
Identity
Management

and
Access Control

in
Multi-clouds

TETRATE

January 23rd-24th, 2020

 Day 2
Welcome

TETRATE 7:30 am

Panelist:
oba

Sec Architecture,
HSBC

Panel:
Experiences – Early Adopters

Moderator: (NOTE: This portion will not be webcast) Deepak Jeevankumar,
Dell Tech Capital

Panelist: Panelist: Aradhna Chetal, Gl l Head Cloud
Anil Vatti Lixun Qi,

8:30 am Chief Architect, Visa Senior Tech Lead,
Freddie Mac

i

Keynote:
Cyber Future:

Evolution, Mutat ons,
André Mendes Salutations. Oh my! Chief Information Officer (Acting),

DoC

TETRATE 9:15 am

Cyber Future
Evolution, Mutations, Saltations. Oh my!

André V. Mendes January 24th , 2020
Chief Information Office (Acting)

Department of Commerce

About this presentation…

•Technology evolution mirrors biological
evolution
• Organizations that fail to adapt…. fail

•Tech strategy must be driven by likely corollaries
•Unlimited processing, storage and bandwidth

•Cyber Security will become world security
•Ubiquitous virtualization drives requirements

•Wet interfaces/upgrades = ultimate opportunity/
peril
• For next 30 minutes….abandon what you know today.

2/3/20 6

4 Billion Years of Biological Evolution
•Unicellular organisms - Billions of years
•Creation of basic life functions
•Rise of DNA as digital repository (code, execution, result)

•Higher level organisms - Tens of millions of years
• Sophisticated species interaction

•Humanoids - Millions of years
• Societal structures and functional differentiations

•Homo Sapiens Sapiens - Hundreds of thousands of years
• Sentience, Conscience, Ethics, Philosophy, Abstraction

•Much shorter intervals, much bigger leaps

2/3/20 7

Continues in accelerating societal change
•19th century – More growth than previous 18
• Industrial Revolution, Rise of Democracy

•First 20 years of 20th - Eclipsed all of the 19th
• Sanitation, Expansion of Electricity

•Commercial WWW is about 26 years old
• Facebook, Twitter are teenagers, Instagram is 10

•21st will unleash ±200 centuries of progress
• It is virtually impossible to predict 2099
• Except for this:

• By century’s end standard humans will not be top of heap

2/3/20 8

Infinite/”Affordable” Computing Power
•1997 - ASCI Red
•1.3 Teraflops (Trillion Flops)

•2015 - Intel’s “Knight’s Landing”
•8 Teraflops

•2021 – DOE/INTEL/Cray –
Aurora
•1 EXAflop (Quintillion)
•1,000,000,000,000,000,000 Flops

•2099 – Unknown entity, name
•Unthinkable, distributed capacity

9 2/3/20

Infinite/”Affordable” Storage
•2002 IBM Shark SAN
•1.3 Terabyte!
•Large Freezer Size

•2016 Hitachi Desktar
•4 Terabytes
•Cell phone Size

•2018 SanDisk Micro SD
Card
•1 Terabyte
•Fingernail size

Massive Bandwidth Expansion
•How long to download an HD Movie?

• 2001 – 3G Cellular – 384 Kbps – 26 Hours
• 2009 – 4 G Cellular – 100 Mbps – 6 Minutes
• 2020 – 5 G Cellular – 10 Gbps – 3.6 seconds
• 2099 – ? – Immediate access to everything

2/3/20 11

 Ruthless paradigms!

bandwidth storage
MIPS

10

X

1X

1,000x

100X

10,000,000x

1,000,000x

100,000x

10,000x

1970 1980 1990 2000 2010 2020

2/3/20 12

Imagine a future where…
•Unlimited Computing Power
•Unlimited Storage
•Unlimited Metadata
•Unlimited Indexing
•Unlimited Bandwidth
•Feed a chip directly into your
imagination

2/3/20 13

Back to evolution…
• Not different from Darwinian Evolution
• Except directed and accelerated
• With ever faster processors
• Betters sensors
• Exposed to ever more complex ethical

issues
• Susceptible to “infection”

2/3/20 14

The Century of AI
• Every decade since the 70’s was the AI Decade
• Technological Presbyopia
•Overestimate short term
•Underestimate long term

• This is the AI Century (to 2035)
•AI will decide what to call itself after that
•My guess…”artificial” will not be a part of it

•Reached the crucial threshold of productive self-learning

2/3/20 15

Inexorable corollary
• Just like it evolved in carbon-based lifeforms:
• Sentiency in Silicon-based systems a given

• Just as “values” have evolved in mankind:
• We must infuse “Values” in every AI algorithm

• Just as “values” are routinely ignored in
humankind:
• “Values” will be ignored in rogue AI

•Are we AI?
•What is the difference?
• Without upgrades….
• Vastly inferior in processing, storage &

bandwidth 2/3/20 16

Juggernaut?
•Massive opportunity for progress
• Universal process optimization
• Faster/cheaper services to citizens
• Law enforcement, basic medicine,

teaching
• Self service everything
• Accelerating progress in every field
• Accelerating acceleration

•Literally creating a Science Fiction future
2/3/20 17

Or Tsunami?
•Not happening in a vacuum
• Manufacturing globalization/Nationalism tensions
• Technology ubiquity including global access
• Massive displacement of lower skill employment
• Substantial impact on low/mid level white collar

employment
• Potential unimaginable cultural disruption
• Potential unthinkable wealth gaps (with UI

denominators)
• Potential for major geo-political upheaval

•Evolution’s rarely been easy, fair,
considerate...

2/3/20 18

 ve today!

What about Homo Sapiens Sapiens?
•Significant life expectancy increases

• Genomics, Proteomics, Nanotech

•Biologics and Immunotherapy
•Genomic optimizations

• Pre-implantation (Fanconi’s Anemia)
• CRSPER
• Capability enhancement

•Dramatic increases in “upgrades”
• Wet interfaces with sensors/robotics
• Memory implants, “Net” Interfaces

•The first immortal human being is
ali

2/3/20 19

What about Cyber?
• If you think the stakes are high today….
• IOT
• End-to-End Automation
• Artificial Intelligence
• Human Interfaces/

Upgrades
• Today’s challenges tomorrow’s Child’s Play
• How do we survive/thrive?

2/3/20 20

How do we survive the onslaught!
• Implement proven evolutionary lessons

• Standardize and modularize everything
• Create abstraction layers for commodity functions
• Focus on positive “mutations” at the “value” layer
• You cannot afford to “own”, “maintain”, “operate” the entire stack

• Security becomes the first development requirement
• Not last check before deployment, not a funding afterthought, Day 1

ATO

• Establish authoritative Identification
• Tokens, PIV, Biometrics, MFA is a must
• Zero Trust environment with complete geographic abstraction
• Lowest denominator permissions with temporary elevation
• Establish common operating patterns to spot deviations

2/3/20 21

There are no significant saltations!

•Not in the biological realm, not in the cyber realm
•Most issues are preventable, avoidable, manageable
•Highest profile problems are self inflicted
•Operational discipline – USAGM, OPM, Equifax
• Insider threats – Manning, Snowden, Wikileaks
• Supply chain – Target (POS), Huawei?
•Phishing – Podesta and millions of other users

• Yet so much energy is pursuing exoteric targets
• Focus on the fundamentals, everything else will follow
•Boring is the new fun!

2/3/20 22

Discussion

Coffee Break

Back @ 10:15 AM

TETRATE 10:00 am

Anil Karmel
President, Cloud Security Alliance

DC Metro Area Chapter
CEO, C2 Labs

10:15 am

We All Live in a
Yellow Submarine

(Multi-cloud World):
DevSecOps

Challenges and Best
Practices

TETRATE

Anil Karmel
Co-Founder and CEO, C2 Labs
Co-Chair, CSA Application Containers and

We all live in a Yellow
Submarine
(Multi-Cloud World)
DevSecOps Challenges and
Best Practices

Microservices Working Group
President, CSA DC Chapter
akarmel@c2labs.com

© c2labs.com

http://c2labs.com
http:c2labs.com

Definitions
Microservices and Containers

• Microservices
– Decompose Complex A pplications into Small, Independent Processes communicating

with each other using language-agnostic API’s
– Highly Decoupled and Modular with services organized around capabilities (e.g. User

Interface, Billing)

• Containers
– Much like Virtualization abstracts the Operating System from Hardware, Containers

abstracts Applications from the Operating System
– Applications are isolated from other Applications on the same Operating System
– Allows for Cloud Portability and Scale Up/Out
– Security issues need to be evaluated and addressed in native container deployments

© c2labs.com

http:c2labs.com

NIST and CSA Partnership
Researching Together to develop Best Practices

• NIST and CSA joined forces to define best practices for Application
Containers and Microservices (ACM)
– CSA ACM Members joined th e NIST ACM Cloud S ecurity W orking Gr oup
– NIST artifacts served as the foundation for CSA ACM work

– NIST SP 800-180: NIST Definition of Microservices, Application Containers and
System Virtual Machines

– NIST SP 800-190: Application Container Security Guide
– NIST SP 800-160: Systems Security Engineering: Considerations for a

Multidisciplinary Approach in the Engineering of Trustworthy Security Systems
– NIST IR DRAFT: Challenges in Securing Application Containers and Microservices
– NIST SP DRAFT: Best Practices in Securing Application Containers and Microservices

© c2labs.com

http://csrc.nist.gov/publications/drafts/800-180/sp800-180_draft.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-190.pdf
https://csrc.nist.gov/publications/detail/sp/800-160/vol-1/final
http:c2labs.com

CSA Application Container and Microservices (ACM)
Charter

CSA ACM Working Group Charter

• Objectives – Q1 2020
– Best Practices to Implement a Secure Microservices Architecture

– Microservices secure development guidance and governance
– Best Practices for implementing a Microservices Architecture for Cloud-

native applications
– Best Practices for decomposing monolithic applications into Microservices

© c2labs.com

https://docs.google.com/document/d/1k_82U2BFgvA9j06MaI96VZAoMIYFmAg8HoAFA2GEA1Y/edit
http:c2labs.com

CSA Application Container and Microservices (ACM)
Publications

Click on Titles to
download the
publications

Slide 30

Best Practices for Implementing a
Secure Application Container

Architecture

Challenges in Securing Application
Containers and Microservices

© c2labs.com

https://cloudsecurityalliance.org/articles/csa-releases-new-research-indentifying-challenges-in-securing-application-containers-and-microservices/
https://cloudsecurityalliance.org/articles/csa-releases-best-practices-for-implementing-a-secure-application-container-architecture/
http:c2labs.com

Container Security
Challenges

• Increased Attack Surface
– Containers are far more complex than VM’s wherein a single Application can consist of

1000’s of microservices
– Underlying Linux Operating System complexities can be exploited by attackers to

compromise all containers on a host OS
– Runtime Compromise / Vulnerabilities / Misconfiguration

• Secure Software Development
– Containers can have code pushed to them from untrusted sources

• Log Management
– Big Data Problem: How do you view and manage logs across 1000’s of containers

• Orchestration
– Infrastructure now runs as code (Puppet/Chef/Ansible)
– Software developers, not infrastructure staff now run the data center

© c2labs.com

http:c2labs.com

Container Security
Challenges

• File System Compromise
– Microservices in the Application Container could be compromised by an attacker

• Networking
– A compromised container could result in lateral movement

• Run Time Compromise / Privilege Escalation
– An attacker could modify a microservice in an Application Container which compromises

the application or container itself

© c2labs.com

http:c2labs.com

Container Security
Solutions

• Increased Attack Surface
– Employ MicroVM’s (Just Enough VM)
– Monitor Containers at Runtime / Real-time scan for Vulnerabilities and Misconfiguration

and Remediate

• Secure Software Development
– Whitelist/Blacklist Containers
– Establish a secure container registry
– Sign containers and code (MD5)
– “Shift-left” vulnerability and bug scanning before deployment

• Log Management
– Centralize container logs including developer actions

• Orchestration
– Employ orchestration platform to manage containers across environments

(DEV,TEST,QA,PROD) and across clouds

© c2labs.com

http:c2labs.com

Container Security
Solutions

• File System Compromise
– Ensure file system is read only
– Treat infrastructure as stateless, ideally serverless

• Networking
– Ensure application containers can only talk to other approved application containers
– Leverage Namespaces and SDN in orchestration tools

• Run Time Compromise / Privilege Escalation
– Set filter on Linux Kernel to prevent privilege escalation and implement white lists
– Anomaly detection based on a deviation from a known baseline to prevent remote code

execution

© c2labs.com

http:c2labs.com

 Slide 35

Microservices Security
Challenges and Solutions

• Decomposition of Applications
– Need to decompose applications into microservices correctly, so they only do

one thing well, driving development of secure code
– Monolithic code with 1,000 DLLs needs to be decomposed into 1,000

microservices which makes it more secure and maintainable

• Interface-driven development
– Need to have well defined REST API’s to ensure microservices talk consistently

to each other
– Authentication of API’s should leverage OAuth and other secure protocols

© c2labs.com

http:c2labs.com

Real World Examples

© c2labs.com Slide 36

http:c2labs.com

Docker CI/CD Pipeline Overview w/ GitLab

Development Version Control & Continuous Integration Continuous Deployment

Code Pull/Push
Docker Trusted

CI/CD Pipeline Repository
(.gitlab-ci.yml)

GitLab Runners
Test Scripts
Image Build

Image Sign/Push
Stack Deploy

© c2labs.com
Linux Windows

Image Push

Deploy Stack

Slide 37Slide 37

Docker Universal
Control Plane

http:c2labs.com

GitLab: What are Runners?

• Runners are the fundamental component of a CI/CD pipeline

• Runners are isolated virtual machines that run predefined steps through the GitLab CI API
– Steps are defined in a .gitlab-ci.yml file
– Steps execute as jobs, jobs are grouped together by stages, and stages are grouped together by

pipelines
– Job execution occurs on the Runner machine
– Any dependencies/enablers that are required for a job to execute must be installed on the Runner

machine pipeline

stage

job

© c2labs.com Slide 38

http:c2labs.com

Docker CI/CD Pipeline Stages - Customizable
Development Pipeline

Production Pipeline

Build Clean Deploy

Build Dev Deploy Dev

Build ProdA

Build ProdB

Clean

Deploy ProdA OR

© c2labs.com Slide 39

Deploy ProdB

http:c2labs.com

GitLab On-Premise
CI/CD Pipeline

• Example of a production
GitLab CI/CD pipeline

• All customizable; can
implement your design easily

• (CI) Built and pushed image
in DEV and both production
environments

• (CI) Performed a clean build

• (CD) Deployed to DEV and
the chosen production
environment

• (CD) DEV deploy is triggered
by commit to dev or master
branch

• (CD) PROD deploy is
triggered via a Tag and a
Manual start by user with the
right permissions

Slide 40 © c2labs.com

http:c2labs.com

Slide 41

Commercial Tool
Build Pipeline

• CI/CD triggered based off of
protected branch strategy

• CI steps generally deploy on a
Pull Request (PR)

• CD steps generally deploy after
approving the PR

• Testing, documentation,
database upgrades, security
scanning, logging, and
Kubernetes deployment are done
from the Feature branch -> DEV
-> QA -> PROD with no manual
labor; unlocking our developers
full potential

• Governance is employed by
adding workflow approvals to PRs

• All logs are maintained in Azure
DevOps for Configuration
Management

© c2labs.com

http:c2labs.com

Multi-Stage
Pipeline

• Container is built and
pushed to our private Azure
Registry

• Security scans are done via
NPM Audit and Anchore

• Source code scan is done by
SonarQube – pass/fail logic
is coded into the stages

• Artifacts are stored for
troubleshooting or later
forensics if a defect escapes

© c2labs.com Slide 42

http:c2labs.com

GitHub Integration

• Leveraged
webhooks/plugins to show
pipeline progress in the
GitHub PR

• Details link to Azure DevOps
to view artifacts and raw
logs

• Governance enforces code
reviews, pipeline checks
passing, and two-person
rule for a manager to
approve code changes into a
protected branch

© c2labs.com Slide 43

http:c2labs.com

Integration with
Azure DevOps

• Details pulled into GitHub
and stored with the PR

• History maintained over
time for full configuration
management traceability

• Builds and deploys are
tagged with the commit
number to allow for easy
rollbacks in Kubernetes

Slide 44 © c2labs.com

http:c2labs.com

Slide 45

Azure DevOps
Pipelines

• Multiple pipelines
configured that are
triggered based on GitHub
branching logic

• Each pipeline has one or
more stages to the job

• Each stage has one or
more tasks that execute

• Pipeline configurations are
developed in source code
and under configuration
management in GitHub

• NOTE: Pipeline changes
are tested in a separate
cloned project prior to
being introduced into the
Production pipeline

© c2labs.com

http:c2labs.com

Definitions
Microservices and Containers

• Microservices
– Decompose Complex Applications into Small, Independent Processes communicating

with each other using language-agnostic API’s
– Highly Decoupled and Modular with services organized around capabilities (e.g. User

Interface, Billing)

• Containers
– Much like Virtualization abstracts the Operating System from Hardware, Containers

abstracts Applications from the Operating System
– Applications are isolated from other Applications on the same Operating System
– Allows for Cloud Portability and Scale Up/Out
– Security issues need to be evaluated and addressed in native container deployments

© c2labs.com

http:c2labs.com

NIST and CSA Partnership
Researching Together to develop Best Practices

• NIST and CSA joined forces to define best practices for Application
Containers and Microservices (ACM)
– CSA ACM Members joined the NIST ACM Cloud Security Working Group
– NIST artifacts served as the foundation for CSA ACM work

– NIST SP 800-180: NIST Definition of Microservices, Application Containers and
System Virtual Machines

– NIST SP 800-190: Application Container Security Guide
– NIST SP 800-160: Systems Security Engineering: Considerations for a

Multidisciplinary Approach in the Engineering of Trustworthy Security Systems
– NIST IR DRAFT: Challenges in Securing Application Containers and Microservices
– NIST SP DRAFT: Best Practices in Securing Application Containers and Microservices

© c2labs.com

http://csrc.nist.gov/publications/drafts/800-180/sp800-180_draft.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-190.pdf
https://csrc.nist.gov/publications/detail/sp/800-160/vol-1/final
http:c2labs.com

CSA Application Container and Microservices (ACM)
Charter

CSA ACM Working Group Charter

• Objectives – Q1 2020
– Best Practices to Implement a Secure Microservices Architecture

– Microservices secure development guidance and governance
– Best Practices for implementing a Microservices Architecture for Cloud-

native applications
– Best Practices for decomposing monolithic applications into Microservices

© c2labs.com

https://docs.google.com/document/d/1k_82U2BFgvA9j06MaI96VZAoMIYFmAg8HoAFA2GEA1Y/edit
http:c2labs.com

CSA Application Container and Microservices (ACM)
Publications

Click on Titles to
download the
publications

Slide 49

Best Practices for Implementing a
Secure Application Container

Architecture

Challenges in Securing Application
Containers and Microservices

© c2labs.com

https://cloudsecurityalliance.org/articles/csa-releases-new-research-indentifying-challenges-in-securing-application-containers-and-microservices/
https://cloudsecurityalliance.org/articles/csa-releases-best-practices-for-implementing-a-secure-application-container-architecture/
http:c2labs.com

Container Security
Challenges

• Increased Attack Surface
– Containers are far more complex than VM’s wherein a single Application can consist of

1000’s of microservices
– Underlying Linux Operating System complexities can be exploited by attackers to

compromise all containers on a host OS
– Runtime Compromise / Vulnerabilities / Misconfiguration

• Secure Software Development
– Containers can have code pushed to them from untrusted sources

• Log Management
– Big Data Problem: How do you view and manage logs across 1000’s of containers

• Orchestration
– Infrastructure now runs as code (Puppet/Chef/Ansible)
– Software developers, not infrastructure staff now run the data center

© c2labs.com

http:c2labs.com

Container Security
Challenges

• File System Compromise
– Microservices in the Application Container could be compromised by an attacker

• Networking
– A compromised container could result in lateral movement

• Run Time Compromise / Privilege Escalation
– An attacker could modify a microservice in an Application Container which compromises

the application or container itself

© c2labs.com

http:c2labs.com

Container Security
Solutions

• Increased Attack Surface
– Employ MicroVM’s (Just Enough VM)
– Monitor Containers at Runtime / Real-time scan for Vulnerabilities and Misconfiguration

and Remediate

• Secure Software Development
– Whitelist/Blacklist Containers
– Establish a secure container registry
– Sign containers and code (MD5)
– “Shift-left” vulnerability and bug scanning before deployment

• Log Management
– Centralize container logs including developer actions

• Orchestration
– Employ orchestration platform to manage containers across environments

(DEV,TEST,QA,PROD) and across clouds

© c2labs.com

http:c2labs.com

Container Security
Solutions

• File System Compromise
– Ensure file system is read only
– Treat infrastructure as stateless, ideally serverless

• Networking
– Ensure application containers can only talk to other approved application containers
– Leverage Namespaces and SDN in orchestration tools

• Run Time Compromise / Privilege Escalation
– Set filter on Linux Kernel to prevent privilege escalation and implement white lists
– Anomaly detection based on a deviation from a known baseline to prevent remote code

execution

© c2labs.com

http:c2labs.com

 Slide 54

Microservices Security
Challenges and Solutions

• Decomposition of Applications
– Need to decompose applications into microservices correctly, so they only do

one thing well, driving development of secure code
– Monolithic code with 1,000 DLLs needs to be decomposed into 1,000

microservices which makes it more secure and maintainable

• Interface-driven development
– Need to have well defined REST API’s to ensure microservices talk consistently

to each other
– Authentication of API’s should leverage OAuth and other secure protocols

© c2labs.com

http:c2labs.com

Real World Examples

© c2labs.com Slide 55

http:c2labs.com

Docker CI/CD Pipeline Overview w/ GitLab

Development Version Control & Continuous Integration Continuous Deployment

Code Pull/Push
Docker Trusted

CI/CD Pipeline Repository
(.gitlab-ci.yml)

GitLab Runners
Test Scripts
Image Build

Image Sign/Push
Stack Deploy

© c2labs.com
Linux Windows

Image Push

Deploy Stack

Slide 56Slide 56

Docker Universal
Control Plane

http:c2labs.com

GitLab: What are Runners?

• Runners are the fundamental component of a CI/CD pipeline

• Runners are isolated virtual machines that run predefined steps through the GitLab CI API
– Steps are defined in a .gitlab-ci.yml file
– Steps execute as jobs, jobs are grouped together by stages, and stages are grouped together by

pipelines
– Job execution occurs on the Runner machine
– Any dependencies/enablers that are required for a job to execute must be installed on the Runner

machine pipeline

stage

job

© c2labs.com Slide 57

http:c2labs.com

Docker CI/CD Pipeline Stages - Customizable
Development Pipeline

Production Pipeline

Build Clean Deploy

Build Dev Deploy Dev

Build ProdA

Build ProdB

Clean

Deploy ProdA OR

© c2labs.com Slide 58

Deploy ProdB

http:c2labs.com

GitLab On-Premise
CI/CD Pipeline

• Example of a production
GitLab CI/CD pipeline

• All customizable; can
implement your design easily

• (CI) Built and pushed image
in DEV and both production
environments

• (CI) Performed a clean build

• (CD) Deployed to DEV and
the chosen production
environment

• (CD) DEV deploy is triggered
by commit to dev or master
branch

• (CD) PROD deploy is
triggered via a Tag and a
Manual start by user with the
right permissions

Slide 59 © c2labs.com

http:c2labs.com

Slide 60

Commercial Tool
Build Pipeline

• CI/CD triggered based off of
protected branch strategy

• CI steps generally deploy on a
Pull Request (PR)

• CD steps generally deploy after
approving the PR

• Testing, documentation,
database upgrades, security
scanning, logging, and
Kubernetes deployment are done
from the Feature branch -> DEV
-> QA -> PROD with no manual
labor; unlocking our developers
full potential

• Governance is employed by
adding workflow approvals to PRs

• All logs are maintained in Azure
DevOps for Configuration
Management

© c2labs.com

http:c2labs.com

Multi-Stage
Pipeline

• Container is built and
pushed to our private Azure
Registry

• Security scans are done via
NPM Audit and Anchore

• Source code scan is done by
SonarQube – pass/fail logic
is coded into the stages

• Artifacts are stored for
troubleshooting or later
forensics if a defect escapes

© c2labs.com Slide 61

http:c2labs.com

GitHub Integration

• Leveraged
webhooks/plugins to show
pipeline progress in the
GitHub PR

• Details link to Azure DevOps
to view artifacts and raw
logs

• Governance enforces code
reviews, pipeline checks
passing, and two-person
rule for a manager to
approve code changes into a
protected branch

© c2labs.com Slide 62

http:c2labs.com

Integration with
Azure DevOps

• Details pulled into GitHub
and stored with the PR

• History maintained over
time for full configuration
management traceability

• Builds and deploys are
tagged with the commit
number to allow for easy
rollbacks in Kubernetes

Slide 63 © c2labs.com

http:c2labs.com

© c2labs.com Slide 64

Azure DevOps
Pipelines

• Multiple pipelines
configured that are
triggered based on GitHub
branching logic

• Each pipeline has one or
more stages to the job

• Each stage has one or
more tasks that execute

• Pipeline configurations are
developed in source code
and under configuration
management in GitHub

• NOTE: Pipeline changes
are tested in a separate
cloned project prior to
being introduced into the
Production pipeline

Cloud Smart,
Application

Rationalization, and
ICAM

TETRATE

Stephen Naumann
Senior Advisor – Data Center

Practitioner
GSA

10:45 am

Office of Government-wide Policy

GSA OGP
DCOI, Cloud Smart, & ICAM

Steve Naumann, Senior Advisor | January 2020

G
 S A

 O
 F F I C

 E O
 F G

 O
 V E R N

 M
 E N

 T -W
 I D E P O

 L I C
 Y

Overview
Data Center and Cloud Optimization Initiative PMO

Data Center
Optimization Initiative

Closure &
Consolidation
Optimization

Cloud Smart
Workforce
Security

Procurement

Application
Rationalization
Review; Reward;
Refresh; Remove

G
 S A

 O
 F F I C

 E O
 F G

 O
 V E R N

 M
 E N

 T -W
 I D E P O

 L I C
 Y

Application Rationalization

ICAM

ICAM

ICAM
IC

AM

Ap
p.
X

ICAM

ICAM

ICAM

IC
AM

Ap
p.
Z

ICAM

ICAM

ICAM

IC
AM

Ap
p.
Y ICAM

ICAM

IC
AM

Ap
p.
X

ICAM
APPLICATION PORTFOLIO APPLICATION PORTFOLIO

● What is Application Rationalization?
● How is it connected to ICAM?

RATIONALIZATION

G
 S A

 O
 F F I C

 E O
 F G

 O
 V E R N

 M
 E N

 T -W
 I D E P O

 L I C
 Y

● SLAs for access to log
data

● Governance model
aligned to ICAM
systems

Cloud Policy Landscape
Implications for ICAM

● TIC 3.0
● Zero Trust Networks
● The Internet of Things

Cloud Smart Strategy
encourages:

Other policies and
paradigms:

G
 S A

 O
 F F I C

 E O
 F G

 O
 V E R N

 M
 E N

 T -W
 I D E P O

 L I C
 Y

Recommended Process:
● Assess enterprise capabilities

○ Federation?
○ Fault tolerant?
○ Secure?

● Perform an ICAM gap analysis
● Address gaps (buy new or modify existing)

Cloud Adoption & ICAM
Challenges of Moving to Cloud

G
 S A

 O
 F F I C

 E O
 F G

 O
 V E R N

 M
 E N

 T -W
 I D E P O

 L I C
 Y

Goals in Common

Questions?
Email dccoi@gsa.gov

Questions
(Slido)

VIRTUAL AUDIENCE

TETRATE11:15 pm

Ad-Hoc Panel:
What is in Your Mind When You

Think ZTA & DevSecOps

Moderator 1:
Jeyappragash Jeyakeerth

Co-Founder,
Tetrate

Panelist 1

Panelist2 Panelist3

Panelist4

Moderator 2:
Michaela Iorga

Senior Security Technical Lead,
NIST

This is an ad-hoc panel and the
panelists will be selected randomly from

the members of the audience that
expressed interest in participating in this

dialog by registering in advance.

11:30 am

Day 2
Closing Remarks

and Adjourn

TETRATE5:00 pm

	Structure Bookmarks
	Image Push
	Image Push

