
Practical Challenges when Implementing a

Distributed Population of Cloud-Computing

Simulators Controlled by a Genetic Algorithm

K. Mills, C. Dabrowski & D. Santay

National Institute of Standards & Technology

Gaithersburg, MD, USA

{kmills, cdabrowski, dsantay}@nist.gov

Abstract—The recent explosion of affordable multicore,

multichip systems, coupled with cluster management software,

encourages the development of novel distributed applications for

exploring large parameter spaces. We expect many such

applications will soon appear. For example, we recently applied a

genetic algorithm to steer a population of cloud-computing

simulators toward low-probability, costly failure scenarios. We

aim to provide a design-time tool that system engineers can use to

identify and mitigate such scenarios. We found that our idea was

much simpler in theory than in practice, largely due to

implementation challenges that arose. In this paper, we describe

the design and deployment of our application, and we identify

and discuss the practical challenges that we faced. We outline

pragmatic solutions that we adopted to overcome those

challenges. We believe many near-future applications will face

similar challenges, so we hope that our experiences prove

instructive.

Index Terms— Computational steering, cloud computing,

cluster computing, discrete event simulation, distributed systems,

fault tolerance, genetic algorithms, software for parallel and

distributed systems

I. INTRODUCTION

As the microprocessor industry increases production of

chips with numerous cores [1], deployed in servers containing

multiple such chips [2], the scientific and engineering research

communities are becoming awash in affordable, available

computing power of unprecedented scale [3]. Harnessing such

raw computational power requires software frameworks that

envelop many multicore, multichip servers into clusters that

can provision operating system images onto nodes, can monitor

the availability of node resources, can allocate computationally

intense tasks onto available cores and can monitor task

execution. Already, a cluster computing market is forming [4],

as commercial vendors offer cluster management software for

high performance computing. Some such products focus on

single operating systems and some support multiple operating

systems. In addition, a range of open-source cluster

management systems exist.

This growing availability of processing power, packaged in

conveniently accessible form, holds potential for advanced

computational approaches to applications that have not been

attempted routinely in the past. For example, numerous

software packages exist that embody advanced search

techniques, such as genetic algorithms [5], evolutionary

computation [6] and simulated annealing algorithms [7]. Such

search algorithms are being employed increasingly in novel

applications, particularly in software engineering [8], hardware

design [9], and materials research [10]. The combination of

advanced search algorithms with compute clusters appears

likely to extend the range of novel applications that could be

attempted. While most advanced search algorithms aim to

optimize some selected trait, we plan to invert the search

process to seek anti-optimal solutions in cloud-computing

systems, as a few other researchers have attempted when

investigating potential for reliability problems in concrete

structures [10] and aerodynamic codes [11].

To achieve our aims, we recently adapted a genetic

algorithm to steer a population of sequential cloud-computing

simulators, executing in parallel on a compute cluster, in an

effort to discover low-probability, costly failure scenarios. We

aim to provide a design-time tool that system engineers can use

to identify and mitigate such scenarios. We identified genetic

algorithms (GAs) as a search technique that might be well

suited for our problem. GAs can find good solutions within a

large, ill-defined search space, and can be readily adapted to a

wide variety of search problems [5]. Fig. 1 illustrates how we

intend to apply GAs to search for failure scenarios in a cloud-

computing model.

The cloud-computing model [12-14] encompasses a search

space of about 10
101

, which exceeds the estimated number of

atoms in the visible universe [15]. The GA represents the

parameter space as a binary encoding of 334 bits, referred to as

chromosomes. We adapted the GA to convert any given set of

chromosomes into parameter files that can be read by the

cloud-computing simulator. Initially, the GA generates a

random set of chromosomes and a population of simulators

executes the derived parameter files in parallel. Each simulator

returns an anti-fitness value. Anti-fitness measures the degree

to which the simulator is failing on some performance

objective; so higher anti-fitness represents lower performance.

For example, we might equate anti-fitness to the proportion of

users that could not be served.

Once an entire population of simulators reports their anti-

fitness values, the GA employs an algorithm to construct the

next generation of parameter files. As generations advance, the

population of simulators explores more challenging parameter

combinations, uncovering an increasing number of scenarios

with degraded performance. Over time, we accumulate tuples

containing anti-fitness and related model parameter values.

After a sufficient number of generations, we apply selected

data analysis techniques to partition the tuples into classes

suggesting various causes for failed outcomes in the simulated

cloud. As described in Sec. 3, we deployed this novel search

application on a cluster of multicore, multichip nodes.

Computer scientists have observed [16] that multicore,

multichip systems are difficult to program, because parallel,

distributed systems are notoriously prone to synchronization

problems and failure scenarios (as we attest to in Sec. 4). Due

to this, computer scientists advocate [17] for increased

spending on research and education in programming for

parallel systems. In the meantime, practitioners must attempt to

leverage the growing availability of computational power and

advanced search algorithms to solve problems based on current

knowledge and available software components. This typically

requires combining existing programs written for sequential

operation into cooperating assemblies that can be orchestrated

to solve today’s difficult and interesting problems. In Sec. 2,

we review some available implementation options, and identify

and justify our choice, which we selected based on conceptual

simplicity.

We found that our chosen approach was much simpler in

concept than in practice, largely due to implementation

challenges that arose. In Sec. 3, we describe the design and

deployment of our application. In Sec. 4, we identify and

discuss the practical challenges that we faced, and outline the

pragmatic solutions that we adopted to overcome those

challenges. We believe many near-future applications will face

similar challenges, so we hope that our experiences prove

instructive to practitioners.

II. RELATED WORK

As noted by Silva and Buyya [18], converting an existing

sequential program to exploit parallel computing resources can

be approached using three general strategies: (1) automated

parallelization of a sequential program, (2) integrating parallel

communication and synchronization libraries into existing

Model Parameter
Specifications Parallel Execution of

Model Simulators
Population of Model

Parameterizations

Selection based on

Anti-Fitness
Recombination
& Mutation

List of parameters
and for each
parameter a MIN,
MAX and
precision.

Anti-Fitness Reports

GENETIC ALGORITHM

Principal Components Analysis,
Clustering, …

MULTIDIMENSIONAL ANALYSIS TECHNIQUES

Growing Collection of Tuples:

{Generation, Individual, Fitness, Parameter 1 value,….Parameter N value}

{Generation, Individual, Fitness, Parameter 1 value,….Parameter N value}

{Generation, Individual, Fitness, Parameter 1 value,….Parameter N value}

{Generation, Individual, Fitness, Parameter 1 value,….Parameter N value}

{Generation, Individual, Fitness, Parameter 1 value,….Parameter N value}

{Generation, Individual, Fitness, Parameter 1 value,….Parameter N value}

{Generation, Individual, Fitness, Parameter 1 value,….Parameter N value}

{Generation, Individual, Fitness, Parameter 1 value,….Parameter N value}

{Generation, Individual, Fitness, Parameter 1 value,….Parameter N value}

{Generation, Individual, Fitness, Parameter 1 value,….Parameter N value}

…
{Generation, Individual, Fitness, Parameter 1 value,….Parameter N value}

MODEL SIMULATORS

Figure 1. Schematic of a genetic algorithm steering a parallel population of cloud-computing simulators toward regions of failure and degraded performance.

source code for a sequential program or (3) major recoding of a

sequential program to become parallel. The second strategy

matches well to our application, where a population of

sequential simulators executes in parallel, while synchronizing

with a master GA process. The communication requirements

for our application are rather modest: exchanging commands

and status between the GA and simulators and passing

parameter files from the GA to simulators. For that reason, we

considered various library-based approaches.

 The Message-Passing Interface (MPI) [19-20] is the most

well-known standard for parallel communication libraries, with

bindings to FORTRAN and C, which provides communication

among cooperating sequential processes. MPI provides

subroutines for sending and receiving both blocking and non-

blocking messages, either point-to-point, within a group or

globally. MPI can support a wide range of distributed systems,

built as collaborating sequential processes. Both our cloud

simulator and GA can incorporate dynamic link libraries

(DLLs) using C bindings, and our available cluster system

supports processes communicating via MPI, so it would be

feasible to use MPI in our application, provided we modified

our processes to send and receive MPI messages and data.

We also considered GridRPC [21], which mates standard

remote procedure call semantics with asynchronous, coarse-

grained parallel processes and provides for exception reporting.

GridRPC is primarily motivated by Grid computing

applications [22], which often involve parallel processing

among programs distributed across remote computing facilities

in various administrative domains. A more comprehensive

approach can be found in the form of the PACE toolkit [23],

which enables deployment and management of distributed

agent-based systems in Grid computing environments. Like

MPI, GridRPC and PACE could probably be used in our

application, provided we made significant modifications to our

GA and simulation processes.

As we mentioned in the introduction, research in parallel

programming has garnered great interest, so there are many

other approaches that could be considered for our application.

Needham and Hansen [24] describe PVM, a parallel virtual

environment based on MPI, and they also identify nine

competing research initiatives, all aimed at providing parallel

programming environments for grids, clusters or networks of

workstations. Kee and colleagues [25] discuss ParADE, which

provides a wide range of high-level functions to support

parallel programming over MPI. Cilk-NOW [26] provides a

runtime system for deploying parallel programming

applications written in the Cilk language onto a network of

workstations. Cap and Strumpen [27, 28] describe a parallel

programming system that focuses on dynamic, real-time load

balancing on networks of workstations. Adopting any of these

approaches would require reprogramming our cloud simulator

and GA for deployment in a specific distributed computing

environment, as well as configuring and managing the

environment ourselves.

In addition to general parallel programming strategies, we

considered parallel search strategies conceived as refinements

to GAs. Muhlenbein and colleagues [29] defined a genetic

algorithm with multiple searches conducted in parallel, where

each parallel search process runs its own GA on a defined

subspace of the global search space, and the search processes

occasionally exchange information about their most fit

outcomes. The exchanged information is used to guide the

parallel search processes. Gordon and Whitely [30] compare

nine parallel genetic search algorithms, in three categories:

global models, island models and massively parallel models.

The global models exploit parallelism only in the selection

process, while island models run several subpopulations in

parallel, allowing individuals to migrate. Massively parallel

models assign one processor per individual in a cellular grid,

and permit mating only among nearby individuals.

Unfortunately, none of the GAs compared by Gordon and

Whitely were actually implemented in parallel, so adopting

them would require us to expend significant effort to construct,

test and verify such a parallel GA.

We decided that adopting an experimental parallel

programming environment would prove too costly, requiring us

to reprogram the existing GA and cloud simulator, as well as

deploy and operate the environment. We also discarded, for

now, the idea of using a parallel GA because we would have to

rewrite the existing GA to operate as one among a cooperating

set of GAs, using some algorithm identified by Gordon and

Whitely. Using MPI or GridRPC would require us integrate

message passing subroutines into the GA and cloud simulator,

potentially introducing bugs unrelated to our problem.

Subsequently, we would have to test and verify this code,

which must be made extremely robust. The available libraries

leave exception handling to the user, so we would need to

program suitable routines. In the end, we decided that using

MPI or GridRPC for communication and synchronization

would not be cost effective because, as discussed below, our

available cluster contained a shared file store that we could use

as a common location to signal information and exchange data

among the GA and simulator processes. Using a shared file

store is conceptually simple, requiring development of minimal

interface code based on existing file input/output functions.

III. SYSTEM DESIGN & DEPLOYMENT

We began our project with three elements given: (1) an

implementation of a GA [31], (2) Koala, a discrete-event

simulator of an Infrastructure-as-a-Service (IaaS) cloud-

computing system [12-14], and (3) a compute cluster managed

by commercial software. The GA was tested previously against

a wide variety of numeric optimization problems. The Koala

IaaS simulator was used for a couple of years to study virtual-

machine (VM) placement algorithms. Though the simulation

environment, cluster management software and underlying

hardware platforms consist of specific commercial products,

the challenges we faced would arise under any similar setup,

regardless of the source of the components. For that reason, we

keep our description generic.

While Koala is written as a sequential simulator, the

previous VM-placement studies were carried out with many

independent Koala processes executing in parallel on various

parameter combinations, orchestrated as a typical parameter-

Figure 2. Schematic of GA Controlled Population of Koala Simulators Deployed on a Cluster.

Head Node 1

Head Node 2

Shared

File

Store

Compute Node 1 Compute Node 2 Compute Node 12

Compute Node 13 Compute Node 14 Compute Node 24

E
n

te
rp

ri
s
e

 N
e

tw
o

rk

C
lu

s
te

r
N

e
tw

o
rk

License Server
8 Koala

Processes

8 Koala

Processes

12 Koala

Processes

12 Koala

Processes

12 Koala

Processes

200 Koala

Working

Directories

GA

Checkpoint

Database

Node Manager

Job Manager

GA Controller

GA

Management

Processes

CLUSTER

GA

Results

Tuples

sweep application. Before executing, each simulation process

must obtain a license from a network license server.

The previous Koala simulations were executed on the same

cluster that was made available to us. The cluster (see Fig. 2)

consists of two redundant head nodes, coordinating through a

shared file store, and 24 compute nodes (224 cores total),

which came in different varieties, some outfitted with dual,

quad-core processors and some with dual, hex-core processors.

The head nodes, file store, and compute nodes share a cluster

network, while the head nodes are also accessible from the

enterprise network.

We adapted the GA to control Koala simulations, inserting

functions: to convert specific genetic encodings understood by

the GA into parameter files understood by Koala, to instruct a

population of Koala simulators that a new set of parameter

values was available, and to wait for the Koala processes in

each generation to complete their simulations and report back

fitness values. We also modified the GA to report tuples, each

containing a generation identifier, individual identifier, fitness

value, and for each of the 130 Koala parameters the values that

led to the reported fitness. Finally, we added code so that, after

each generation, the GA state and population of individuals are

saved to a checkpoint database, which allows us to restart the

GA from any previously completed generation. We call this

modified GA the GA Controller, which we deployed on one of

the head nodes.

The head nodes also executed cluster software components,

as shown in Fig. 2. The node manager monitors and reports the

instantaneous status and resource usage of all compute nodes.

The job manager allows users to configure and submit batch

jobs for execution. We use the job manager to configure and

begin an entire population of Koala simulators under a single

job. Also available on the head nodes are some specific GA

management processes that we developed. These processes

allow us to set running Koala simulators to specific states, such

as started, restarted and stopped. While Fig. 2 shows various

processes on specific head nodes, the head nodes are

redundant, so the processes can be running on either.

We also needed to alter the Koala simulator to allow

repeated executions under direction from the GA Controller.

We modified Koala to query a signal file for specific

instructions. The GA Controller and GA management

processes can update signal files to effect control of Koala

simulators. We disabled the normal results writing portion of

Koala, replacing it with a function to report anti-fitness

achieved at simulation completion. We began our experiments

with anti-fitness defined as the proportion of arriving users who

could not be served by the cloud being simulated.

The main communication channel among processes

consists of a shared file store, which can be mounted by any

node on the cluster network. The GA Controller is started

within a specified working directory, which contains one

subordinate working directory for each deployed Koala

simulator. The GA Controller’s directory houses the GA

checkpoint database and the results tuples, while each Koala

working directory houses a simulator’s signal file and

parameter input files generated by the GA Controller.

We deployed the license server on the first compute node,

refraining from placing Koala simulators there. We preferred to

place the license server on one of the head nodes, but each of

those nodes had another license server, which allowed

interactive users from the enterprise network to conduct

simulations, and no node can run more than one license server.

The cluster job manager makes all decisions regarding

allocation of Koala processes to specific compute nodes. The

job submitter can identify which compute nodes are available

for running Koala processes and can specify how many cores

are required for each Koala process, along with various other

job characteristics. The job manager has no knowledge of the

GA Controller or license server, and the GA Controller and

Koala simulators have no knowledge of the job manager. The

GA Controller and GA management processes know about the

Koala simulators, but are unaware of the license server.

IV. CHALLENGES & PRAGMATIC SOLUTIONS

While designing and deploying our system, we faced a

significant set of implementation challenges that hindered

successful achievement of our objectives. Below we address

those challenges in five categories: computational feasibility,

robustness, coordination, failure recovery and forensics. In

each category, we discuss the specific impediments we

experienced, and we outline pragmatic solutions we adopted.

A. Computational Feasibility

We intended to steer a population of 200 individual Koala

simulators through 500 generations of simulations, where each

simulator in a given generation must finish before the GA

Controller has sufficient information to construct parameter

files for the next generation of simulations. This meant that the

longest simulations within each generation would determine

the elapsed time before the next generation could commence.

Ultimately, then, the time to simulate 500 generations would be

the sum of the maximum simulation time for any individual in

each generation.

Suppose we chose to have each individual simulate three

months in the life of a cloud. Some parameter combinations

could be completed within minutes, but others could take a

week or more. Further, the GA is intended to steer the

population into failure scenarios, which take much more CPU

time to simulate than normal operating ranges. So, if we did not

further constrain simulations, then completing 500 generations

could take a decade or more, which is impractical for any

useful investigation of design alternatives.

We added a constraint to each Koala simulator that limited

the CPU time available to any given simulation to no more than

90 minutes. This constraint ensured that 500 generations of

simulations could complete within about one month. For

simulations that were terminated prior to normal completion,

anti-fitness results reflect the state at termination. While this

ensured our system would be computationally feasible, abrupt,

early terminations introduced other challenges, as we discuss in

the next section on robustness.

B. Robustness

Executing 10
5
 simulations (200 individuals x 500

generations) over the course of a month requires taking great

care to ensure individual simulations do not produce run-time

exceptions, such as NULL pointers and memory exhaustion.

Previously, the Koala simulator had been used under a wide

range of parameter combinations [12-14], with individual

simulations lasting two weeks or longer. Based on this history,

we were confident that Koala would produce few such failures.

Unfortunately, we were proved wrong on this point.

To avoid biasing a search, the first population of parameter

inputs is generated randomly by the GA Controller. This

randomization subjected Koala to a diverse set of parameter

combinations not previously experienced. Subsequently,

numerous unexpected issues were uncovered including NULL

pointer exceptions; excessive logging behavior; set removal

exceptions; and memory exhaustion. We attempted to use

normal debugging processes to uncover the source of these

errors, and remove them. Our attempts were complicated by the

fact that the simulations were executed as tasks in a batch job,

where each task logged standard outputs to a file.

The simulation run-time environment was intended to log

sufficient information to identify what error occurred and

where in the source code the error arose. Unfortunately, the log

files only specified what error occurred. Thus, to find the

location of particular errors, we were required to rerun

simulations from an interactive user interface, which could

pinpoint error locations. While batch and interactive executions

were supposed to produce the same error behavior, we found

that in about 20% of cases, interactive executions did not fail

when rerunning a parameter combination that had failed in a

batch run. These reproducibility issues arose because simulator

random number streams are initialized each time an interactive

execution starts, which could not match the state of the random

number streams leading to the failure of a batch simulation that

had iterated through many generations. Fortunately, 50 to 100

crashed simulations were caused typically by only a handful of

specific errors, so by interactively executing a sample of failed

batch simulations, we were able to uncover the errors crashing

the simulators. Subsequently, the developer of the simulation

environment has ensured that batch simulation processes report

both event data and code location related to exceptions.

Once we ensured that Koala was robust against randomly

generated parameter combinations, new robustness issues arose

as Koala finished a first generation of simulations. After a

simulation completes, we needed to ensure that all residual

objects are eliminated, and Koala is reinitialized, and then

waits for the GA Controller to provide the next generation of

parameter combinations. Without ensuring this, latent memory

leaks can accumulate over the course of many generations,

leading simulations to crash due to memory exhaustion. Even if

a crash is avoided, accumulating unused memory objects could

slow down the simulations, allowing less efficient use of CPU

time. Since we were aware of these issues, we had taken the

necessary steps to ensure that end-of-simulation memory leaks

did not occur.

Unfortunately, when simulations were terminated abruptly

due to the expiration of CPU time, a second wave of

exceptions, mainly NULL pointers, arose. These exceptions

resulted from situations where simulation processes had been

waiting for some delay to expire during the time that the

simulation was told to terminate. When this occurred, processes

that did not check for a stop instruction immediately following

a delay instruction became vulnerable to NULL pointer

exceptions, as parent simulation processes stopped and began

reclaiming memory.

To solve these problems, we inserted, where feasible,

checks for a stop instruction immediately following a delay

instruction. In selected cases, inserting stop checks was

determined to be sufficiently difficult that we also implemented

a higher level approach, which we call “grow quiet”. In the

grow-quiet approach, rather than immediately terminating

subordinate simulation processes, a parent component would

stop creating new subordinates, and then wait for sufficient

time to elapse for on-going subordinate processes to complete.

Subsequently, the parent component terminated itself. This

approach was coupled with carefully placed wait statements in

the main simulation loop, which appropriately ordered the

stopping of simulation processes by type, and prevented final

reclamation of any residual, unused simulation objects until all

major simulation processes had terminated.

C. Coordination

Koala is built on a simulation environment that provides a

single operating system process for each running simulation

instance. For that reason, we implemented each Koala

individual as a separate process with a unique working

directory (e.g., simulator1, simulator2 and so on). Similarly, we

implemented one process for the GA Controller and one

process for each supporting GA management function.

The GA Controller and the management processes execute

within the directory containing the subdirectories for the

individual Koala simulations. The underlying simulation

environment provides no inherent mechanism to coordinate

among simulation processes or with other processes. As

explained in Sec. 2, we opted to take a conceptually simple

approach, coordinating via shared files instead of adding a

communication and synchronization library to each process.

We implemented a signal file for communicating between

each Koala simulation and the GA Controller or management

functions. There is one signal file for each Koala process, and

that file resides in the process working directory. To determine

when it is time to start, a Koala process checks the signal file

for a start command. Upon completing a simulation, each

Koala process writes its status and anti-fitness to the signal file,

and subsequently monitors the signal file for further

instructions.

Initially, we imagined that normal file procedures (open,

read, write, close), provided by the simulation environment and

mapped to underlying operating system functions, could

mediate access to the signal file. Unfortunately, we found that

was not the case. Initial tests demonstrated that multiple

processes could open the same file for reading and writing

simultaneously, and with undesirable results. For example, if

the GA Controller opened a process for reading that was

simultaneously opened for writing by a Koala process, then the

GA Controller experienced a read exception, while the Koala

process hung. Though we could change the GA Controller to

handle read exceptions, there was nothing we could do (short

of manually restarting) to recover a hung Koala process.

Fortunately, the simulation environment has the ability to

create, inspect and delete directory paths. We used these

primitives to implement a locking scheme, where any process

that wants to write or read a signal file must first obtain access

to a lock. To obtain a lock, a process first checks to see if the

lock directory exists. If so, the process seeking the lock waits a

bit and then checks again. When the lock directory does not

exist, the seeking process attempts to make the lock directory.

If unsuccessful, then the process waits a bit and tries again. If

the lock directory cannot be accessed or created after several

tries, then a failure is logged. Releasing a lock simply requires

deleting the lock directory. When processes are required to wait

for a lock, we offset the waiting times so that, for example, a

Koala process waits five seconds when attempting to acquire

an unavailable lock, while a GA Controller or management

process waits longer. We found this locking approach to

effectively mediate access to shared signal files.

While our locking approach requires that processes be able

to wait for a specified amount of wall-clock time to elapse, the

simulation environment we used does not provide that

capability as a native part of its functionality. Fortunately, the

environment does permit a simulation process to launch an

external operating system command, and then resume

processing once the command finishes. We exploited this

capability to launch an external “sleep” command with a

parameter defining the time to wait. This approach became the

main means of coordinating the operations of the simulation

processes with the GA Controller and management processes.

When first executing (or after completing any simulation), a

Koala process checks its signal file to learn what to do next.

Typically, Koala will wait until instructed to begin simulating

the next generation of parameters, but it could also be told to

stop or restart. Absent specific instructions, Koala will use an

external sleep command to suspend for a specified time (e.g.,

five minutes) and then check the signal file again. Here, using

sleep prevents Koala from consuming CPU time while it is

suspended. This cycle repeats forever until Koala is given

specific instructions. We call this “lazy coordination” because

it provides (bounded) signaling latency with little

computational overhead.

Koala also checks for instructions during simulations, when

a simulator might be told to stop or restart. To accomplish this,

a Koala process periodically (e.g., every 2 ½ minutes) reads its

signal file. We implement this by having Koala check every

simulated hour to see if sufficient wall-clock time has passed to

warrant checking for an external command. If so, the signal file

is locked, opened, read, closed and unlocked. We call this

“aggressive coordination” because signal checking is

interleaved with normal, CPU-intensive simulation.

In all other situations, we adopt lazy coordination. For

example, after seeding a population of parameters and

signaling Koala processes to begin simulating, the GA

Controller uses a sleep command to periodically (every five

minutes here) scan signal files to determine which processes

have completed simulations. After all processes complete, the

GA Controller uses the resulting anti-fitness values to generate

the next population of parameters, then signals the simulations

to start, and uses lazy coordination to monitor for completion.

Similarly, GA management processes update the signal files for

designated Koala simulators and then use lazy coordination to

monitor progress.

Typically, we might begin a search by starting the GA

Controller, which seeds the directory for individual simulators

with random parameter files. Subsequently, we use the cluster’s

job management software to start the required number of Koala

simulators, one in each individual directory, and those

simulators would grab a network license, begin executing,

consult the signal file, read the designated parameter file and

then begin simulating. However, lazy coordination allows

components to start in any order, so we can also first start the

simulators, which then wait until the GA Controller signals

them to start.

D. Failure Recovery

Having implemented solutions to problems related to

computational feasibility, model robustness and inter-process

coordination, we expected our GA-steered simulators to work

effectively, possibly experiencing intermittent failures of the

GA Controller and/or Koala simulation processes. We also

expected that twice a year, our compute cluster would be shut

down, and any executing GA search would have to be stopped.

Given these expected failures, we devised solutions to address

them. What we had not anticipated was that the cluster’s job

manager could fail and require restarting (with unexpected

results), that simulation processes could be reallocated to

different compute nodes when their original compute nodes

failed, that license acquisition could be temporarily blocked

when a failed and restarted compute node included the license

server, and that many compute nodes could fail simultaneously

and reboot, after which all simulations in a given search might

be relocated and restarted. Unfortunately, we experienced all of

these situations and we had to devise means to cope with them.

We begin our discussion with the semi-annual planned

shutdowns, required for maintenance of the air conditioning

system in the building housing the cluster.

GAs naturally support the ability to checkpoint and resume

a search process. We implemented a function so that the GA

Controller checkpoints its own chromosome map at the

beginning of each execution. The chromosome map defines the

allocation of Koala parameters to bit positions in the GA’s

genome and includes sufficient information to convert binary

encoded genes into Koala parameter values. Then, at the

completion of each generation of Koala simulations, the GA

checkpoints the chromosomes of every individual in the

generation, along with associated historical fitness information,

the position of the random number stream and the values of any

randomized GA control parameters. Subsequently, the GA

Controller can be restarted from a specified generation. When

that occurs, the GA Controller restores its state from the

previously saved checkpoint and resumes from there. Including

this functionality in the GA Controller allows a search to be

interrupted for scheduled or unexpected cluster outages, and

then to resume, losing only the generation that was in process

at the time of the outage.

Unfortunately, we found that this checkpoint-restart process

was insufficient to handle all outages that we experienced. For

example, the cluster job manager might fail due to an

unexpected software exception, and then be restarted. Upon

restart, individual simulation processes could be removed from

their initially allocated nodes and restarted elsewhere.

Similarly, when a user tells the cluster job manager that a job

requires a specified number of cores (say one per Koala

simulation), then when enough compute nodes fail

simultaneously, an entire job will be suspended, only to be

restarted when sufficient failed nodes recover. This sort of node

failure/restart scenario is opaque to the GA Controller, which

has no insight into the operations of the cluster running the

Koala simulations. As a result, restarted simulations would

check their signal file only to find that they were already in a

simulating state. Our original protocol had Koala simulations

begin only when told to start by the GA controller. After

determining that Koala simulations could be restarted by the

cluster manager, we changed the procedures for starting Koala

so that a simulation would begin when the GA Controller tells

a simulator to start or when Koala finds that the simulator is

supposed to be in the simulating state (i.e., had been told to

start at some previous time, but had not yet completed). This

change allowed Koala simulators to be robust to node

reassignments and restarts.

Particularly difficult situations arose when a set of failing

and restarting compute nodes included the node containing the

license server. Two cases appeared. First, a Koala simulator

might be restarted, after reallocation to a new compute node,

and then attempt to acquire a network license when the

compute node containing the license server was not

operational. In such cases, the simulation environment was

intended to try for a license for a period of time, and then, if

unsuccessful, cause the simulation process to fail. Recovery

from such a situation would require identifying and manually

restarting individual Koala simulations after the license server

reappeared. Unfortunately, the actual behavior of the

simulation environment was different, apparently hanging the

simulation process when a license could not be obtained. The

developer of the simulation environment that we used was

notified of this situation, and provided an updated version of

the license query procedures.

A more difficult situation arose when a large set of compute

nodes failed, perhaps due to a power failure, and the license

server was among the failed nodes. The failed nodes rebooted

independently and automatically, and once sufficient cores

became available, the cluster manager restarted the suspended

population of simulators. This scenario led to a race condition,

where some simulation processes started before the license

server and others started after. Those simulation processes that

started before the license server could not obtain a license and

hung, while those that started after obtained a license and

started successfully. With the updated version of the simulation

environment, the hung simulation processes would instead

have failed, and then a manual process would be required to

identify and restart the failed Koala simulations.

After discussing this issue with the developer of our

simulation environment, we were provided an update that

allowed us to specify a longer retry regime, so that simulation

processes could be more persistent in seeking a network

license. This enabled us to allow all simulations to start

successfully after failure and restart of the node containing the

license server.

Finally, we should mention two expected potential failures

and our solution for them. We expected that the GA Controller

might crash due to software errors. Recovering from such

crashes involved two steps. First, we used a GA management

process to restart all simulations. Second, we restarted the GA

Controller with instructions to begin from the last generation

that had been completed. This involves restoring the

checkpoint information saved by the GA Controller after the

previous generation had been completed. We also expected that

latent software errors in Koala might cause occasional

simulator crashes. To recover from such failures, we could

diagnose and fix the fault, then stop and restart all Koala

simulators with a new version of code. This would also involve

restarting the GA Controller from the previously completed

generation. Alternatively, we could replace the parameter file

that caused the Koala simulator crash with a different

parameter file, and then restart the simulator, which could

allow an ongoing generation of simulations to complete.

The combination of robustness, coordination and failure-

recovery techniques we adopted proved effective. For example,

a trial run of 200 simulations over 500 generations experienced

only 11 Koala simulator crashes. Unfortunately, those crashes

proved costly in terms of increased latency, as our original

schedule of one month expanded to 52 days. The increased

latency arose because the GA, which executes individuals in

parallel during each generation, operates sequentially between

generations, i.e., the GA Controller can advance to the next

generation only after all simulations from a previous generation

complete. When a single simulation crashes at inopportune

times, such as during weekends or when we are away on a

business trip or vacation, the GA Controller waits patiently for

the crashed simulator to be restarted. During these periods, the

GA makes no progress. To counter such delays, we added logic

to enable the GA Controller to monitor the state of Koala

simulators and to automatically reassign individual parameter

files from a failed simulator to an operating simulator.

We modified the Koala simulator to write a tick file at

suitable intervals. We modified the GA Controller to check

periodically for the presence of Koala tick files, deleting any

that are found. This ping-ponging between writing and erasing

tick files establishes a heartbeat exchange between Koala

processes and the GA Controller. After missing a specified

number of heartbeats, the GA Controller declares a related

Koala process dead. When heartbeats resume, the related Koala

process is resurrected. These changes allow the GA Controller

to monitor Koala processes, which can be (1) dead, (2) alive

and available for assignment, or (3) alive and in use, simulating

some assigned individual.

We also modified the GA Controller lazy-coordination

procedures to consult the status of a Koala process prior to

checking for the fitness of an assigned individual. If the Koala

process is dead, then the individual is added to a set of pending

individuals; otherwise, a check is made, as normal, to see if

fitness is available for the individual. Then, prior to suspending

for the next lazy-coordination interval, the GA Controller

cycles through the set of pending individuals, assigning each to

an available Koala process. If there are insufficient Koala

processes for all pending individuals, then the residual

individuals wait until some future time when additional Koala

processes become available. If an individual has been

reassigned too many times, then a default fitness value is set, so

that the GA Controller can continue with the next generation.

We take this last step to prevent parameter combinations

causing a Koala crash from indefinitely delaying the GA

Controller from proceeding to the next generation.

Monitoring the state of simulation processes allows the GA

Controller to automatically reassign individuals from dead to

living Koala simulators, which enables generations to advance

when simulations fail and no one is around to restart them. By

starting more simulation processes than required to handle the

population of individuals, the excess processes are able to pick

up work from failed processes. Alternatively, a population of

individuals can be simulated by a smaller number of simulation

processes at the cost of increased delay from sequentially

executing some number of individuals in a population.

E. Forensics

We anticipated that we would face some difficulties

assessing the operational state of the system. We knew that we

had available tools provided by the cluster manager, such as a

node monitor that could report instantaneous resource usage on

the compute nodes and a job manager that could report the

operating state (e.g., dispatching, running, failed, cancelled) of

individual simulations. We also understood that this would be

insufficient to reflect the operating state of the entire population

of simulators.

To augment the available cluster monitoring tools, we

constructed a status reporting process that scanned the signal

files and reported the state of specified Koala simulators. We

also inserted code to report significant state changes to the

console for the GA Controller and to the console files for batch

Koala simulations. All of these forensic tools proved to be

quite helpful, but they were insufficient. Typically, the myriad

failure, restart and outage scenarios that arose left us guessing

about the precise state of the distributed system, and about the

trajectory leading there. As examples, we will discuss some

specific situations, and then describe how we enhanced the

recording of forensic information to reduce the amount of

guesswork required to determine system state and trajectory.

While running a search, the GA Controller would

periodically report the number of pending simulations that were

still running in a given generation. We knew that any given

simulation would be restricted to only about 90 minutes of

CPU time, thus when we found that numerous simulations

were still not finished after a prolonged period (e.g., overnight)

we needed to determine the state of the simulators. To explore

the state, we would typically use the status reporting process

we developed to scan the signal files of all Koala simulation

processes. A usual report would find that some number of

simulators had finished (consistent with the report of the GA

Controller) and that some number were either simulating or had

been told to start, but had not responded. Consulting the cluster

job manager we found that all simulations in the job were still

in a running state. Consulting the node manager revealed that

no significant CPU time was being used on any of the compute

nodes on which the Koala simulations were allocated.

To further investigate, we initiated remote logons to

individual compute nodes and then used the local task manager

to inspect the status of individual processes. In some cases, we

found that Koala simulators were in a suspended state (through

an external sleep command). This would surely include

simulators that had finished simulating, as identified by our

status monitoring process, but it also included simulators that

were in the simulating state. Only after consulting the job

activity log on the cluster job manager did we discover that

these simulators had been restarted after being moved between

nodes. Further investigation with remote logons to the

originally assigned compute nodes revealed that those nodes

had rebooted after some failure.

A second set of Koala simulators were not executing due to

a completely different cause. This set was also only revealed

after remote logons to specific compute nodes. Inspecting the

task manager, we found that these Koala instances were

suspended, but not through a sleep command. The only other

cause we could think of for such suspensions would be failure

to obtain a network license. After remotely logging on to the

node containing the license server we learned that the node had

rebooted, from which we inferred that a set of reallocated and

restarted Koala simulations had attempted and failed to obtain a

network license during the period that the compute node

containing the license server was rebooting. This finding was

what led as to consult the developer of our simulation

environment and initiated the process of improving the

robustness of procedures for acquiring a network license.

As you can see, investigating the state of the entire

distributed system required a significant amount of digging,

using the available tools, which were useful but still left us

making inferences and guesses about the system state and

trajectory. This led us to rethink our approach to logging

forensic information.

We decided to augment the Koala simulator to include both

an event log and a lock log. Subsequently, we found these logs

to be insufficient, so we added a simulation progress log. The

event log records each significant change in state (along with a

time stamp) for a Koala simulator through its entire operating

history, including all restarts. The lock log records each failure

to obtain or release a signal-file lock. The progress log reports

simulator status every simulated hour, which provides clues

when an event log shows that a simulation is underway, yet the

process appears idle. We augmented the signal file information

to include the time and component that last changed the file.

We also created an additional management process to clear

event and lock logs under user direction. With all significant

simulator history recorded in logs, the operating state and

trajectory of the entire distributed system became quite

transparent, and we could easily and effectively conduct post

mortems for most situations, though understanding the precise

cause of idle simulations remains a difficult task.

V. CONCLUSIONS

The scientific research and engineering community is

awash in computing power available through multicore,

multiprocessor servers deployed in clusters and clouds.

Exploiting such vast resources presents difficult challenges

because tools and techniques for programming parallel,

distributed systems are lagging growth in raw hardware power.

Nevertheless, parallelizable search algorithms exist, and might

be combined with increasing numbers of processors, available

in clusters and clouds, to implement novel approaches to

difficult and significant problems. We demonstrated the

feasibility of one such approach, applying a genetic algorithm

to steer a population of cloud-computing simulators into

directions that reveal low-probability, costly behaviors that

might otherwise lurk unforeseen until they appear in a

deployed system.

While our approach proved feasible, we encountered a

number of practical implementation challenges likely to arise in

many parallel, distributed systems built from existing

sequential processes deployed on clusters. We identified and

discussed the challenges we encountered and the pragmatic

solutions that we adopted to overcome those challenges. We

believe many near-future applications will face similar

challenges, so we hope that our experiences prove instructive to

practitioners who attempt to deploy parallel search algorithms

on today’s compute clusters.

ACKNOWLEDGMENT

We appreciate funding for this research, provided by the

Cloud Computing and Complex Systems programs, operating

under the auspices of the National Institute of Standards and

Technology. We acknowledge the timely and helpful assistance

received from Jim Henriksen, the developer of the simulation

environment underlying Koala. Without his assistance, we

could not have resolved the issues encountered with network

license server procedures in the face of failures and restarts.

We also thank Antonio Izquierdo and Frederic de Vaulx, along

with the anonymous external reviewers, who helped us

improve our manuscript. We accept responsibility for any

errors remaining in the paper.

REFERENCES

[1] D. Geer, Chip makers turn to multicore processors, Computer,

38(5), 2005, 11-13.

[2] C. Keltcher, K. McGrath, A. Ahmed & P. Conway, The AMD

Opteron processor for multiprocessor servers, IEEE Micro,

23(2), 2003, 66-76.

[3] A. Weiss, Computing in the clouds, netWorker Magazine, 11(4),

2007, 16-25.

[4] M. Baker, G. Fox & H. Yau, A review of commercial and

research cluster management software, Northeast Parallel

Architecture Center, Paper 19, 2006, 65 pages.

[5] M. Mitchell, An introduction to genetic algorithms (Cambridge,

MA: MIT Press, 1998).

[6] K. De Jong, Evolutionary computation: a unified approach

(Cambridge, MA: MIT Press, 2006).

[7] D. Bertsimas & J. Tsitsiklis, Simulated annealing, Statistical

Science, 8(1), 1993, 10-15.

[8] M. Harman, Software engineering meets evolutionary

computation, Computer, 44(10), 2011, 31-39.

[9] B. Hounsell & T. Arslan, A novel genetic algorithm for the

automated design of performance driven digital circuits,

Proceedings of the Congress on Evolutionary Computation, 1,

2000, 601-608.

[10] L. Catallo, Genetic anti-optimization for reliability structural

assessment of precast concrete structures, Computers &

Structures, 82, 2004, 1053-1065.

[11] J. Cruz, An application of anti-optimization in the process of

validating aerodynamic codes, Virginia Tech PhD dissertation,

2003, 223 pages.

[12] K. Mills, J. Filliben & C. Dabrowski, Comparing VM-placement

algorithms for on-demand clouds, Proc. of IEEE CloudCom

Nov. 29-Dec. 1, Athens, Greece, 2011, 91-98.

[13] K. Mills, J. Filliben & C. Dabrowski, An efficient sensitivity

analysis method for large cloud simulations, Proc. 4th

International IEEE Cloud Computing Conf., Washington, DC,

July 5-9, 2011.

[14] C. Dabrowski & K. Mills, VM leakage and orphan control in

open-source clouds, Proc. of IEEE CloudCom, Nov. 29-Dec. 1,

Athens, Greece, 2011, 554-559.

[15] C. Impley, How It Began: A Time-Traveler’s Guide to the

Universe, (W.W. Norton and Company), 2012.

[16] D. Patterson, The trouble with multicore, IEEE Spectrum, July

2010.

[17] S. Fuller & L. Millet (eds.), The future of computing

performance: game over or next level? (Washington, DC: The

National Academies Press, 2011).

[18] L. Silva & R. Buyya, Parallel Programming Models and

Paradigms, Chapter 1 in High Performance Cluster

Computing: Programming and Applications, Vol. 2,

Prentice Hall, 1999, 4-27.
[19] J. Dongarra & D. Walker, MPI: A Standard Message Passing

Interface, Supercomputer 12(1), 1996, 56-68.

[20] J. Dongarra, S. W. Otto, M. Snir, & D. Walker, A Message

Passing Standard for MPP and Workstations, Communications

of the ACM 39(7), 1996, 84-90.

[21] K. Seymour, H. Nakada, S. Matsuoka, J. Dongarra, C. Lee & H.

Casanova, Overview of GridRPC: A Remote Procedure Call

API for Grid Computing, Proceedings of the 3rd International

Workshop on Grid Computing, 2002, 274-278.

[22] M. Bote-Lorenzo, Y. Dimitriadis & E. Gomez-Sanchez, Grid

Characteristics and Uses: a Grid Definition, Proceedings of the

1st European Across Grids Conference, LNCS 2970, 2004, 291-

298.

[23] J. Cao, D. Spooner, J. Turner, S. Jarvis, D. Kerbyson, S. Saini &

G. Nudd, Agent-based Resource Management for Grid

Computing, Proceedings of the 2nd International Symposium of

Cluster Computing and the Grid, 2002, 350-351.

[24] S. Needham & T. Hansen, Cluster Programming Environments,

2002.

[25] Y. Kee, J. Kim & S Ha, ParADE: An OpenMP Programming

Environment for SMP Cluster Systems, Supercomputing ’03,

2003.

[26] R. Blumofe & P. Lisiecki, Adaptive and Reliable Parallel

Computing on Networks of Workstations, Proceedings of

USENIX, 1997.

[27] C. Cap & V. Strumpen, Efficient parallel computing in

distributed workstation environments, Parallel Computing,

19(11), 1993, 1221-1234.

[28] V. Strumpen, Coupling Hundreds of Workstations for Parallel

Molecular Sequence Analysis, Software-Practice and

Experience, 25(3), 1995, 291-304.

[29] H. Mühlenbein, M. Schomisch, & J. Born, The parallel genetic

algorithm as function optimizer, Parallel Computing, 17(6–7),

1991, 619-632.

[30] V. Gordon & D. Whitely, Serial and Parallel Genetic Algorithms

as Function Optimizers, Proceedings of the 5th International

Conference on Genetic Algorithms, 1993, 177-183.

[31] A. Haines, Determining important control parameters of a

genetic algorithm, Summer University Research Fellowship

Presentation, Gaithersburg, MD, Aug. 7, 2012.

