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Abstract—The recent explosion of affordable multicore, 

multichip systems, coupled with cluster management software, 

encourages the development of novel distributed applications for 

exploring large parameter spaces. We expect many such 

applications will soon appear. For example, we recently applied a 

genetic algorithm to steer a population of cloud-computing 

simulators toward low-probability, costly failure scenarios. We 

aim to provide a design-time tool that system engineers can use to 

identify and mitigate such scenarios. We found that our idea was 

much simpler in theory than in practice, largely due to 

implementation challenges that arose. In this paper, we describe 

the design and deployment of our application, and we identify 

and discuss the practical challenges that we faced. We outline 

pragmatic solutions that we adopted to overcome those 

challenges. We believe many near-future applications will face 

similar challenges, so we hope that our experiences prove 

instructive.   

Index Terms— Computational steering, cloud computing, 

cluster computing, discrete event simulation, distributed systems, 

fault tolerance, genetic algorithms, software for parallel and 

distributed systems 

I. INTRODUCTION 

As the microprocessor industry increases production of 

chips with numerous cores [1], deployed in servers containing 

multiple such chips [2], the scientific and engineering research 

communities are becoming awash in affordable, available 

computing power of unprecedented scale [3]. Harnessing such 

raw computational power requires software frameworks that 

envelop many multicore, multichip servers into clusters that 

can provision operating system images onto nodes, can monitor 

the availability of node resources, can allocate computationally 

intense tasks onto available cores and can monitor task 

execution. Already, a cluster computing market is forming [4], 

as commercial vendors offer cluster management software for 

high performance computing. Some such products focus on 

single operating systems and some support multiple operating 

systems. In addition, a range of open-source cluster 

management systems exist. 

This growing availability of processing power, packaged in 

conveniently accessible form, holds potential for advanced 

computational approaches to applications that have not been 

attempted routinely in the past. For example, numerous 

software packages exist that embody advanced search 

techniques, such as genetic algorithms [5], evolutionary 

computation [6] and simulated annealing algorithms [7]. Such 

search algorithms are being employed increasingly in novel 

applications, particularly in software engineering [8], hardware 

design [9], and materials research [10]. The combination of 

advanced search algorithms with compute clusters appears 

likely to extend the range of novel applications that could be 

attempted. While most advanced search algorithms aim to 

optimize some selected trait, we plan to invert the search 

process to seek anti-optimal solutions in cloud-computing 

systems, as a few other researchers have attempted when 

investigating potential for reliability problems in concrete 

structures [10] and aerodynamic codes [11]. 

To achieve our aims, we recently adapted a genetic 

algorithm to steer a population of sequential cloud-computing 

simulators, executing in parallel on a compute cluster, in an 

effort to discover low-probability, costly failure scenarios. We 

aim to provide a design-time tool that system engineers can use 

to identify and mitigate such scenarios. We identified genetic 

algorithms (GAs) as a search technique that might be well 

suited for our problem. GAs can find good solutions within a 

large, ill-defined search space, and can be readily adapted to a 

wide variety of search problems [5]. Fig. 1 illustrates how we 

intend to apply GAs to search for failure scenarios in a cloud-

computing model. 

The cloud-computing model [12-14] encompasses a search 

space of about 10
101

, which exceeds the estimated number of 

atoms in the visible universe [15]. The GA represents the 

parameter space as a binary encoding of 334 bits, referred to as 

chromosomes. We adapted the GA to convert any given set of 

chromosomes into parameter files that can be read by the 

cloud-computing simulator. Initially, the GA generates a 

random set of chromosomes and a population of simulators 

executes the derived parameter files in parallel. Each simulator 

returns an anti-fitness value. Anti-fitness measures the degree 

to which the simulator is failing on some performance 

objective; so higher anti-fitness represents lower performance. 

For example, we might equate anti-fitness to the proportion of 

users that could not be served. 



Once an entire population of simulators reports their anti-

fitness values, the GA employs an algorithm to construct the 

next generation of parameter files. As generations advance, the 

population of simulators explores more challenging parameter 

combinations, uncovering an increasing number of scenarios 

with degraded performance. Over time, we accumulate tuples 

containing anti-fitness and related model parameter values. 

After a sufficient number of generations, we apply selected 

data analysis techniques to partition the tuples into classes 

suggesting various causes for failed outcomes in the simulated 

cloud. As described in Sec. 3, we deployed this novel search 

application on a cluster of multicore, multichip nodes. 

Computer scientists have observed [16] that multicore, 

multichip systems are difficult to program, because parallel, 

distributed systems are notoriously prone to synchronization 

problems and failure scenarios (as we attest to in Sec. 4). Due 

to this, computer scientists advocate [17] for increased 

spending on research and education in programming for 

parallel systems. In the meantime, practitioners must attempt to 

leverage the growing availability of computational power and 

advanced search algorithms to solve problems based on current 

knowledge and available software components. This typically 

requires combining existing programs written for sequential 

operation into cooperating assemblies that can be orchestrated 

to solve today’s difficult and interesting problems. In Sec. 2, 

we review some available implementation options, and identify 

and justify our choice, which we selected based on conceptual 

simplicity.  

We found that our chosen approach was much simpler in 

concept than in practice, largely due to implementation 

challenges that arose. In Sec. 3, we describe the design and 

deployment of our application. In Sec. 4, we identify and 

discuss the practical challenges that we faced, and outline the 

pragmatic solutions that we adopted to overcome those 

challenges. We believe many near-future applications will face 

similar challenges, so we hope that our experiences prove 

instructive to practitioners. 

II. RELATED WORK 

As noted by Silva and Buyya [18], converting an existing 

sequential program to exploit parallel computing resources can 

be approached using three general strategies: (1) automated 

parallelization of a sequential program, (2) integrating parallel 

communication and synchronization libraries into existing 
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Figure 1. Schematic of a genetic algorithm steering a parallel population of cloud-computing simulators toward regions of failure and degraded performance. 



source code for a sequential program or (3) major recoding of a 

sequential program to become parallel. The second strategy 

matches well to our application, where a population of 

sequential simulators executes in parallel, while synchronizing 

with a master GA process. The communication requirements 

for our application are rather modest: exchanging commands 

and status between the GA and simulators and passing 

parameter files from the GA to simulators.  For that reason, we 

considered various library-based approaches. 

 The Message-Passing Interface (MPI) [19-20] is the most 

well-known standard for parallel communication libraries, with 

bindings to FORTRAN and C, which provides communication 

among cooperating sequential processes. MPI provides 

subroutines for sending and receiving both blocking and non-

blocking messages, either point-to-point, within a group or 

globally. MPI can support a wide range of distributed systems, 

built as collaborating sequential processes. Both our cloud 

simulator and GA can incorporate dynamic link libraries 

(DLLs) using C bindings, and our available cluster system 

supports processes communicating via MPI, so it would be 

feasible to use MPI in our application, provided we modified 

our processes to send and receive MPI messages and data. 

We also considered GridRPC [21], which mates standard 

remote procedure call semantics with asynchronous, coarse-

grained parallel processes and provides for exception reporting. 

GridRPC is primarily motivated by Grid computing 

applications [22], which often involve parallel processing 

among programs distributed across remote computing facilities 

in various administrative domains. A more comprehensive 

approach can be found in the form of the PACE toolkit [23], 

which enables deployment and management of distributed 

agent-based systems in Grid computing environments. Like 

MPI, GridRPC and PACE could probably be used in our 

application, provided we made significant modifications to our 

GA and simulation processes. 

As we mentioned in the introduction, research in parallel 

programming has garnered great interest, so there are many 

other approaches that could be considered for our application. 

Needham and Hansen [24] describe PVM, a parallel virtual 

environment based on MPI, and they also identify nine 

competing research initiatives, all aimed at providing parallel 

programming environments for grids, clusters or networks of 

workstations. Kee and colleagues [25] discuss ParADE, which 

provides a wide range of high-level functions to support 

parallel programming over MPI. Cilk-NOW [26] provides a 

runtime system for deploying parallel programming 

applications written in the Cilk language onto a network of 

workstations. Cap and Strumpen [27, 28] describe a parallel 

programming system that focuses on dynamic, real-time load 

balancing on networks of workstations. Adopting any of these 

approaches would require reprogramming our cloud simulator 

and GA for deployment in a specific distributed computing 

environment, as well as configuring and managing the 

environment ourselves. 

In addition to general parallel programming strategies, we 

considered parallel search strategies conceived as refinements 

to GAs. Muhlenbein and colleagues [29] defined a genetic 

algorithm with multiple searches conducted in parallel, where 

each parallel search process runs its own GA on a defined 

subspace of the global search space, and the search processes 

occasionally exchange information about their most fit 

outcomes. The exchanged information is used to guide the 

parallel search processes. Gordon and Whitely [30] compare 

nine parallel genetic search algorithms, in three categories: 

global models, island models and massively parallel models. 

The global models exploit parallelism only in the selection 

process, while island models run several subpopulations in 

parallel, allowing individuals to migrate. Massively parallel 

models assign one processor per individual in a cellular grid, 

and permit mating only among nearby individuals. 

Unfortunately, none of the GAs compared by Gordon and 

Whitely were actually implemented in parallel, so adopting 

them would require us to expend significant effort to construct, 

test and verify such a parallel GA. 

We decided that adopting an experimental parallel 

programming environment would prove too costly, requiring us 

to reprogram the existing GA and cloud simulator, as well as 

deploy and operate the environment. We also discarded, for 

now, the idea of using a parallel GA because we would have to 

rewrite the existing GA to operate as one among a cooperating 

set of GAs, using some algorithm identified by Gordon and 

Whitely. Using MPI or GridRPC would require us integrate 

message passing subroutines into the GA and cloud simulator, 

potentially introducing bugs unrelated to our problem. 

Subsequently, we would have to test and verify this code, 

which must be made extremely robust. The available libraries 

leave exception handling to the user, so we would need to 

program suitable routines. In the end, we decided that using 

MPI or GridRPC for communication and synchronization 

would not be cost effective because, as discussed below, our 

available cluster contained a shared file store that we could use 

as a common location to signal information and exchange data 

among the GA and simulator processes. Using a shared file 

store is conceptually simple, requiring development of minimal 

interface code based on existing file input/output functions. 

III. SYSTEM DESIGN & DEPLOYMENT 

We began our project with three elements given: (1) an 

implementation of a GA [31], (2) Koala, a discrete-event 

simulator of an Infrastructure-as-a-Service (IaaS) cloud-

computing system [12-14], and (3) a compute cluster managed 

by commercial software. The GA was tested previously against 

a wide variety of numeric optimization problems. The Koala 

IaaS simulator was used for a couple of years to study virtual-

machine (VM) placement algorithms. Though the simulation 

environment, cluster management software and underlying 

hardware platforms consist of specific commercial products, 

the challenges we faced would arise under any similar setup, 

regardless of the source of the components. For that reason, we 

keep our description generic. 

While Koala is written as a sequential simulator, the 

previous VM-placement studies were carried out with many 

independent Koala processes executing in parallel on various 

parameter combinations, orchestrated as a typical parameter-



Figure 2. Schematic of GA Controlled Population of Koala Simulators Deployed on a Cluster. 
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sweep application. Before executing, each simulation process 

must obtain a license from a network license server. 

The previous Koala simulations were executed on the same 

cluster that was made available to us. The cluster (see Fig. 2) 

consists of two redundant head nodes, coordinating through a 

shared file store, and 24 compute nodes (224 cores total), 

which came in different varieties, some outfitted with dual, 

quad-core processors and some with dual, hex-core processors. 

The head nodes, file store, and compute nodes share a cluster 

network, while the head nodes are also accessible from the 

enterprise network. 

We adapted the GA to control Koala simulations, inserting 

functions: to convert specific genetic encodings understood by 

the GA into parameter files understood by Koala, to instruct a 

population of Koala simulators that a new set of parameter 

values was available, and to wait for the Koala processes in 

each generation to complete their simulations and report back 

fitness values. We also modified the GA to report tuples, each 

containing a generation identifier, individual identifier, fitness 

value, and for each of the 130 Koala parameters the values that 

led to the reported fitness. Finally, we added code so that, after 

each generation, the GA state and population of individuals are 

saved to a checkpoint database, which allows us to restart the 

GA from any previously completed generation. We call this 

modified GA the GA Controller, which we deployed on one of 

the head nodes. 

The head nodes also executed cluster software components, 

as shown in Fig. 2. The node manager monitors and reports the 

instantaneous status and resource usage of all compute nodes. 

The job manager allows users to configure and submit batch 

jobs for execution. We use the job manager to configure and 

begin an entire population of Koala simulators under a single 

job. Also available on the head nodes are some specific GA 

management processes that we developed. These processes 

allow us to set running Koala simulators to specific states, such 

as started, restarted and stopped. While Fig. 2 shows various 

processes on specific head nodes, the head nodes are 

redundant, so the processes can be running on either. 

We also needed to alter the Koala simulator to allow 

repeated executions under direction from the GA Controller. 

We modified Koala to query a signal file for specific 

instructions. The GA Controller and GA management 

processes can update signal files to effect control of Koala 

simulators. We disabled the normal results writing portion of 

Koala, replacing it with a function to report anti-fitness 

achieved at simulation completion. We began our experiments 

with anti-fitness defined as the proportion of arriving users who 

could not be served by the cloud being simulated. 

The main communication channel among processes 

consists of a shared file store, which can be mounted by any 

node on the cluster network. The GA Controller is started 

within a specified working directory, which contains one 

subordinate working directory for each deployed Koala 

simulator. The GA Controller’s directory houses the GA 

checkpoint database and the results tuples, while each Koala 

working directory houses a simulator’s signal file and 

parameter input files generated by the GA Controller. 

We deployed the license server on the first compute node, 

refraining from placing Koala simulators there. We preferred to 

place the license server on one of the head nodes, but each of 



those nodes had another license server, which allowed 

interactive users from the enterprise network to conduct 

simulations, and no node can run more than one license server. 

The cluster job manager makes all decisions regarding 

allocation of Koala processes to specific compute nodes. The 

job submitter can identify which compute nodes are available 

for running Koala processes and can specify how many cores 

are required for each Koala process, along with various other 

job characteristics. The job manager has no knowledge of the 

GA Controller or license server, and the GA Controller and 

Koala simulators have no knowledge of the job manager. The 

GA Controller and GA management processes know about the 

Koala simulators, but are unaware of the license server. 

IV. CHALLENGES & PRAGMATIC SOLUTIONS 

While designing and deploying our system, we faced a 

significant set of implementation challenges that hindered 

successful achievement of our objectives. Below we address 

those challenges in five categories: computational feasibility, 

robustness, coordination, failure recovery and forensics. In 

each category, we discuss the specific impediments we 

experienced, and we outline pragmatic solutions we adopted. 

A. Computational Feasibility 

We intended to steer a population of 200 individual Koala 

simulators through 500 generations of simulations, where each 

simulator in a given generation must finish before the GA 

Controller has sufficient information to construct parameter 

files for the next generation of simulations. This meant that the 

longest simulations within each generation would determine 

the elapsed time before the next generation could commence. 

Ultimately, then, the time to simulate 500 generations would be 

the sum of the maximum simulation time for any individual in 

each generation. 

Suppose we chose to have each individual simulate three 

months in the life of a cloud. Some parameter combinations 

could be completed within minutes, but others could take a 

week or more. Further, the GA is intended to steer the 

population into failure scenarios, which take much more CPU 

time to simulate than normal operating ranges. So, if we did not 

further constrain simulations, then completing 500 generations 

could take a decade or more, which is impractical for any 

useful investigation of design alternatives. 

We added a constraint to each Koala simulator that limited 

the CPU time available to any given simulation to no more than 

90 minutes. This constraint ensured that 500 generations of 

simulations could complete within about one month. For 

simulations that were terminated prior to normal completion, 

anti-fitness results reflect the state at termination. While this 

ensured our system would be computationally feasible, abrupt, 

early terminations introduced other challenges, as we discuss in 

the next section on robustness. 

B. Robustness 

Executing 10
5
 simulations (200 individuals x 500 

generations) over the course of a month requires taking great 

care to ensure individual simulations do not produce run-time 

exceptions, such as NULL pointers and memory exhaustion. 

Previously, the Koala simulator had been used under a wide 

range of parameter combinations [12-14], with individual 

simulations lasting two weeks or longer. Based on this history, 

we were confident that Koala would produce few such failures. 

Unfortunately, we were proved wrong on this point. 

To avoid biasing a search, the first population of parameter 

inputs is generated randomly by the GA Controller. This 

randomization subjected Koala to a diverse set of parameter 

combinations not previously experienced. Subsequently, 

numerous unexpected issues were uncovered including NULL 

pointer exceptions; excessive logging behavior; set removal 

exceptions; and memory exhaustion. We attempted to use 

normal debugging processes to uncover the source of these 

errors, and remove them. Our attempts were complicated by the 

fact that the simulations were executed as tasks in a batch job, 

where each task logged standard outputs to a file. 

The simulation run-time environment was intended to log 

sufficient information to identify what error occurred and 

where in the source code the error arose. Unfortunately, the log 

files only specified what error occurred. Thus, to find the 

location of particular errors, we were required to rerun 

simulations from an interactive user interface, which could 

pinpoint error locations. While batch and interactive executions 

were supposed to produce the same error behavior, we found 

that in about 20% of cases, interactive executions did not fail 

when rerunning a parameter combination that had failed in a 

batch run. These reproducibility issues arose because simulator 

random number streams are initialized each time an interactive 

execution starts, which could not match the state of the random 

number streams leading to the failure of a batch simulation that 

had iterated through many generations. Fortunately, 50 to 100 

crashed simulations were caused typically by only a handful of 

specific errors, so by interactively executing a sample of failed 

batch simulations, we were able to uncover the errors crashing 

the simulators. Subsequently, the developer of the simulation 

environment has ensured that batch simulation processes report 

both event data and code location related to exceptions. 

Once we ensured that Koala was robust against randomly 

generated parameter combinations, new robustness issues arose 

as Koala finished a first generation of simulations. After a 

simulation completes, we needed to ensure that all residual 

objects are eliminated, and Koala is reinitialized, and then 

waits for the GA Controller to provide the next generation of 

parameter combinations. Without ensuring this, latent memory 

leaks can accumulate over the course of many generations, 

leading simulations to crash due to memory exhaustion. Even if 

a crash is avoided, accumulating unused memory objects could 

slow down the simulations, allowing less efficient use of CPU 

time. Since we were aware of these issues, we had taken the 

necessary steps to ensure that end-of-simulation memory leaks 

did not occur. 

Unfortunately, when simulations were terminated abruptly 

due to the expiration of CPU time, a second wave of 

exceptions, mainly NULL pointers, arose. These exceptions 

resulted from situations where simulation processes had been 

waiting for some delay to expire during the time that the 

simulation was told to terminate. When this occurred, processes 



that did not check for a stop instruction immediately following 

a delay instruction became vulnerable to NULL pointer 

exceptions, as parent simulation processes stopped and began 

reclaiming memory. 

To solve these problems, we inserted, where feasible, 

checks for a stop instruction immediately following a delay 

instruction. In selected cases, inserting stop checks was 

determined to be sufficiently difficult that we also implemented 

a higher level approach, which we call “grow quiet”. In the 

grow-quiet approach, rather than immediately terminating 

subordinate simulation processes, a parent component would 

stop creating new subordinates, and then wait for sufficient 

time to elapse for on-going subordinate processes to complete. 

Subsequently, the parent component terminated itself. This 

approach was coupled with carefully placed wait statements in 

the main simulation loop, which appropriately ordered the 

stopping of simulation processes by type, and prevented final 

reclamation of any residual, unused simulation objects until all 

major simulation processes had terminated. 

C. Coordination 

Koala is built on a simulation environment that provides a 

single operating system process for each running simulation 

instance. For that reason, we implemented each Koala 

individual as a separate process with a unique working 

directory (e.g., simulator1, simulator2 and so on). Similarly, we 

implemented one process for the GA Controller and one 

process for each supporting GA management function. 

The GA Controller and the management processes execute 

within the directory containing the subdirectories for the 

individual Koala simulations. The underlying simulation 

environment provides no inherent mechanism to coordinate 

among simulation processes or with other processes. As 

explained in Sec. 2, we opted to take a conceptually simple 

approach, coordinating via shared files instead of adding a 

communication and synchronization library to each process. 

We implemented a signal file for communicating between 

each Koala simulation and the GA Controller or management 

functions. There is one signal file for each Koala process, and 

that file resides in the process working directory. To determine 

when it is time to start, a Koala process checks the signal file 

for a start command. Upon completing a simulation, each 

Koala process writes its status and anti-fitness to the signal file, 

and subsequently monitors the signal file for further 

instructions. 

Initially, we imagined that normal file procedures (open, 

read, write, close), provided by the simulation environment and 

mapped to underlying operating system functions, could 

mediate access to the signal file. Unfortunately, we found that 

was not the case. Initial tests demonstrated that multiple 

processes could open the same file for reading and writing 

simultaneously, and with undesirable results. For example, if 

the GA Controller opened a process for reading that was 

simultaneously opened for writing by a Koala process, then the 

GA Controller experienced a read exception, while the Koala 

process hung. Though we could change the GA Controller to 

handle read exceptions, there was nothing we could do (short 

of manually restarting) to recover a hung Koala process. 

Fortunately, the simulation environment has the ability to 

create, inspect and delete directory paths. We used these 

primitives to implement a locking scheme, where any process 

that wants to write or read a signal file must first obtain access 

to a lock. To obtain a lock, a process first checks to see if the 

lock directory exists. If so, the process seeking the lock waits a 

bit and then checks again. When the lock directory does not 

exist, the seeking process attempts to make the lock directory. 

If unsuccessful, then the process waits a bit and tries again. If 

the lock directory cannot be accessed or created after several 

tries, then a failure is logged. Releasing a lock simply requires 

deleting the lock directory. When processes are required to wait 

for a lock, we offset the waiting times so that, for example, a 

Koala process waits five seconds when attempting to acquire 

an unavailable lock, while a GA Controller or management 

process waits longer. We found this locking approach to 

effectively mediate access to shared signal files. 

While our locking approach requires that processes be able 

to wait for a specified amount of wall-clock time to elapse, the 

simulation environment we used does not provide that 

capability as a native part of its functionality. Fortunately, the 

environment does permit a simulation process to launch an 

external operating system command, and then resume 

processing once the command finishes. We exploited this 

capability to launch an external “sleep” command with a 

parameter defining the time to wait. This approach became the 

main means of coordinating the operations of the simulation 

processes with the GA Controller and management processes. 

When first executing (or after completing any simulation), a 

Koala process checks its signal file to learn what to do next. 

Typically, Koala will wait until instructed to begin simulating 

the next generation of parameters, but it could also be told to 

stop or restart. Absent specific instructions, Koala will use an 

external sleep command to suspend for a specified time (e.g., 

five minutes) and then check the signal file again. Here, using 

sleep prevents Koala from consuming CPU time while it is 

suspended. This cycle repeats forever until Koala is given 

specific instructions. We call this “lazy coordination” because 

it provides (bounded) signaling latency with little 

computational overhead. 

Koala also checks for instructions during simulations, when 

a simulator might be told to stop or restart. To accomplish this, 

a Koala process periodically (e.g., every 2 ½ minutes) reads its 

signal file. We implement this by having Koala check every 

simulated hour to see if sufficient wall-clock time has passed to 

warrant checking for an external command. If so, the signal file 

is locked, opened, read, closed and unlocked. We call this 

“aggressive coordination” because signal checking is 

interleaved with normal, CPU-intensive simulation. 

In all other situations, we adopt lazy coordination. For 

example, after seeding a population of parameters and 

signaling Koala processes to begin simulating, the GA 

Controller uses a sleep command to periodically (every five 

minutes here) scan signal files to determine which processes 

have completed simulations. After all processes complete, the 

GA Controller uses the resulting anti-fitness values to generate 

the next population of parameters, then signals the simulations 



to start, and uses lazy coordination to monitor for completion. 

Similarly, GA management processes update the signal files for 

designated Koala simulators and then use lazy coordination to 

monitor progress. 

Typically, we might begin a search by starting the GA 

Controller, which seeds the directory for individual simulators 

with random parameter files. Subsequently, we use the cluster’s 

job management software to start the required number of Koala 

simulators, one in each individual directory, and those 

simulators would grab a network license, begin executing, 

consult the signal file, read the designated parameter file and 

then begin simulating. However, lazy coordination allows 

components to start in any order, so we can also first start the 

simulators, which then wait until the GA Controller signals 

them to start. 

D. Failure Recovery 

Having implemented solutions to problems related to 

computational feasibility, model robustness and inter-process 

coordination, we expected our GA-steered simulators to work 

effectively, possibly experiencing intermittent failures of the 

GA Controller and/or Koala simulation processes. We also 

expected that twice a year, our compute cluster would be shut 

down, and any executing GA search would have to be stopped. 

Given these expected failures, we devised solutions to address 

them. What we had not anticipated was that the cluster’s job 

manager could fail and require restarting (with unexpected 

results), that simulation processes could be reallocated to 

different compute nodes when their original compute nodes 

failed, that license acquisition could be temporarily blocked 

when a failed and restarted compute node included the license 

server, and that many compute nodes could fail simultaneously 

and reboot, after which all simulations in a given search might 

be relocated and restarted. Unfortunately, we experienced all of 

these situations and we had to devise means to cope with them. 

We begin our discussion with the semi-annual planned 

shutdowns, required for maintenance of the air conditioning 

system in the building housing the cluster. 

GAs naturally support the ability to checkpoint and resume 

a search process. We implemented a function so that the GA 

Controller checkpoints its own chromosome map at the 

beginning of each execution. The chromosome map defines the 

allocation of Koala parameters to bit positions in the GA’s 

genome and includes sufficient information to convert binary 

encoded genes into Koala parameter values. Then, at the 

completion of each generation of Koala simulations, the GA 

checkpoints the chromosomes of every individual in the 

generation, along with associated historical fitness information, 

the position of the random number stream and the values of any 

randomized GA control parameters. Subsequently, the GA 

Controller can be restarted from a specified generation. When 

that occurs, the GA Controller restores its state from the 

previously saved checkpoint and resumes from there. Including 

this functionality in the GA Controller allows a search to be 

interrupted for scheduled or unexpected cluster outages, and 

then to resume, losing only the generation that was in process 

at the time of the outage. 

Unfortunately, we found that this checkpoint-restart process 

was insufficient to handle all outages that we experienced. For 

example, the cluster job manager might fail due to an 

unexpected software exception, and then be restarted. Upon 

restart, individual simulation processes could be removed from 

their initially allocated nodes and restarted elsewhere. 

Similarly, when a user tells the cluster job manager that a job 

requires a specified number of cores (say one per Koala 

simulation), then when enough compute nodes fail 

simultaneously, an entire job will be suspended, only to be 

restarted when sufficient failed nodes recover. This sort of node 

failure/restart scenario is opaque to the GA Controller, which 

has no insight into the operations of the cluster running the 

Koala simulations. As a result, restarted simulations would 

check their signal file only to find that they were already in a 

simulating state. Our original protocol had Koala simulations 

begin only when told to start by the GA controller. After 

determining that Koala simulations could be restarted by the 

cluster manager, we changed the procedures for starting Koala 

so that a simulation would begin when the GA Controller tells 

a simulator to start or when Koala finds that the simulator is 

supposed to be in the simulating state (i.e., had been told to 

start at some previous time, but had not yet completed). This 

change allowed Koala simulators to be robust to node 

reassignments and restarts. 

Particularly difficult situations arose when a set of failing 

and restarting compute nodes included the node containing the 

license server. Two cases appeared. First, a Koala simulator 

might be restarted, after reallocation to a new compute node, 

and then attempt to acquire a network license when the 

compute node containing the license server was not 

operational. In such cases, the simulation environment was 

intended to try for a license for a period of time, and then, if 

unsuccessful, cause the simulation process to fail. Recovery 

from such a situation would require identifying and manually 

restarting individual Koala simulations after the license server 

reappeared. Unfortunately, the actual behavior of the 

simulation environment was different, apparently hanging the 

simulation process when a license could not be obtained. The 

developer of the simulation environment that we used was 

notified of this situation, and provided an updated version of 

the license query procedures. 

A more difficult situation arose when a large set of compute 

nodes failed, perhaps due to a power failure, and the license 

server was among the failed nodes. The failed nodes rebooted 

independently and automatically, and once sufficient cores 

became available, the cluster manager restarted the suspended 

population of simulators. This scenario led to a race condition, 

where some simulation processes started before the license 

server and others started after. Those simulation processes that 

started before the license server could not obtain a license and 

hung, while those that started after obtained a license and 

started successfully. With the updated version of the simulation 

environment, the hung simulation processes would instead 

have failed, and then a manual process would be required to 

identify and restart the failed Koala simulations. 



After discussing this issue with the developer of our 

simulation environment, we were provided an update that 

allowed us to specify a longer retry regime, so that simulation 

processes could be more persistent in seeking a network 

license. This enabled us to allow all simulations to start 

successfully after failure and restart of the node containing the 

license server. 

Finally, we should mention two expected potential failures 

and our solution for them. We expected that the GA Controller 

might crash due to software errors. Recovering from such 

crashes involved two steps. First, we used a GA management 

process to restart all simulations. Second, we restarted the GA 

Controller with instructions to begin from the last generation 

that had been completed. This involves restoring the 

checkpoint information saved by the GA Controller after the 

previous generation had been completed. We also expected that 

latent software errors in Koala might cause occasional 

simulator crashes. To recover from such failures, we could 

diagnose and fix the fault, then stop and restart all Koala 

simulators with a new version of code. This would also involve 

restarting the GA Controller from the previously completed 

generation. Alternatively, we could replace the parameter file 

that caused the Koala simulator crash with a different 

parameter file, and then restart the simulator, which could 

allow an ongoing generation of simulations to complete. 

The combination of robustness, coordination and failure-

recovery techniques we adopted proved effective. For example, 

a trial run of 200 simulations over 500 generations experienced 

only 11 Koala simulator crashes. Unfortunately, those crashes 

proved costly in terms of increased latency, as our original 

schedule of one month expanded to 52 days.  The increased 

latency arose because the GA, which executes individuals in 

parallel during each generation, operates sequentially between 

generations, i.e., the GA Controller can advance to the next 

generation only after all simulations from a previous generation 

complete. When a single simulation crashes at inopportune 

times, such as during weekends or when we are away on a 

business trip or vacation, the GA Controller waits patiently for 

the crashed simulator to be restarted. During these periods, the 

GA makes no progress. To counter such delays, we added logic 

to enable the GA Controller to monitor the state of Koala 

simulators and to automatically reassign individual parameter 

files from a failed simulator to an operating simulator. 

We modified the Koala simulator to write a tick file at 

suitable intervals. We modified the GA Controller to check 

periodically for the presence of Koala tick files, deleting any 

that are found. This ping-ponging between writing and erasing 

tick files establishes a heartbeat exchange between Koala 

processes and the GA Controller. After missing a specified 

number of heartbeats, the GA Controller declares a related 

Koala process dead. When heartbeats resume, the related Koala 

process is resurrected. These changes allow the GA Controller 

to monitor Koala processes, which can be (1) dead, (2) alive 

and available for assignment, or (3) alive and in use, simulating 

some assigned individual. 

We also modified the GA Controller lazy-coordination 

procedures to consult the status of a Koala process prior to 

checking for the fitness of an assigned individual. If the Koala 

process is dead, then the individual is added to a set of pending 

individuals; otherwise, a check is made, as normal, to see if 

fitness is available for the individual. Then, prior to suspending 

for the next lazy-coordination interval, the GA Controller 

cycles through the set of pending individuals, assigning each to 

an available Koala process. If there are insufficient Koala 

processes for all pending individuals, then the residual 

individuals wait until some future time when additional Koala 

processes become available. If an individual has been 

reassigned too many times, then a default fitness value is set, so 

that the GA Controller can continue with the next generation. 

We take this last step to prevent parameter combinations 

causing a Koala crash from indefinitely delaying the GA 

Controller from proceeding to the next generation. 

Monitoring the state of simulation processes allows the GA 

Controller to automatically reassign individuals from dead to 

living Koala simulators, which enables generations to advance 

when simulations fail and no one is around to restart them. By 

starting more simulation processes than required to handle the 

population of individuals, the excess processes are able to pick 

up work from failed processes. Alternatively, a population of 

individuals can be simulated by a smaller number of simulation 

processes at the cost of increased delay from sequentially 

executing some number of individuals in a population.  

E. Forensics 

We anticipated that we would face some difficulties 

assessing the operational state of the system. We knew that we 

had available tools provided by the cluster manager, such as a 

node monitor that could report instantaneous resource usage on 

the compute nodes and a job manager that could report the 

operating state (e.g., dispatching, running, failed, cancelled) of 

individual simulations. We also understood that this would be 

insufficient to reflect the operating state of the entire population 

of simulators. 

To augment the available cluster monitoring tools, we 

constructed a status reporting process that scanned the signal 

files and reported the state of specified Koala simulators. We 

also inserted code to report significant state changes to the 

console for the GA Controller and to the console files for batch 

Koala simulations. All of these forensic tools proved to be 

quite helpful, but they were insufficient. Typically, the myriad 

failure, restart and outage scenarios that arose left us guessing 

about the precise state of the distributed system, and about the 

trajectory leading there. As examples, we will discuss some 

specific situations, and then describe how we enhanced the 

recording of forensic information to reduce the amount of 

guesswork required to determine system state and trajectory. 

While running a search, the GA Controller would 

periodically report the number of pending simulations that were 

still running in a given generation. We knew that any given 

simulation would be restricted to only about 90 minutes of 

CPU time, thus when we found that numerous simulations 

were still not finished after a prolonged period (e.g., overnight) 

we needed to determine the state of the simulators. To explore 

the state, we would typically use the status reporting process 

we developed to scan the signal files of all Koala simulation 



processes. A usual report would find that some number of 

simulators had finished (consistent with the report of the GA 

Controller) and that some number were either simulating or had 

been told to start, but had not responded. Consulting the cluster 

job manager we found that all simulations in the job were still 

in a running state. Consulting the node manager revealed that 

no significant CPU time was being used on any of the compute 

nodes on which the Koala simulations were allocated. 

To further investigate, we initiated remote logons to 

individual compute nodes and then used the local task manager 

to inspect the status of individual processes. In some cases, we 

found that Koala simulators were in a suspended state (through 

an external sleep command). This would surely include 

simulators that had finished simulating, as identified by our 

status monitoring process, but it also included simulators that 

were in the simulating state. Only after consulting the job 

activity log on the cluster job manager did we discover that 

these simulators had been restarted after being moved between 

nodes. Further investigation with remote logons to the 

originally assigned compute nodes revealed that those nodes 

had rebooted after some failure. 

A second set of Koala simulators were not executing due to 

a completely different cause. This set was also only revealed 

after remote logons to specific compute nodes. Inspecting the 

task manager, we found that these Koala instances were 

suspended, but not through a sleep command. The only other 

cause we could think of for such suspensions would be failure 

to obtain a network license. After remotely logging on to the 

node containing the license server we learned that the node had 

rebooted, from which we inferred that a set of reallocated and 

restarted Koala simulations had attempted and failed to obtain a 

network license during the period that the compute node 

containing the license server was rebooting. This finding was 

what led as to consult the developer of our simulation 

environment and initiated the process of improving the 

robustness of procedures for acquiring a network license. 

As you can see, investigating the state of the entire 

distributed system required a significant amount of digging, 

using the available tools, which were useful but still left us 

making inferences and guesses about the system state and 

trajectory. This led us to rethink our approach to logging 

forensic information. 

We decided to augment the Koala simulator to include both 

an event log and a lock log. Subsequently, we found these logs 

to be insufficient, so we added a simulation progress log. The 

event log records each significant change in state (along with a 

time stamp) for a Koala simulator through its entire operating 

history, including all restarts. The lock log records each failure 

to obtain or release a signal-file lock. The progress log reports 

simulator status every simulated hour, which provides clues 

when an event log shows that a simulation is underway, yet the 

process appears idle. We augmented the signal file information 

to include the time and component that last changed the file. 

We also created an additional management process to clear 

event and lock logs under user direction. With all significant 

simulator history recorded in logs, the operating state and 

trajectory of the entire distributed system became quite 

transparent, and we could easily and effectively conduct post 

mortems for most situations, though understanding the precise 

cause of idle simulations remains a difficult task. 

V. CONCLUSIONS 

The scientific research and engineering community is 

awash in computing power available through multicore, 

multiprocessor servers deployed in clusters and clouds. 

Exploiting such vast resources presents difficult challenges 

because tools and techniques for programming parallel, 

distributed systems are lagging growth in raw hardware power. 

Nevertheless, parallelizable search algorithms exist, and might 

be combined with increasing numbers of processors, available 

in clusters and clouds, to implement novel approaches to 

difficult and significant problems. We demonstrated the 

feasibility of one such approach, applying a genetic algorithm 

to steer a population of cloud-computing simulators into 

directions that reveal low-probability, costly behaviors that 

might otherwise lurk unforeseen until they appear in a 

deployed system. 

While our approach proved feasible, we encountered a 

number of practical implementation challenges likely to arise in 

many parallel, distributed systems built from existing 

sequential processes deployed on clusters. We identified and 

discussed the challenges we encountered and the pragmatic 

solutions that we adopted to overcome those challenges. We 

believe many near-future applications will face similar 

challenges, so we hope that our experiences prove instructive to 

practitioners who attempt to deploy parallel search algorithms 

on today’s compute clusters. 
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