn: reenterable.

reentry point. The place in a software module
a t which the module is reentered following a
call to another module.

regression testing. Selective retesting of a
system or component t o verify that modifica-
tions have not caused unintended effects
and tha t the system or component still
complies with its specified requirements.

relative address. An address that must be
adjusted by the addition of an offset t o
determine the address of the storage location

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

WEE
Std 610.12-1990

t o be accessed. Contrast with: absolute
address. See also: base address; indexed
address; self-relative address.

IEEE STANDARD GLOSSARY OF

relative loader. See: relocating loader.

reliability. The ability of a system or compo-
nent to perform its required functions under
stated conditions for a specified period of
time. See also: availability; MTBF.

reliability growth. The improvement in
reliability tha t results from correction of
faults.

relocatable. Pertaining to code that can be
loaded into any part of main memory. The
starting address is established by the loader,
which then adjusts the addresses in the code
to reflect the storage locations into which the
code has been loaded. See also: relocating
loader.

relocatable address. An address that is to be
adjusted by the loader when the computer
program containing the address is loaded
into memory. Contrast with: absolute ad-
dress.

relocatable code. Code containing addresses
that are to be adjusted by the loader to reflect
the storage locations into which the code is
loaded. Contrast with: absolute code.

relocate. To move machine code from one
portion of main memory to another and t o
adjust the addresses so that the code can be
executed in its new location.

relocating assembler. An assembler tha t
produces relocatable code. Contrast with:
absolute assembler.

relocating loader. A loader tha t reads
relocatable code into main memory and
adjusts the addresses in the code to reflect the
storage locations into which the code has
been loaded. Syn: relative loader. Contrast
with: absolute loader.

relocation dictionary. The part of an object
module or load module tha t identifies the
addresses tha t must be adjusted when a
relocation occurs.

relocation factor. See: offset (1).

remote batch entry. See: remote job entry.

remote job entry (RJE). Submission of jobs
through a remote input device connected to a
computer through a data link. Syn: remote
batch entry.

repeatability. See: test repeatability.

repetitive addressing. A method of implied
addressing in which the operation field of
an computer instruction is understood to
address the operands of the last instruction
executed. Contrast with: one-ahead ad-
dressing.

replay. See: reversible execution.

report standard. (IEEE Std 1002-1987 191) A
standard that describes the characteristics of
describing results of engineering and
management activities.

representation standard. (IEEE Std 1002-1987
[9]) A standard that describes the character-
istics of portraying aspects of an engineer-
ing o r management product.

requirement. (1) A condition or capability
needed by a user t o solve a problem or
achieve an objective.
(2) A condition or capability that must be met
or possessed by a system or system compo-
nent to satisfy a contract, standard, specifi-
cation, or other formally imposed docu-
ments.
(3) A documented representation of a condi-
tion or capability as in (1) or (2).
See also: design requirement; functional
requirement; implementation requirement;
interface requirement; performance re-
quirement; physical requirement.

requirement standard. (IEEE Std 1002-1987 [91)
A standard that describes the characteristics
of a requirements specification.

requirements analysis. (1) The process of
studying user needs to arrive at a definition
of system, hardware, or software require-
ments.
(2) The process of studying and refining

62

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

SOFTWARE ENGINEERING TERMINOLOGY

system, hardware, o r software require-
ments.

IEEE
Std 610.12-1990

microinstruction depends on the value in an
auxiliary register. Contrast with: bit steer-
ing. See also: two-level encoding.

requirements phase. The period of time in the
software life cycle during which the re-
quirements for a software product are
defined and documented.

requirements review. A process or meeting
during which the requirements for a system,
hardware item, or software item are pre-
sented t o project personnel, managers,
users, customers, or other interested parties
for comment or approval. Types include
system requirements review, software
requirements review. Contrast with: code
review; design review; formal qualifica-
tion review; test readiness review.

requirements specification. A document that
specifies the requirements for a system or
component. Typically included are func-
tional requirements, performance require-
ments, interface requirements, design re-
quirements, and development standards.
Contrast with: design description. See also:
functional specification; performance spec-
ification.

requirements specification language. A speci-
fication language with special constructs
and, sometimes, verification protocols, used
to develop, analyze, and document hardware
or software requirements. See also: design
language.

rescue point. See: restart point.

reserved word. A word in a programming
language whose meaning is fixed by the
rules of that language and which, in certain
or all contexts, cannot be used by the
programmer for any purpose other than its
intended one. Examples include IF, THEN,
WHILE.

resource allocation. See: computer resource
allocation.

resource management. (IEEE Std 1002-1987
[9]) The identification, estimation, alloca-
tion, and monitoring of the means used to
develop a product or perform a service.
Example is estimating.

response time. The elapsed time between the
end of an inquiry or command t o an
interactive computer system and the begin-
ning of the system's response. See also: port-
to-port time; think time; turnaround time.

restart. To cause a computer program t o
resume execution after a failure, using
status and results recorded a t a checkpoint.

restart point. A point in a computer program at
which execution can be restarted following a
failure. Syn: rescue point.

retirement. (1) Permanent removal of a sys-
tem or component from its operational envi-
ronment.
(2) Removal of support from an operational
system or component.
See also: software life cycle; system life
cycle.

retirement phase. The period of time in the
software life cycle during which support for
a software product is terminated.

retrospective trace. A trace produced from
historical data recorded during the execu-
tion of a computer program. Note: This dif-
fers from an ordinary trace, which is
produced cumulatively during program
execution. See also: execution trace; subrou-
tine trace; symbolic trace; variable trace.

reset. To set a variable, register, or other
storage location back to a prescribed state.
See also: clear; initialize.

return. (1) To transfer control from a software
module to the module that called it. See also:
lleturn code.
(2) To assign a value to a parameter that is
accessible by a calling module; for example,
to assign the value 25 t o parameter AGE for
use by a calling module. See also: return
value.

resident control program. See: kernel (1).

residual control. A microprogramming tech-
nique in which the meaning of a field in a

63

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

E E E
Std 610.12-1990

(3) A computer instruction or process that
performs the transfer in (1).

IEEE STANDARD GLOSSARY OF

storage for the purpose of freeing main
storage for other uses. Contrast with: roll in.
See also: swap.

return code. A code used to influence the
execution of a calling module following a
return from a called module.

return value. A value assigned to a parameter
by a called module for access by the calling
module.

reusability. The degree to which a software
module or other work product can be used in
more than one computer program or
software system. See also: generality.

reusable. Pertaining t o a software module or
other work product that can be used in more
than one computer program or software
system.

reverse execution. See: reversible execution.

reversible execution. A debugging technique
in which a history of program execution is
recorded and then replayed under the user’s
control, in either the forward or backward
direction. Syn: backward execution; play-
back; replay; reverse execution.

review. A process or meeting during which a
work product, or set of work products, is
presented t o project personnel, managers,
users, customers, or other interested parties
for comment o r approval. Types include
code review, design review, formal qualifi-
cation review, requirements review, test
readiness review.

root compiler. A compiler whose output is a
machine independent, intermediate-level
representation of a program. A root com-
piler, when combined with a code generator,
comprises a full compiler.

routine. A subprogram that is called by other
programs and subprograms. Note: The
terms “routine,” “subprogram,” and “sub-
routine” are defined and used differently in
different programming languages; the
preceding definition is advanced as a
proposed standard. See also: coroutine;
subroutine.

rule-based language. A nonprocedural lan-
guage that permits the user to state a set of
rules and to express queries or problems that
use these rules. See also: declarative
language; interactive language.

run. (1) In software engineering, a single,
usually continuous, execution of a computer
program. See also: run time.
(2) To execute a computer program.

run stream. See: job stream.

run time. (1) The instant a t which a computer
program begins t o execute.
(2) The period of time during which a
computer program is executing.
(3) See: execution time.

running time. See: execution time.
RJE. Acronym for remote job entry.

robustness. The degree to which a system or
component can function correctly in the
presence of invalid inputs o r stressful
environmental conditions. See also: error
tolerance; fault tolerance.

roll in. To transfer data or computer program
segments from auxiliary storage t o main
storage. Contrast with: roll out. See also:
swap.

roll out. To transfer data or computer program
segments from main storage t o auxiliary

scaffolding. Computer programs and data
files built to support software development
and testing, but not intended to be included
in the final product. For example, dummy
routines or files, test case generators, soft-
ware monitors, stubs. See also: program-
ming support environment.

scheduler. A computer program, usually part
of an operating system, tha t schedules,
initiates, and terminates jobs.

SCN. Acronym for specification change
notice.

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

SOFTWARE ENGINEERING TERMINOLOGY

SDD. (1) Acronym for software design
description.
(2) (DoD) Acronym for software design
document. See: software design description.

IEEE

self-documented. Pertaining to source code
tha t contains comments explaining i ts
objectives, operation, and other information
useful in understanding and maintaining
the code.

Std 610.12-1990

SDP. Acronym for software development
plan.

SDR. Acronym for system design review.

second generation language (2GL). See:
assembly language.

security kernel. A small, self-contained
collection of key security-related statements
t ha t works a s a privileged par t of an
operating system, specifying and enforcing.
criteria that must be met for programs and
data to be accessed.

segment. (1) One of the subsystems o r
combinations of subsystems that make up an
overall system; for example, the accounts
payable segment of a financial system.
(2) In storage allocation, a self-contained
portion of a computer program that can be
executed without maintaining the entire
program in main storage. See also: page.
(3) A collection of data tha t is stored or
transferred a s a unit.
(4) In path analysis, a sequence of computer
program statements between two consecutive
branch points.
(5) To divide a system, computer program,
or data file into segments a s in (11, (2),
or (3).

selective choice construct. See: branch.

selective dump. A dump of designated storage
location areas only. See also: change dump;
dynamic dump; memory dump; postmortem
dump; snapshot dump; static dump.

selective trace. A variable trace that involves
only selected variables. See also: execution
trace; retrospective trace; subroutine trace;
symbolic trace; variable trace.

self-descriptiveness. The degree t o which
a system or component contains enough
information t o explain its objectives and
properties. See also: maintainability; testa-
bility; usability.

self-relative address. An address that must be
added to the address of the instruction in
which it appears t o obtain the address of the
storage location to be accessed. See also:
base address; indexed address; offset;
relative address.

semantic error. An error resulting from a
misunderstanding of the relationship of
symbols or groups of symbols t o their
meanings in a given language. Contras t
with: syntactic error.

semantics. The relationships of symbols
or groups of symbols t o their meanings
in a given language. Contras t w i th :
syntax.

semaphore. A shared variable used to syn-
chronize concurrent processes by indicating
whether an action has been completed or an
event has occurred. See also:flag; indi-
cator.

sequential. Pertaining to the occurrence of two
or more events or activities in such a man-
ner that one must finish before the next
begins. Syn: serial (2). See also: consec-
utive.

sequential cohesion. A type of cohesion in
which the output of one task performed by a
software module serves a s input t o another
task performed by the module. Contrast
with: coincidental cohesion; communica-
tional cohesion; functional cohesion; logi-
cal cohesion; procedural cohesion; temporal
cohesion.

sequential construct. See: serial construct.

serial. (1) Pertaining t o the sequential
transfer, occurrence, or processing of the
individual parts of a whole, such as the bits
of a character, using the same facilities
for successive parts. Contrast with: par-
allel (1).
(2) See: sequential.

65

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 610.12-1990

serial construct. A program construct consist-
ing of a sequence of steps not involving a
decision or loop. Syn: sequential construct.

IEEE STANDARD GLOSSARY OF

s ingle-s tep execut ion . See: single-step
opemtion.

set-up time. The period of time during which a
system or component is being prepared for a
specific operation. See also: busy time; down
time; idle time; up time.

severity. See: criticality.

shell. A computer program or routine tha t
provides an interface between the user and a
computer system or program.

s imple buffering. A buffering technique in
which a buffer is allocated to a computer pro-
gram for the duration of the program's exe-
cution. Contrast with: dynamic buffering.

simplicity. The degree to which a system or
component has a design and implementa-
tion that is straightforward and easy to un-
derstand. Contrast with: complexity.

simulation. (1) A model that behaves or oper-
ates like a given system when provided a set
of controlled inputs. See also: emulation.
(2). The process of developing o r using a
model as in (1).

s i m u l a t o r . A device, computer program, or
system that behaves or operates like a given
system when provided a set of controlled
inputs. See also: emulator.

simultaneous. Pertaining to the occurrence of
two o r more events a t the same instant of
time. Contrast with: concurrent.

simultaneous recursion. A situation in which
two software modules call each other.

single-address instruction. See: one-address
instruction.

single-level encoding. A microprogramming
technique in which different microopera-
tions are encoded as different values in the
same field of a microinstruction. Contrast
with: two-level encoding.

single-operand instruction. See: one-address
instruction.

single-step operation. A debugging technique
in which a single computer instruction, or
par t of an instruction, is executed in
response to an external signal. Syn: single-
step execution; stepby-step operation.

sizing. The process of estimating the amount
of computer storage or the number of source
lines required for a software system or
component. Contrast with: timing.

slave state. See: problem state.

snapshot dump. A dynamic dump of the
contents of one or more specified storage
areas. See also: c h a n g e dump; dynamic
dump; memory dump; postmortem dump;
selective dump; static dump.

soft error.* See: transient error.
* Deprecated.

soft failure. A failure that permits continued
operation of a system with partial opera-
tional capability. Contrast with: hard fail-
ure.

so f tware . Computer programs, procedures,
and possibly associated documentation and
data pertaining t o the operation of a com-
puter system. See also: application software;
support software; system software. Contrast
with: hardware.

software characteristic. (IEEE Std 1008-1987
[lo]) An inherent, possibly accidental, trait,
quality, or property of software (for example,
functionality, performance, attributes, de-
sign constraints, number of states, lines or
branches).

software configuration management. See:
configuration management.

software design description (SDD). (1) (IEEE
Std 1012-1986 [121) A representation of
software created t o facilitate analysis,
planning, implementation, and decision
making. The software design description is
used a s a medium for communicating
software design information, and may be

66

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

SOFTWARE ENGINEERING TERMINOLOGY

thought of as a blueprint or model of the
sy s tem.
(2) (IEEE Std 1016-1987 [131) A representation
of a software system created t o facilitate
analysis, planning, implementation, and
decision making. A blueprint of model of
the software system. The SDD is used as the
pr imary medium for communicating
software design information.

IEEE

software development process. The process by
which user needs a re translated into a
software product. The process involves
t ranslat ing user needs into software
requirements, transforming the software
requirements into design, implementing
the design in code, testing the code, and
sometimes, installing and checking out the
software for operational use. Note: These
activities may overlap or be performed itera-
tively. See also: incremental development;
rapid prototyping; spiral model; waterfall
model.

Std 610.12-1990

software development cycle. The period of
time that begins with the decision to develop
a software product and ends when the soft-
ware is delivered. This cycle typically in-
cludes a requirements phase, design phase,
implementation phase, test phase, and some-
times, installation and checkout phase.
Contrast with: software life cycle.
Notes: (1) The phases listed above may over-
lap or be performed iteratively, depending
upon the software development approach
used.
(2) This term is sometimes used t o mean a
longer period of time, either the period that
ends when the software is no longer being
enhanced by the developer, or the entire
software life cycle.

software development file (SDF). A collection
of material pertinent to the development of a
given software unit or set of related units.
Contents typically include the require-
ments, design, technical reports, code list-
ings, test plans, test results, problem reports,
schedules, and notes for the units. Syn: soft-
ware development folder; software devel-
opment notebook unit development folder.

software development folder. See: software
development file.

software development library. A software
library containing computer readable and
human readable information relevant t o a
software development effort. Syn: project
library; program support library. Contrast
with: master library; production library;
software repository; system library.

software development notebook See: software
development file.

software development plan (SDP). A project
plan for a software development project.

software diversity. A software development
technique in which two or more functionally
identical variants of a program are devel-
oped from the same specification by
different programmers o r programming
teams with the intent of providing error
detection, increased reliability, additional
documentation, or reduced probability that
programming o r compiler errors will influ-
ence the end results. See also: diversity.

software engineering. (1) The application of
a systematic, disciplined, quantifiable ap-
proach to the development, operation, and
maintenance of software; t h a t is, the
application of engineering to software.
(2) The study of approaches as in (1).

software engineering environment. The
hardware, software, and firmware used to
perform a software engineering effort. Typ-
ical elements include computer equipment,
compilers, assemblers, operating systems,
debuggers, simulators, emulators, test tools,
documentation tools, and database man-
agement systems.

software feature. (1) (IEEE Std 829-1983 [51) A
distinguishing characteristic of a software
item (for example, performance, portability,
or functionality).
(2) (IEEE Std 1008-1987 [lo]) A software
characteristic specified o r implied by
requirements documentation (for example,
functionality, performance, attributes, or
design constraints).

software item. (IEEE Std 829-1983 [51) Source
code, object code, job control code, control
data, or a collection of these items.

67

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 610.12-1990 IEEE STANDARD GLOSSARY OF

software quality metic. See: quality metric. software library. A controlled collection of
software and related documentation de-
signed to aid in software development, use,
or maintenance. Types include master
library, production library, software devel-
opment library, software repository, system
library. Syn: program library.

software life cycle. The period of time that be-
gins when a software product is conceived
and ends when the software is no longer
available for use. The software life cycle
typically includes a concept phase, require-
ments phase, design phase, implementation
phase, test phase, installation and checkout
phase, operation and maintenance phase,
and, sometimes, retirement phase. Note:
These phases may overlap or be performed
iteratively. Contrast with: software devel-
opment cycle.

EXPLORATION

REQUIREMENTS

I TEST I

Fig 15
Sample S o h m Life Cycle

software maintenance. See: maintenance (1).

software monitor. A software tool that executes
concurrently with another program and
provides detailed information about the
execution of the other program. See also:
hardware monitor; monitor.

software product. (1) The complete set of
computer programs, procedures, and possi-
bly associated documentation and data
designated for delivery to a user.
(2) Any of the individual items in (1).

software quality assurance. See: quality
assurance.

software repository. A software library provid-
ing permanent, archival storage for soft-
ware and related documentation. Contrast
with: master library; production library;
software development library; system
library.

software requirements review (SRR). (1) A
review of the requirements specified for one
or more software configuration items t o
evaluate their responsiveness to and inter-
pretation of the system requirements and to
determine whether they form a satisfactory
basis for proceeding into preliminary
design of the configuration items. See also:
system requirements review. Note: This
review is called software specification
review by the US. Department of Defense.
(2) A review as in (1) for any software
component.

software requirements specification (SRS).
(IEEE Std 1012-1986 [121) Documentation
of the essential requirements (functions,
performance, design constraints, and
attributes) of the software and its external
interfaces.

software specification review (SSR). See:
software requirements review.

software test incident. (IEEE Std 1008-1987 [loll
Any event occurring during the execution
of a software test t ha t requires investi-
gation.

software tool. A computer program used in the
development, testing, analysis, or mainte-
nance of a program or i ts documentation.
Examples include comparator, cross-refer-
ence generator, decompiler, driver, editor,
flowcharter, monitor, test case generator,
timing analyzer.

source address. The address of a device or
storage location from which data is t o
be transferred. Contrast with: destination
address.

source code. Computer instructions and data
definitions expressed in a form suitable for
input t o an assembler, compiler, or other

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

SOFTWARE ENGINEERING TERMINOLOGY

translator. Note: A source program is made
up of source code. Contrast with: object code.

IEEE
Std 610.l2-1990

preliminary and detailed design, coding,
integration, and testing, are performed
iteratively until the software is complete.
Contrast with: waterfall model. See also:
incremental development; rapid proto-
typing.

source code generator. See: Code generator (2).

source language. The language in which the
input t o a machine-aided translation
process is represented. For example, the
language used to write a computer program.
Contrast with: target language.

source program. A computer program that
must be compiled, assembled, o r otherwise
translated in order t o be executed by a
computer. Contrast with: object program.

specific address. See: absolute address.

specific code. See: absolute code.

specification. A document that specifies, in a
complete, precise, verifiable manner, the
requirements, design, behavior, or other
characteristics of a system or component,
and, often, the procedures for determining
whether these provisions have been satis-
fied. See also: formal specification; product
specification; requirements specification.

specification change notice (SCN). A docu-
ment used in configuration management to
propose, transmit, and record changes t o a
specification. See also: configuration con-
trol; engineering change; notice of revi-
sion.

specification language. A language, often a
machine-processible combination of natu-
ral and formal language, used to express the
requirements, design, behavior, or other
characteristics of a system or component.
For example, a design language or re-
quirements specification language. Con-
trast with: programming language; query
language.

specification tree. A diagram that depicts all
of the specifications for a given system and
shows their relationships to one another. See
also: documentation tree.

spiral model. A model of the software devel-
opment process in which the constituent
activities, typically requirements analysis,

spool. To read input data, or write output data,
to auxiliary or main storage for later pro-
cessing o r output, in order t o permit
inpuffoutput devices to operate concurrently
with job execution. Derived from the
acronym SPOOL for Simultaneous Periph-
eral Output On Line.

spooler. A program that initiates and controls
spooling.

SRR. (1) Acronym for software requirements
review.
(2) (DoD) Acronym for system requirements
review.

SRS. Acronym for software requirements
specification.

SSR. Acronym for software specification
review, See: software requirements review.

stand-alone. Pertaining t o hardware o r
software that is capable of performing its
function without being connected to other
components; for example, a stand-alone
word processing system.

standards. (IEEE Std 983-1986 [71) Mandatory
requirements employed and enforced t o
prescribe a disciplined uniform approach to
software development, tha t is, mandatory
conventions and practices a re in fact
standards. See also: practices; standards.

standby redundancy. In fault tolerance, the
use of redundant elements that are left inop-
erative until a failure occurs in a primary
element. Contrast with: active redundancy.

standby time. See: idle time.

starting address. The address of the first
instruction of a computer program in main
storage. Note: This address may or may not
be the same a s the program's origin,
depending upon whether there are data

69

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 610.12-1990

preceding the first instruction. Contrast
with: origin. See also: assembled origin;
loaded origin.

IEEE STANDARD GLOSSARY OF

static breakpoint. A breakpoint that can be set
a t compile time, such as entry into a given
routine. Contrast with: dynamic break-
point. See also: code bmakpoint; data break-
point; epilog breakpoint; programmable
breakpoint; pmlog breakpoint.

state. (1) A condition or mode of existence that
a system, component, or simulation may be
in; for example, the pre-flight state of an
aircraft navigation program o r the input
state of given channel.
(2) The values assumed a t a given instant by
the variables tha t define the characteristics
of a system, component, or simulation.

state data. (IEEE Std 1008-1987 [lo]) Data that
defines an internal state of the test unit and
is used to establish that state or compare with
existing states.

state diagram. A diagram that depicts the
states t ha t a system or component can
assume, and shows the events or circum-
stances that cause or result from a change
from one state to another.

state transition diagram. See: state diagram.

statement. In a programming language, a
meaningful expression tha t defines data,
specifies program actions, o r directs the
assembler or compiler. See also: assign-
ment statement; control statement; decla-
ration.

statement testing. Testing designed t o exe-
cute each statement of a computer pro-
gram. Contrast with: branch testing; path
testing.

static. Pertaining to an event o r process that
occurs without computer program execution;
for example, static analysis, static binding.
Contrast with: dynamic.

static analysis. The process of evaluating a
system o r component based on its form,
structure, content, or documentation. Con-
trast with: dynamic analysis. See also:
inspection; walk-through.

static binding. Binding performed prior
t o the execution of a computer program
and not subject t o change during pro-
gram execution. Contrast with: dynamic
binding.

static dump. A dump that is produced before or
after the execution of a computer program.
Contrast with: dynamic dump. See also:
change dump; memory dump; postmortem
dump; selective dump; snapshot dump.

static error. An error that is independent of the
time-varying nature of an input. Contrast
with: dynamic error.

status code. A code used to indicate the results
of a computer program operation. For
example, a code indicating a carry, an
overflow, or a parity error. Syn: condition
code.

step-by-step operation. See: single-step oper-
ation.

stepwise refinement. A software development
technique in which data and processing
steps are defined broadly a t first and then
further defined with increasing detail. See
also: data structure-centered design; input-
processoutput; modular decomposition;
object-oriented design; rapid prototyping
structured design; transaction analysis;
transform analysis.

stop. To terminate the execution of a compu-
ter program. Syn: halt (1). Contrust with:
pause.

storage allocation. An element of computer
resource allocation, consisting of assigning
storage areas to specific jobs and perform-
ing related procedures, such a s transfer of
data between main and auxiliary storage, to
support the assignments made. See also:
buffer; contiguous allocation; cyclic search;
memory compaction; overlay; paging; vir-
tual storage.

storage breakpoint. See: data breakpoint.

storage capacity. The maximum number of
items tha t can be held in a given storage

70

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

SOFTWARE ENGINEERING TERMINOLOGY

device; usually measured in words or bytes.
See also: channel capacity; memory
capacity.

IEEE
Std 610.12-1990

into smaller, more specific entities. Note: The
result is not necessarily the same as tha t
shown in a call graph. Syn: hierarchy chart;
program structure chart. Contrast with: call
graph. storage efficiency. The degree t o which a

system or component performs its desig-
nated functions with minimum consump-
tion of available storage. See also: execution
efficiency.

store. (1) To place or retain data in a storage
device.
(2) To copy computer instructions or data
from a register to internal storage or from
internal storage t o external storage. Con-
trast with: load (2). See also: fetch; move.

straight-line code. A sequence of computer
instructions in which there are no loops.

straight-line coding. A programming tech-
nique in which loops are avoided by stating
explicitly and in full all of the instructions
that would be involved in the execution of
each loop. See also: unwind.

stratified language. A language that cannot be
used as its own metalanguage. Examples
include FORTRAN, COBOL. Contrast with:
unstratified language.

stress testing. Testing conducted to evaluate a
system or component a t or beyond the limits
of i ts specified requirements. See also:
boundary value.

strong typing. A feature of some program-
ming languages tha t requires the type of
each data item to be declared, precludes the
application of operators to inappropriate data
types, and prevents the interaction of data
items of incompatible types.

structural testing. Testing that takes into
account the internal mechanism of a system
or component. Types include branch testing,
path testing, statement testing. Syn: glass-
box testing; white-box testing. Contrast with:
functional testing (1).

structure chart. A diagram that identifies
modules, activities, o r other entities in a
system or computer program and shows how
larger or more general entities break down

System

Subsystem Q Subsystem Q
Program la

Fig 16
structurechart

structure clash. In software design, a situation
in which a module must deal with two or
more data sets that have incompatible data
structures. See also: data structure-centered
design; order clash.

structured design. (1) Any disciplined ap-
proach t o software design that adheres t o
specified rules based on principles such as
modularity, top-down design, and stepwise
refinement of data, system structures, and
processing steps. See also: data structure-
centered design; input-process-output; mod-
ular decomposition; object-oriented design;
rapid prototyping; stepwise refinement;
transaction analysis; transform analysis.
(2) The result of applying the approach
in (1).

structured program. A computer program
constructed of a basic set of control struc-
tures, each having one entry and one exit.
The set of control structures typically in-
cludes: sequence of two o r more instruc-
tions, conditional selection of one of two or
more sequences of instructions, and repeti-
tion of a sequence of instructions. See also:
structured design.

structured programming. Any software de-
velopment technique tha t includes struc-

n

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 610.12-1990 IEEE STANDARD GLOSSARY OF

the subtype are the same as those of the
original data type. See also: derived type.

tured design and results in the development
of structured programs.

structured programming language. A pro-
gramming language that provides the struc-
tured program constructs, namely, single-
entry-single-exit sequences, branches, and
loops, and facilitates the development of
structured programs. See also: block-
structured language.

’

stub. (1) A skeletal or special-purpose imple-
mentation of a software module, used to
develop o r test a module tha t calls or is
otherwise dependent on it.
(2) A computer program statement substitut-
ing for the body of a software module that is
or will be defined elsewhere.

subprogram. A separately compilable, exe-
cutable component of a computer program.
Note: The terms “routine,” “subprogram,”
and “subroutine” are defined and used
differently in different programming lan-
guages; the preceding definition is ad-
vanced as a proposed standard. See also:
coroutine; main program; routine; subrou-
tine.

subroutine. A routine that returns control to
the program or subprogram that called it.
Note: The terms “routine,” “subprogram,”
and “subroutine” are defined and used dif-
ferently in different programming lan-
guages; the preceding definition is ad-
vanced a s a proposed standard. Contrast
with: coroutine. See also: closed subroutine;
open submutine.

subroutine trace. A record of all or selected
subroutines o r function calls performed
during the execution of a computer program
and, optionally, the values of parameters
passed to and returned by each subroutine or
function. Syn: call trace. See also: execu-
tion trace; retrospective trace; subroutine
trace; symbolic trace; variable trace.

subsystem. A secondary or subordinate
system with a larger system.

subtype. A subset of a data type, obtained by
constraining the set of possible values of the
data type. Note: The operations applicable to

supervisor. See: supervisory program

supervisor state, In the operation of a computer
system, a state in which the supervisory
program is executing. This state usually
has higher priority than, and precludes
the execution of, application programs.
S y n : executive state; master state;
privileged state. Contrast with: problem
State.

supervisory program. A computer program,
usually part of an operating system, that
controls the execution of other computer
programs and regulates the flow of work in
a computer system. Syn: control program;
executive; executive program; supervisor.
See also: supervisor state.

support. The set of activities necessary to
ensure that an operational system or compo-
nent fulfills i t s original requirements
and any subsequent modifications to those
requirements. For example, software o r
hardware maintenance, user training.
See also: software life cycle; system life
cycle.

support manual. A document that provides the
information necessary to service and
maintain an operational system or compo-
nent throughout i ts life cycle. Typically
described are the hardware and software
that make up the system or component and
procedures for servicing, repairing, o r re-
programming it. Syn: maintenance man-
ual. See also: diagnostic manual; installa-
tion manual; operator manual; program-
mer manual; user manual.

support software. Software that aids in the de-
velopment or maintenance of other software,
for example, compilers, loaders, and other
utilities. Contrast with: application soft-
ware. See also: system software.

swap. (1) An exchange of the contents of two
storage areas, usually an area of main
storage with an area of auxiliary storage.
See also: roll in; roll out.
(2) To perform an exchange as in (1).

72

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

SOFTWARE ENGINEERING TERMINOLOGY

symbol table. A table that presents program
symbols and their corresponding addresses,
values, and other attributes.

IEEE
Std 610.12-1990

symbolic address. An address expressed as a
name or label that must be translated t o the
absolute address of the device or storage
Iocation t o be accessed. Contrast wi th:
absolute address.

symbolic execution. A software analysis
technique in which program execution is
simulated using symbols, such a s variable
names, rather than actual values for input
data, and program outputs are expressed a s
logical o r mathematical expressions
involving these symbols.

symbolic language. A programming lan-
guage t h a t expresses operations and
addresses in symbols convenient t o humans
rather than in machine language. Exam-
ples are assembly language, high order
language. Contrast with: machine lan-
guage.

symbolic trace. A record of the source
statements and branch outcomes that are
encountered when a computer program is
executed using symbolic, rather than actual,
values for input data. See also: execution
trace; retrospective trace; subroutine trace;
variable trace.

syntactic error. A violation of the structural or
grammatical rules defined for a language;
for example, using the statement B + C = A in
Fortran, rather than the correct A = B + C.
Syn: syntax error. Contrast with: semantic
error.

syntax. The structural or grammatical rules
that define how the symbols in a language
are to be combined to form words, phrases,
expressions, and other allowable constructs.
Contrast with: semantics.

syntax error. See: syntactic error.

synthetic address. See: generated address.

system. A collection of components organized
to accomplish a specific function or set of
functi ons.

system design review (SDR). A review
conducted t o evaluate the manner in which
the requirements for a system have been
allocated to configuration items, the system
engineering process t h a t produced the
allocation, the engineering planning for the
next phase of the effort, manufacturing
considerations, and the planning for
production engineering. See also: critical
design review; preliminary design review.

system development cycle. The period of time
that begins with the decision t o develop a
system and ends when the system is
delivered to its end user. Note: This term is
sometimes used t o mean a longer period of
time, either the period that ends when the
system is no longer being enhanced, or the
entire system life cycle. Contrast with: sys-
tem life cycle. See also: software develop-
ment cycle.

system flowchart (flow chart). See: flowchart.

system library. A software library containing
system-resident software t h a t can be
accessed for use or incorporated into other
programs by reference; for example, a
macro library. Contrast with: master li-
brary; production library; software devel-
opment library; software repository.

system life cycle. The period of time that
begins when a system is conceived and ends
when the system is no longer available for
use. See also: system development cycle;
software life cycle.

system model. In computer performance eval-
uation, a representation of a system depict-
ing the relationships between workloads
and performance measures in the system.
See also: workload model.

system profile. A set of measurements used in
computer performance evaluation, describ-
ing the proportion of time each of the major
resources in a computer system is busy,
divided by the time tha t resource is
avail ab1 e.

system requirements review (SRR). A review
conducted t o evaluate the completeness and
adequacy of the requirements defined for a

73

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

LEEE
Std610.12-1990 IEEE STANDARD GLOSSARY OF

istrative resources t o plan, organize, and
control engineering functions.

system; to evaluate the system engineering
process that produced those requirements; to
assess the results of system engineering
studies; and to evaluate system engineering
plans. See also: software requirements
review.

system resources chart. See: block diagram.

system software. Software designed to facili-
tate the operation and maintenance of a
computer system and its associated pro-
grams; for example, operating systems,
assemblers, utilities. Contrast with: appli-
cation software. See also: support soft-
ware.

system testing. Testing conducted on a com-
plete, integrated system to evaluate the sys-
tem's compliance with i ts specified re-
quirements. See also: component testing;
integration testing; interface testing; unit
testing.

target language. The language in which the
output from a machine-aided translation
process is represented. For example, the
language output by an assembler or com-
piler. Syn: object language. Contrast with:
source language.

target machine. (1) The computer on which a
program is intended t o execute. Contrast
with: host machine (1).
(2) A computer being emulated by another
computer. Contrast with: host machine (2).

target program. See: object program.

task. (1) A sequence of instructions treated as
a basic unit of work by the supervisory
program of an operating system.
(2) In software design, a software component
tha t can operate in parallel with other
software components.

taxonomy. (IEEE Std 1002-1987 [91) A scheme
tha t partitions a body of knowledge and
defines the relationships among the pieces.
I t is used for classifying and understanding
the body of knowledge.

technical management. (IEEE Std 1002-1987
[91) The application of technical and admin-

technical standard. (IEEE Std 1002-1987 [91) A
standard that describes the characteristics of
applying accumulated technical or man-
agement skills and methods in the creation
of a product or performing a service.

techniques. (IEEE Std 983-1 986 [71) Technical
and managerial procedures tha t aid in the
evaluation and improvement of the software
development process.

temporal cohesion. A type of cohesion in which
the tasks performed by a software module
are all required a t a particular phase of
program execution; for example, a module
containing all of a program's initialization
tasks. Contrast with: coincidental cohesion;
communicational cohesion; functional co-
hesion; logical cohesion; procedural cohe-
sion; sequential cohesion.

termination construct. A program construct
that results in a halt or exit.

test. (1) An activity in which a system or
component is executed under specified
conditions, the results are observed or
recorded, and an evaluation is made of
some aspect of the system or component.
(2) To conduct an activity as in (1).
(3) (IEEE Std 829-1983 [51) A set of one or
more test cases.
(4) (IEEE Std 829-1983 [SI) A set of one or
more test procedures.
(5) (IEEE Std 829-1983 [51) A set of one or
more test cases and procedures.

test bed. An environment containing the
hardware, instrumentation, simulators,
software tools, and other support elements
needed to conduct a test.

test case. (1) A set of test inputs, execu-
tion conditions, and expected results devel-
oped for a particular objective, such a s t o
exercise a particular program path or t o
verify compliance with a specific require-
ment.
(2) (IEEE Std 829-1983 153) Documentation
specifying inputs, predicted results, and a
set of execution conditions for a test item.

74

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

SOFTWARE ENGINEERING TERMINOLOGY

See also: test case generator; test case
specification.

IEEE
Std 610.1 2-1 990

test incident report. A document that describes
an event that occurred during testing which
requires further investigation. See also: test
case specification; test item transmittal re-
port; test log; test plan; test procedure; test
Ireport.

test case generator. A software tool that accepts
as input source code, test criteria, specifica-
tions, or data structure definitions; uses
these inputs to generate test input data;
and, sometimes, determines expected
results. S y n : test data generator; test
generator.

test case specification. A document that speci-
fies the test inputs, execution conditions, and
predicted results for an item to be tested.
Syn: test description; test specification. See
also: test incident report; test item transmit-
tal report; test log; test plan; test procedure;

test coverage. The degree to which a given test
or set of tests addresses all specified re-
quirements for a given system or com-
ponent.

test item. (IEEE Std 829-1983 151) A software
item which is an object of testing.

test item transmittal report. (IEEE Std 829-1983
[51) A document that identifies one or more
items submitted for testing. I t contains
current status and location information. See
also: test case specification; test incident
report; test log; test plan; test procedure; test
report,

test log. A chronological record of all relevant
details about the execution of a test. See also:
test case specification; test incident report;
test item transmittal report; test plan; test
pmced~testrceport.

test criteria. The criteria that a system or com- test objective. (IEEE Std 1008-1987 [loll An
ponent must meet in order to pass a given identified set of software features t o be
test. See also: acceptance criteria; pass-fail measured under specified conditions by
criteria. comparing actual behavior with the required

behavior described in the software documen-
tation. test data generator. See: test case generator.

test description. See: test case specification.

test design. (IEEE Std 829-1983 [51) Documenta-
tion specifying the details of the test
approach for a software feature or com-
bination of software features and identify-
ing the associated tests.

test documentation. Documentation describ-
ing plans for, o r results of, the testing
of a system or component. Types include
test case specification, test incident report,
test log, test plan, test procedure, test
report.

test driver. A software module used to invoke a
module under test and, often, provide test
inputs, control and monitor execution, and
report test results. Syn: test harness.

test generator. See: test case generator.

test harness. See: test driver.

test phase. The period of time in the software
life cycle during which the components of a
software product are evaluated and inte-
grated, and the software product is evaluated
to determine whether or not requirements
have been satisfied.

test plan. (1) (IEEE Std 829-1983 [51) A docu-
ment describing the scope, approach, re-
sources, and schedule of intended test ac-
tivities. I t identifies test items, the features
to be tested, the testing tasks, who will do
each task, and any risks requiring contin-
gency planning.
(2) A document that describes the technical
and management approach to be followed for
testing a system or component. Typical con-
tents identify the items to be tested, tasks to
beperformed, responsibilities, schedulesand
required resources for the testing activity.
See also: test case specification; test incident
report; test item transmittal report; test log;
test pmcedm; test reporti

75

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 610.12-1990

test procedure. (1) Detailed instructions for the
set-up, execution, and evaluation of results
for a given test case.
(2) A document containing a set of associ-
ated instructions as in (1).
(3) (IEEE Std 829-1983 153) Documentation
specifying a sequence of actions for the exe-
cution of a test.
Syn: test procedure specification; test script.
See also: test case specification; test incident
report; test item transmittal report; test log;
testplan;testreporL

IEEE STANDARD GLOSSARY OF

of the corresponding test items. See also: test
case specification; test incident report, test
item transmittal report; test log; test plan;
testplXK!EdUE?;testrepXt

test procedure specification. See: test proce-
dure.

test readiness review (TRR). (1) A review
conducted to evaluate preliminary test re-
sults for one or more configuration items; to
verify that the test procedures for each con-
figuration item are complete, comply with
test plans and descriptions, and satisfy test
requirements; and to verify that a project is
prepared to proceed to formal testing of the
Configuration items.
(2) A review as in (1) for any hardware or
software component.
Contrast with: code review; formal qualifi-
cation review; design review; requirements
review.

test repeatability. An attribute of a test, indi-
cating tha t the same results are produced
each time the test is conducted.

test report. A document that describes the con-
duct and results of the testing carried out for
a system o r component. Syn: test summary
report. See also: test case specification; test
incident report; test item transmittal report;
test log; test plan; test procedure.

test script. See: test procedure.

test set architecture. (IEEE Std 1008-1987 [lo])
The nested relationships between sets of test
cases tha t directly reflect the hierarchic
decomposition of the test objectives.

test specification. See: test case specification.

test unit. (IEEE Std 1008-1987 [lo]) A set of one
or more computer program modules together
with associated control data, (for example,
tables), usage procedures, and operating pro-
cedures tha t satisfy the following condi-
tions: (a) All modules are from a single
computer program; (b) At least one of the
new or changed modules in the set has not
completed the unit test; (c) The set of mod-
ules together with its associated data and
procedures are the sole object of a testing
process.

testability. (1) The degree to which a system or
component facilitates the establishment of
test criteria and the performance of tests to
determine whether those criteria have been
met.
(2) The degree t o which a requirement is
stated in terms that permit establishment of
test criteria and performance of tests to
determine whether those criteria have been
met.

testing. (1) The process of operating a system
or component under specified conditions,
observing or recording the results, and
making an evaluation of some aspect of the
system or component.
(2) (IEEE Std 829-1983 [51) The process of an-
alyzing a software item to detect the differ-
ences between existing and required condi-
tions (that is, bugs) and to evaluate the
features of the software items.
See also: acceptance testing; benchmark;
checkout; component testing; development
testing; dynamic analysis; formal testing;
functional testing; informal testing; inte-
gration testing; interface testing; loopback
testing; mutation testing; operational test-
ing; performance testing; qualification test-
ing; regression testing; stress testing;
structural testing; system testing; unit
testing.

text editor. A computer program, often part
of a word processing system, that allows a
user to enter, alter, and view text. Syn:
editor.

test SU- report. (IEEE Std 829-1983 [5]) A
document summarizing testing activities
and results. I t also contains an evaluation

76

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

SOFTWARE ENGINEERING TERMINOLOGY

think time. The elapsed time between the end
of a prompt or message generated by an
interactive system and the beginning of a
human user's response. See also: port-to-
port time; response time; turnamund time.

IEEE
Std 610.12-1990

system by interleaving the execution of their
program. Note: Time sharing may be im-
plemented by time slicing, priority-based
interrupts, or other scheduling methods.

third generation language (3GL). See: high
order language.

thrashing. A state in which a computer system
is expending most or all of its resources on
overhead operations, such as swapping data
between main and auxiliary storage, rather
than on intended computing functions.

three-address instruction. A computer in-
struction that contains three address fields.
For example, a n instruction to add the
contents of locations A and B, and place the
results in location C. Contrast with: one-
address instruction; two-address instruc-
tion; four-address instruction; zero-address
instruction.

three-plus-one address instruction. A com-
puter instruction that contains four address
fields, the fourth containing the address of
the instruction to be executed next. For ex-
ample, an instruction to add the contents of
locations A and B, place the results in loca-
tion C, then execute the instruction at loca-
tion D. Contrast with: one-plus-one address
instruction; two-plus-one address instruc-
tion; four-plusane address instruction.

throughput. The amount of work that can
be performed by a computer system or
component in a given period of time; for
example, number of jobs per day. See also:
turnaround time; workload model.

tier chart. See: call graph.

time out. (1) A condition that occurs when a
predetermined amount of time elapses with-
out the occurrence of an expected event. For
example, the condition that causes termina-
tion of an on-line process if no user input is
received within a specified period of time.
(2) To experience the condition in (1).

time sharing. A mode of operation that permits
two or more users to execute computer pro-
grams concurrently on the same computer

time slicing. A mode of operation in which two
or more processes are each assigned a
small, fixed amount of continuous process-
ing time on the same processor, and the
processes execute in a round-robin manner,
each for its allotted time, until all are
completed.

timing. The process of estimating or measur-
ing the amount of execution time required
for a software system or component. Con-
trast with: sizing.

timing analyzer. A software tool tha t
estimates or measures the execution time of
a computer program or portion of a computer
program, either by summing the execution
times of the instructions along specified
paths or by inserting probes at specified
points in the program and measuring the
execution time between probes.

top-down. Pertaining t o an activity that starts
with the highest level component of a hierar-
chy and proceeds through progressively
lower levels; for example, top-down design;
top-down testing. Contrast with: bottom-up.
See also: critical piece first.

total correctness. In proof of correctness, a
designation indicating tha t a program's
output assertions follow logically from its
input assertions and processing steps, and
that, in addition, the program terminates
under all specified input conditions. Con-
trast with: partial correctness.

trace. (1) A record of the execution of a com-
puter program, showing the sequence of
instructions executed, the names and values
of variables, or both. Types include execu-
tion trace, retrospective trace, subroutine
trace, symbolic trace, variable trace.
(2) To produce a record as in (1).
(3) To establish a relationship between two or
more products of the development process;
for example, t o establish the relationship
between a given requirement and the design
element that implements that requirement.

77

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

EEE

traceability. (1) The degree to which a rela-
tionship can be established between two or
more products of the development process,
especially products having a predecessor-
successor or master-subordinate relation-
ship to one another; for example, the degree
to which the requirements and design of a
given software component match. See also:
consistency.
(2) The degree to which each element in
a software development product establishes
i ts reason for existing; for example, the
degree to which each element in a bubble
chart references the requirement tha t it
satisfies.

Std 610.12-1990 IEEE STANDARD GLOSSARY OF

transfer. (1) To send data from one place and
receive it at another.
(2) To relinquish control by one process and
assume it at another, either with expectation
of return (see call) or without such expecta-
tion (see jump).

traceability matrix. A matrix that records the
relationship between two or more products of
the development process; for example, a
matrix that records the relationship between
the requirements and the design of a given
software component.

trailer. Identification or control information
placed at the end of a file or message.
Contrast with: header (2).

trailing decision. A loop control tha t is
executed after the loop body. Contrast with:
leading decision. See also: UNTIL.

transaction. In software engineering, a data
element, control element, signal, event, or
change of state tha t causes, triggers, or
initiates an action or sequence of actions.

transaction analysis. A software development
technique in which the structure of a system
is derived from analyzing the transactions
that the system is required to process. Syn:
transaction-centered design. See also: data
structure-centered design; input-process-
output; modular decomposition; object-
oriented design; rapid prototyping stepwise
refinement; structured design; transform
analysis.

transaction-centered design. See: transaction
analysis.

transaction matrix. A matrix that identifies
possible requests for database access and
relates each request to information cate-
gories o r elements in the database.

transform analysis. A software development
technique in which the structure of a system
is derived from analyzing the flow of data
through the system and the transformations
that must be performed on the data. S y n :
transformation analysis; transform-cen-
tered design. See also: data structure-cen-
tered design; input-process-output; modular
decomposition; object-oriented design;
rapid prototyping; stepwise refinement;
structured design; transaction analysis.

transform-centered design. See: transform
analysis.

transformation analysis. See: transform
analysis.

transient error. An error that occurs once, or
at unpredictable intervals. See also: inter-
mittent fault; random failure.

translator. A computer program that trans-
forms a sequence of statements expressed in
one language into an equivalent sequence of
statements expressed in another language.
See also: assembler; compiler.

transportability. See: portability.

trap. (1) A conditional jump to an exception or
interrupt handling routine, often automati-
cally activated by hardware, with the loca-
tion from which the jump occurred recorded.
(2) To perform the operation in (1).

TR.R. Acronym for test readiness review.

turnaround time. The elapsed time between
the submission of a job to a batch processing
system and the return of completed output.
See also: port-to-port time; response time;
think time.

turnkey. Pertaining to a hardware or software
system delivered in a complete, operational
state.

78

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

SOFTWARE ENGINEERING TERMINOLOGY

two-address instruction. A computer instruc-
tion that contains two address fields. For
example, an instruction to add the contents
of A to the contents of B. Syn: double-operand
instruction. Contrast with: one-address in-
struction; three-address instruction; four-
address instruction; zero-address instruc-
tion.

IEEE
Std 610.12-1990

undirected graph. A graph (sense 2) in which
no direction is implied in the internode
connections. Contrast with: directed graph.

two-level address. An indirect address that
specifies the storage location containing the
address of the desired operand. See also: n-
level address.

two-level encoding. A microprogramming
technique in which different microopera-
tions may be encoded identically into the
same field of a microinstruction, and the
one that is executed depends upon the value
in another field internal or external to the
microinstruction. See also: bit steering;
residual control. Contrast with: single-level
encoding.

two-plus-one address instruction. A computer
instruction tha t contains three address
fields, the third containing the address of the
instruction to be executed next. For example,
an instruction to add the contents of A to the
contents of B, then execute the instruction a t
location C. Contrast with: one-plus-one ad-
dress instruction; three-plus-one address
instruction; four-plus-one address instruc-
tion.

type. See: data type.

UDF. Acronym for unit development folder.
See: software development file.

unconditional branch.* See: unconditional
jump.
*Deprecated.

unconditional jump. A jump that takes place
regardless of execution conditions. Contrast
with: conditional jump.

unit. (1) A separately testable element speci-
tied in the design of a computer software
component.
(2) A logically separable part of a computer
program.
(3) A software component t ha t is not
subdivided into other components.
(4) (IEEE Std 1008-1987 [loll See: test unit.
Note: The terms “module,” “component,”
and “unit” are often used interchangeably
or defined t o be sub-elements of one another
in different ways depending upon the
context. The relationship of these terms is
not yet standardized.

unit development folder (UDF). See: software
development file.

unit requirements documentation. (IEEE Std
1008-1987 [lo]) Documentation that sets forth
the functional, interface, performance, and
design constraint requirements for a test
unit.

unit testing. Testing of individual hardware
or software units or groups of related units.
See also: component testing; integration
testing; interface testing; system testing.

unpack. To recover the original form of one or
more data items from packed data. Contrast
with: pack.

unstratified language. A language that can be
used as its own metalanguage; for example,
English, German. Contrast with: stratified
language.

UNTIL. A single-entry, single-exit loop, in
which the loop control is executed after the
loop body. Syn: post-tested iteration. Con-
trast with: closed loop; WHILE. See also:
trailing decision.

underflow exception. An exception that occurs
when the result of an arithmetic operation is
too small a fraction to be represented by the
storage location designated to receive it. See
also: addressing exception; data exception;
operation exception; overflow exception;
pmtection exception.

Fig 17
UNTIL Construct

79

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

IEEE

u n w i n d . In programming, to state explicitly
and in full all of the instructions involved
in multiple executions of a loop. See also:
straightline coding.

Std 610.12-1990 IEEE STANDARD GLOSSARY OF

ically described are system or component
capabilities, limitations, options, permitted
inputs, expected outputs, possible error mes-
sages, and special instructions. Note : A
user manual is distinguished from an op-
erator manual when a distinction is made
between those who operate a computer system
(mounting tapes, etc.) and those who use the
system for its intended purpose. Syn: user
guide. See also: data input sheet; diagnostic
manual; installation manual; operator
manual; programmer manual; support
manual; user manual.

up. Pertaining to a system or component that is
operational and in service. Such a system is
either busy or idle. Contrast with: down. See
also: busy; idle.

up time. The period of time during which a
system or component is operational and in
service; that is, the sum of busy time and
idle time. Contrast with: d o w n time. See
also: b u s y time; idle time; mean time
between failures; setup time.

upward compatible. Pertaining to hardware or
software that is compatible with a later or
more complex version of itself; for example,
a program that handles files created by a
later version of itself. Contrast with: down-
ward compatible.

u p w a r d compression. In software design, a
form of demodularization in which a subor-
dinate module is copied in-line into the body
of a superordinate module. Contrast with:
lateral compression; downward compres-
sion.

u s a b i l i t y . The ease with which a user can
learn t o operate, prepare inputs for, and
interpret outputs of a system or component.

user documentation. Documentation describ-
ing the way in which a system or component
is to be used to obtain desired results. See
also: data input sheet; user manuaL

user friendly. Pertaining t o a computer sys-
tem, device, program, o r document designed
with ease of use as a primary objective.

user guide. See: user manual.

user in te r face . An interface that enables
information to be passed between a human
user and hardware or software components
of a computer system.

user manual. A document that presents the
information necessary to employ a system
or component to obtain desired results. Typ-

user state. See: problem state.

uti l i ty . A software tool designed to perform
some frequently used support function. For
example, a program t o copy magnetic
tapes.

utilization. In computer performance evalua-
tion, a ratio representing the amount of time
a system or component is busy divided by the
time it is available. See also: busy time; idle
time ; up time.

V&V. A c r o n y m for v e r i f i c a t i o n and
validation.

validation. The process of evaluating a sys-
tem or component during or at the end of the
development process to determine whether it
satisfies specified requirements. Contrast
with: verification.

value trace. See: variable trace.

variable. A quantity or data item whose value
can change; for example, the variable
Current-time. Contrast with: constant. See
also: global variable; local variable.

variable trace. A record of the name and
values of variables accessed or changed
during the execution of a computer program.
Syn: data-flow trace; data trace; value
trace. See also: execution trace; retrospec-
tive trace; subroutine trace; symbolic
trace.

v a r i a n t . In fault tolerance, a version of a
program resulting from the application of
software diversity.

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

SOFTWARE ENGINEERING TERMINOLOGY

VDD. Acronym for version description
document.

IEEE

virtual address. In a virtual storage system,
the address assigned t o an auxiliary storage
location to allow that location to be accessed
as though i t were par t of main storage.
Contrast with: real address.

Std 610.12-1990

verification. (1) The process of evaluating a
system or component t o determine whether
the products of a given development phase
satisfy the conditions imposed at the start of
that phase. Contrast with: validation.
(2) Formal proof of program correctness.
See: p d of correctness.

verification and validation (V&V). The pro-
cess of determining whether the require-
ments for a system or component are com-
plete and correct, the products of each
development phase fulfill the requirements
or conditions imposed by the previous
phase, and the final system o r compon’ent
complies with specified requirements. See
also: independent verification and valida-
tion.

version. (1) An initial release or re-release
of a computer software Configuration item,
associated with a complete compilation or
recompilation of the computer software
configuration item.
(2) An initial release or complete re-release
of a document, as opposed to a revision
resulting from issuing change pages t o a
previous release.
See also: configuration control; version
description document.

version description document (VDD). A
document that accompanies and identifies a
given version of a system or component.
Typical contents include an inventory of
system or component parts, identification of
changes incorporated into this version, and
installation and operating information
unique to the version described.

vertical microinstruction. A microinstruction
that specifies one of a sequence of operations
needed t o carry out a machine language
instruction. Note: Vertical microinstruc-
tions are relatively short, 12 to 24 bits, and
are called “vertical” because a sequence of
such instruction, normally listed vertically
on a page, are required t o carry out a single
machine language instruction. Contras t
with: diagonal microinstruction; horizontal
microinstruction.

virtual memory. See: virtual storage.

virtual storage. A storage allocation technique
in which auxiliary storage can be addressed
as though i t were part of main storage. Por-
tions of a user’s program and data are
placed in auxiliary storage, and the operat-
ing system automatically swaps them in
and out of main storage as needed. S y n :
multilevel storage, virtual memory. Con-
trast with: real storage. See also: virtual
address; paging (2).

waiver. A written authorization to accept a
configuration item or other designated item
which, during production or after having
been submitted for inspection, is found to
depart from specified requirements, but is
nevertheless considered suitable for use as
is or after rework by an approved method.
See also: configuration control. Contrast
with: deviation; engineering change.

walk-through. A static analysis technique in
which a designer or programmer leads
members of the development team and other
interested parties through a segment of
documentation or code, and the participants
ask questions and make comments about
possible errors, violation of development
standards, and other problems.

waterfall model. A model of the software de-
velopment process in which the constituent
activities, typically a concept phase, re-
quirements phase, design phase, implemen-
tation phase, test phase, and installation and
checkout phase, are performed in that order,
possibly with overlap but with little or no
iteration. Contrast with: incremental devel-
opment; rapid pmtotyping; spiral modeL

wearout-failure period. The period in the life
cycle of a system or component during
which hardware failures occur at an in-
creasing rate due to deterioration. Contrast
with: constant-failure period; early-failure
period. See also: bathtub curve.

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 61012-1990 IEEE STANDARD GLOSSARY OF

WHILE. A single-entry, single-exit loop in
which the loop control is executed before the
loop body. Syn: pre-tested iteration. Contrast
with: closed loop; UNTIL. See also: leading
decision.

workload model. A model used in computer
performance evaluation, depicting resource
utilization and performance measures for
anticipated or actual workloads in a com-
puter system. See also: system model.

write. To record data in a storage device or on
a data medium. Contrast with: read.

zero-address instruction. A computer instruc-
tion that contains no address fields. Con-
trast with: one-address instruction; two-
address instruction; three-address instruc-
tion; four-address instruction.

Fig 18
WHILE Construct

white box. See: glass box. 4. Bibliography

white-bog testing. See: structural testing.

word. (1) A sequence of bits. or characters that
is stored, addressed, transmitted, and oper-
ated on a s a unit within a given computer.
Syn: computer word.
(2) An element of computer storage tha t
can hold a sequence of bits or characters as
in (1).
(3) A sequence of bits or characters that has
meaning and is considered an entity in
some language; for example, a reserved
word in a computer language.
See also: bit; byte.

working area. See: working space.

working set. In the paging method of storage
allocation, the set of pages that are most
likely to be resident in main storage a t any
given point of a program's execution.

working space. That portion of main storage
that is assigned to a computer program for
temporary storage of data. Syn: working
area, working storage.

[l l IEEE Std 610.1-see IEEE Std 1084-1986,
IEEE Standard Glossary of Mathematics of
Computing Terminology (ANSI) [1112

[21 IEEE Std 610.5-1990, IEEE Standard
Glossary of Data Management Termi-
no 1 o gy .

[31 IEEE S M 729-1983, IEEE Standard Glossary
of Software Engineering Terminology
(AN S I).

[41 IEEE Std 828-1983, IEEE Standard for Soft-
ware Configuration Management Plans
(AN S I).

[51 IEEE Std 829-1983, IEEE Standard for
Software Test Documentation (ANSI).

[61 IEEE Std 830-1984, IEEE Guide for Software
Requirements Specifications (ANSI).

[71 IEEE Std 983-1986, IEEE Guide for Software
Quality Assurance Planning (ANSI).

working storage. See: working space.

workload. The mix of tasks typically run on a
given computer system. Major characteris-
tics include input/output requirements,

[81 IEEE Std 990-1987, IEEE Recommended
Practice for Ada a s a Program Design Lan-
guage (ANSI).

amount and kinds of computation, and com-
'IEEE publications are available from the IEEE Service

puter required* See Center, Insitute of Electrical and Electronics Engineers,
model. 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331.

-

82

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

SOFTWARE ENGINEERING TERMINOLOGY

[91 IEEE Std 1002-1987, IEEE Standard Taxon-
omy for Software Engineering Standards
(ANSI).

D O 1 IEEE Std 1008-1987, IEEE Standard for
Software Unit Testing (ANSI).

U11 IEEE Std 1084-1986, IEEE Standard Glos-
sary of Mathematics of Computing Terminol-
ogy (ANSI).

[121 IEEE Std 1012-1986, IEEE Standard for
Software Verification and Validation Plans
(ANSI).

1131 IEEE Std 101 6-1 987, IEEE Recommended
Practice for Software Design Descriptions
(ANSI).

IEEE
Std 610.12-1990

When the following documents are completed,
approved, and published by IEEE, they will
become a part of the Bibliography of this
standard:

[141 P610.7, Draft Standard Glossary of
Computer Networking Terminology.

[151 P610.8, Draft Standard Glossary of
Artificial Intelligence Terminology.

[I61 P610.9, Draft Standard Glossary of
Computer Security and Privacy Termi-
nology.

[171 P610.13, Draft Standard Glossary of
Computer Languages Terminology.

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

THIS PAGE WAS
BLANK IN THE ORIGINAL

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 29,2025 at 19:22:33 UTC from IEEE Xplore. Restrictions apply.

	1 Scope
	Glossary Structure
	Definitions for Software Engineering Terms
	4 Bibliography
	Block Diagram
	Box Diagram
	Bubble Chart
	Call Graph
	Case Construct
	Data Flow Diagram
	Data Structure Diagram
	Directed Graph
	Documentation Tree
	Fig 10 Flowchart
	Graph
	Fig 12 Graph
	Fig 13 If-Then-Else Construct
	Fig 14 Input-Process-Output Chart
	Sample Software Life Cycle
	UNTIL Construct
	WHILE Construct

