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Abstract- Market-based compute grids encompass service providers 
offering limited resources to potential users with varying demands 
and willingness to pay. Providers face difficult decisions about which 
jobs to admit and when to schedule admitted jobs. For this reason, 
researchers investigate various heuristics for admission control and 
scheduling that aim to yield high revenue for providers. Such 
research has no framework within which to understand the revenue 
bounds associated with various workloads. This paper proposes a 
tractable analytical model for joint optimization of job admission and 
scheduling strategies aimed at provider revenue maximization.  We 
show how solving this model yields maximum provider revenue 
given a linear user utility function. Our model can be used to 
understand the operating limits of heuristics for admission control 
and scheduling, and can also be used to investigate the implication of 
varying job mixes.   
 

I INTRODUCTION 
merging Grid technologies pose a challenging problem of 
efficient resource allocation in complex, decentralized 
systems. Since resources are shared by multiple users (i.e., 

applications) and performance of each user is typically 
characterized by multiple competing criteria, resource 
management includes the following two major tasks: (a) 
making best use of allocated resources for each user by 
resolving trade-offs among competing user criteria, and (b) 
sharing resources among different users.  

Fig.1 illustrates the general nature of resource management 
in a market-based compute grid. Each user discovers some 
service providers within a grid and then selects one provider 
with which to interact. The user submits a job request 
indicating the required resources and amount the user is 
willing to pay. Typically, a user is willing to pay a fixed 
amount for a job completed by a specified deadline, but a 
discounted amount for a late job. The service provider 
considers the request in light of existing and expected 
workload and then decides whether or not to accept the job. 
Upon completion of an accepted job, a provider earns revenue 
according to the user’s expressed willingness to pay. Late jobs 
may require the provider to pay a penalty; thus, revenue for a 
job could be negative. If the service provider rejects the job, 
then the user forwards its request to another service provider, 
and so on.   

In this paper, we investigate resource management from 
the viewpoint of a service provider who aims to maximize 

revenue, given various user demands with associated potential 
for rewards and penalties. In related work, researchers who 
investigate market-based compute grids typically model users 
willingness to pay (utility) as a reward for completing a job by 
a deadline and a decay rate, which defines the slope of a 
linearly decreasing function of the reward over time for late 
jobs [1]-[7]. As reward decays beyond zero, user utility 
becomes negative and a provider must pay a corresponding 
penalty. Many researchers devise heuristics for admission 
control and scheduling of jobs by service providers and then 
use simulation to evaluate performance of those heuristics 
when subjected to a mix of job classes. Each job class is 
defined by a deadline and associated reward, along with a 
decay rate for exceeding the deadline (and possibly a bound on 
the penalty for late jobs).  

  
   

 
 
 
 
 
 
 
 
 
 
 
 

   
 
 
 

Figure 1.  General view of resource management in a Grid 
 

This paper proposes a tractable analytical model for joint 
optimization of job admission and scheduling strategies aimed 
at provider revenue maximization. We solve this model under 
the assumption that potential provider penalties are 
unbounded, and we analyze key model parameters. In this 
particular case the scheduling optimization problem can be 
solved explicitly, yielding priority scheduling with priorities 
determined by job urgency. We demonstrate three applications 
of the model. First, given two job classes, we determine 
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optimal admission probabilities and associated revenue as the 
job mix varies for a fixed aggregate load. Second, given a 
fixed job mix with four classes, we determine optimal 
admission probabilities and associated revenue as aggregate 
load varies. Third, we show how optimal admission 
probabilities computed from our model allow a simulated, 
compute cluster to achieve maximum revenue even under 
bounded penalties. Our analytical solution may be used to 
determine maximum achievable provider revenue for a given 
aggregate load and job mix, assuming unbounded provider 
penalties. Our model can be used to understand the operating 
limits of heuristics for admission control and scheduling, and 
can also be used to investigate the implication of varying job 
mixes. 

We begin by describing (in section II) our model of user 
criteria for job classes. In section III, we present our general 
provider model, which includes both admission control and 
scheduling, and describe a provider with linear utility. Section 
IV solves our model analytically and numerically for the case 
of a single job class with a linear revenue function. Section V 
gives numerical results from our model when considering user 
demands with two and four job classes. Section VI applies our 
analytical model to a simulated, compute cluster that operates 
with bounded penalties. We conclude in section VII. 

II USER MODEL 
We model users as job submitters, where each job includes an 
expressed willingness to pay that consists of two parts: base 
value and delay-dependent decay, which can be seen as 
diminished value for jobs completed late. Thus, we model jobs 
as being delay sensitive.  
     We assume that there are S  classes of jobs, where all jobs 
of each class Ss ,..,1=  have the same delay sensitivity. A 
job’s delay sensitivity is quantified by the non-increasing 
utility function )(τsu , where τ  is the queuing delay. 

Function )(τsu  can be interpreted as the willingness to pay. 

We assume that different jobs sJj ,..,1=  of the same class 

Ss ,..,1=  have the different budgets, and model this 
situation by assuming that job j  of the class s  has utility 
function 
                      )()( ττ ssjsj vuu −= ,                                     (1) 

where function )(τsv  depends on the queuing delay τ for 

job j and constant sju represents the basic value of the job 

j of class s . 
We consider a generic utility function (see Fig. 2) often 

used [1]-[6] in grid computing: 
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Figure 2.  Generic utility function 
 
Piecewise linear utility function (2)-(4) represents willingness 
to pay as a base value ( +v ) for completing a job on time (by 

minτ ) with a decreasing value for late jobs, up to some bound 
( −− v ).  
     We can simplify (2)-(4) to a linear utility function,  
                           ττ sss vvv 10)( −= ,                                   (5) 

as depicted in Fig. 3, where s0ν represents base value for 

completing a job in class s without queuing delay and 

s1ν represents the rate of decay in job value due to queuing 

delay. Linear utility function (5) ignores the offset ( minτ ) and 
removes the penalty bound ( −− v ). We will see that these 
restrictions simplify the analysis, and that the offset can be 
reintroduced later when using numerical methods. 
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Figure 3. Linear utility function 
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Given queuing delay time τ , we assume that a provider 

charges a job of class Ss ,..,1=  amount 

                      )()( 0 ττ sss vpp −= ,                                    (6) 

where sp0  is the base price for the job and )(τsv  is a price 
reduction based on the queuing delay incurred by the job.  
Note that when 0)( <τsp  the user is reimbursed for poor 

service. A user will submit job sJj ,..,1=  of class 

Ss ,..,1=  to a provider only when sjs up ≤0 . Thus, the 
service provider can control demand by varying base prices 

Ssp s ,..,1,0 = . 

III PROVIDER MODEL: ADMISSION&SCHEDULING 
A service provider can maximize revenue by controlling the 
admission and scheduling of jobs in various classes, which 
have associated utility functions. The problem of finding 
optimal admission probabilities and a related schedule for 
these jobs is nontrivial. In this section we show how solving 
two inter-related optimization problems (determining optimal 
admission probabilities and a related, optimal schedule) allows 
a service provider to maximize revenue. 
     We assume a service provider uses a pricing scheme (6) 
where base prices sp0  are fixed.  We also assume that jobs of 

class s  arrive according to a Poisson process of rate sμ . We 

assume an 1// GM  service model: all accepted requests are 
serviced by a single server of capacity C , with service time 
for requests of class s  being a random variable with 
probability distribution )(tBs  with moments 

∫= )()()( tdBtb s
ii

s . 

     The provider employs admission control and scheduling, as 
shown in Fig. 4.  Admission control admits an arriving job of 
class s  with probability ]1,0[∈sq  and rejects this job with 

probability sq−1 . Rejected jobs leave the system. After 
admission, jobs of class s  enter a queue according to a 
Poisson process of rate sss q μλ = , which is serviced 
according to some scheduling regime. We assume non-
preemptive, priority scheduling. 

Since a completed job sJj ,..,1=  of class Ss ,..,1=  

brings revenue (6), given queuing time jsττ = , the average 
provider revenue is 

 
              { }∑ −=

s
ssss vEpR )]([0 τλ ,                              (7) 

which represents the sum over all job classes of the base price 
for jobs in a class minus the decay in value determined by the 
expected queuing delay for jobs in the class, weighted by the 

proportional arrival rate for jobs in the class. The goal of the 
provider is to maximize the average total revenue 
                           R

schedulingss

maxmax
0 μλ ≤≤

                                        (8) 

 
where the average total revenue is given by (7). 
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Figure 4. Admission Control and Scheduling 

 
The case of a linear utility function (6) is comparatively 

simple because (a) average utility is equal to the utility of the 
average queuing delay, and (b) optimization problem (8) can 
be solved explicitly yielding the optimal scheduling. Given 
linear utility function (5) and assuming 00 =sv , then 

τsv1− represents the amount of revenue lost when a late job is 
completed by time τ . From this, we obtain the following 
expression for the average total revenue (7): 
 
                        ∑ −=

s
ssss TvpR )( 10λ                            (9) 

where the average waiting time of the class s  is ][ ss ET τ= .  
Thus, optimization problem (8) takes the following form: 

 

Admission Controller 
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Optimization problem (10) can be decomposed into two 
optimization problems as follows. The first optimization 
problem (11) finds the optimal scheduling discipline and the 
vector of corresponding average waiting times 

( ))(),..,()( **
1

* λλλ STTT = , given vector of arrival rates 

),..,( 1 Sλλλ = : 

                                ∑
s

sssscheduling
Tv1min λ                             (11) 

The second optimization problem finds the optimal admission 
probabilities: 
                          Ssq s

opt
s

opt
s ,..,1, == μλ                    (12) 

where the vector of optimal arrival rates )( opt
s

opt λλ = is 
given by the solution to the following optimization problem: 
           ∑ −=

≤≤ s
ssss

opt Tvp
ss

)]([maxarg *
100

λλλ
μλ

            (13) 

In the class of scheduling disciplines without preemption, 
the solution to optimization problem (11) is as follows.  
Introduce the following notation: 

                            Ssbvf ss

def

s ,..,1,)1(
1 ==                     (14) 

and without loss of generality assume that job classes are 
served in the following order: 
                                Sfff ≤≤≤ ..21                                (15) 
 Kleinrock [8] shows that, for the class of non-preemptive, 
work-conserving scheduling disciplines, the solution to 
optimization problem (11) is given by the Head-Of-the-Line 
(HOL) discipline with ordering shown by (15), where job class 

Si ,..,2=  has priority over job class Sj ,..,1=  if ji > .  
The corresponding optimal average waiting times are 
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server utilization by a job class Ss ,..,2=  is  

                       Cbsss
)1(λρ =                                            (18) 

and server utilization by job classes Ssi ,..,=  is 

                         ∑
=

=
S
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Thus, for the optimal scheduling discipline, the average total 
revenue (9) becomes 
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and the optimization problem (13) takes the following form: 
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where Cbsss
)1(μβ = . 

 

IV ANALYSIS & NUMERICAL RESULTS FOR ONE JOB CLASS  

In the case of a single job class, 1=S , optimization problem 
(21) takes the following form: 
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where 
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Optimization problem (22)-(23) can be solved explicitly.  
 Introduce notation 
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Solving optimization problem (22)-(23) yields the following 
admission probability μλoptoptq = : 
 
                         ( )βρ *,1min=optq                              (25) 
 Combining (23)-(25) we obtain the following parameter 
region where admission control is ineffective: 
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and the following parameter region where admission control is 
effective and the optimal admission probability 1<optq : 
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Regions (26) and (27) are shown in Fig. 5. 
     We can use numerical methods (e.g., conjugate gradient 
method) to solve for opt

sq in order to maximize average total 
revenue in the case of an arbitrary number of job classes. We 
demonstrate the approach using a single job class. We 
reintroduce offset minτ to ensure that revenue associated with 
queued jobs does not begin to decay until after delay minτ . 
Thus, we alter (20) accordingly: 
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Figure 5.  Phase diagram in the case of a single job class. 
 
  In the following, we assume normally distributed job 
lengths with moments: =)1(

sb 4400 s and =)2(
sb  (44002 + 

15002) s. We further assume that our service provider can run 
30 jobs in parallel )440030( =C . We also assume a single 
job class for which computing time costs $1000/hr (i.e., 

10000 =p ). We fix the delay before utility begins to decay 

as )1(min 3 sb×=τ . We assume a base decay rate d = .001. 

We can skew the decay rate by a factor k , such that 
kdv ×=1 . Define 10 vp=τ  to be the delay before 

revenue for a job becomes negative. We use (28) to compute 
the average total revenue as we vary utilization )(ρ and as we 
vary k to create a range of decay rates and corresponding 
values for τ . Fig. 6 plots the results for decreasing τ . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Revenue vs. utilization for varying decay rates absent 
admission control. 

 
  Each curve reveals a similar story. Revenue increases to a 
maximum and then drops steeply as the server receives too 
many jobs to provide the required delay. The period of 
increase represents the region where admission control is not 
necessary and the period of decrease represents the region 

where admission control would prove effective. Shorter values 
of τ (i.e., higher decay rates 1v ) yield lower maximum 
revenues and cause revenue to begin declining at lower 
utilizations. 
 Next we solve optimization problem (8), using equations 
(14) and (15) and then use those results to solve numerically 
optimization problem (21), yielding optq , as plotted in Fig. 7 
for the same values of τ shown in Fig. 6. Applying these 
optimal admission probabilities will prevent server overload 
and allow the provider to maintain maximum revenue under 
increasing load. Fig. 8 gives the revenue curves when jobs are 
admitted with probability optq . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Optimal admission probability vs. utilization for 
varying decay rates. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Revenue vs. utilization for varying decay rates when 
using optimal admission control. 
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V NUMERICAL RESULTS FOR VARYING JOB MIXES  

Next we consider a workload with two job classes, 2=S .   
For one job class (high-value, high-urgency) 5103×=τ and 
for the other (low-value, low-urgency) .106 5×=τ  Fig. 9 
shows the utility functions. Our analysis investigates how 

optq changes as we vary the job mix by altering the ratio of 
high-value jobs to low-value jobs as we hold ρ  constant at 
80%. We also examine how these changes affect average total 
revenue. We keep C , )1(

sb , )2(
sb  and minτ unchanged from 

our analysis of one job class.  
     We assume that high-value jobs yield five times the 
revenue of low-value jobs ($30,000 vs. $6,000) and decay 10 
times as fast (0.1 vs. 0.01). Fig. 10 plots the optimal admission 
probabilities for each job class, while varying the proportion 
of high-value jobs. To maximize revenue, the service provider 
must admit all high-value jobs until the proportion of high-
value jobs reaches 75 % (see Fig. 11, where revenue reaches a 
maximum at this job mix). Further, if there are any high-value 
jobs, then the service provider cannot admit more than 70 % of 
the low-value jobs, an admission rate that falls as the 
proportion of high-value jobs increases until the service 
provider must reject all low-value jobs once the proportion of 
high-value jobs reaches 60 %. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Linear utility functions for two job classes. 
  
     Next we consider a more complex workload with four job 
classes, 4=S , as illustrated in Fig. 12. Five percent of jobs 
(high-value, high-urgency) yield about $60,000 and decay at a 
rate of $4 per second ).105.1( 4×=τ  Twenty percent of jobs 
(high-value, low-urgency) yield $40,000 and decay at a rate of 
$1.33 per second ).103( 4×=τ  Fifteen percent of jobs (low-
value, high-urgency) yield $20,000 and decay at $1.00 a 
second ).102( 4×=τ  The remaining 60 % of jobs (low-
value, low-urgency) yield $10,000 and decay at $0.25 a 
second ).104( 4×=τ  Even for this complex workload, our 
model can be used to determine the optimal admission 
probabilities to achieve maximum revenue for varying 
aggregate workloads. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Optimal admission probability for varying proportion 
of high-value jobs given utilization of 80 % (τ is in units of 105). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 11. Revenue for varying proportion of high-value jobs, 

given utilization of 80 % and applying optimal admission 
probabilities from Figure 10. 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. Linear utility functions for four job classes. 
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Figures 13-19 plot various system characteristics against 
aggregate load  

                            ∑
=

Σ =
S

s
ssbC 1

)1(1 μβ                                  (29) 

assuming that the load by each class Ss ,..,1=  changes 
proportionally to the aggregate load (29), so the load by each 
class stays constant relative to the aggregate load (29). 
 Fig. 13 plots the optimal admission probabilities for each 
job class as aggregate load increases to 140 %. Note that 
admission probabilities are quite sensitive to load. For 
example, low-value, low-urgency jobs are shut out over a 6 % 
load range (between 15 % and 21 % load). Next, low-value, 
high-urgency jobs are cut off as load moves over the range of 
28 % to 40 %. High-value, high-urgency jobs are gradually 
squeezed out over the range of 60 % to 80 % load. Finally, 
high-value, low-urgency jobs begin to be rejected as aggregate 
load passes 90 %. These admission probabilities lead to the 
maximum revenue curve shown in Fig. 14. The revenue curve 
exhibits four distinct, linear regions – where the slope changes 
as each job class becomes subjected to admission control. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13. Optimal admission probability for each of four job 

classes as aggregate load increases (τ is in units of 104). 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14. Revenue as aggregate load increases while applying 
optimal admission probabilities from Fig. 13 to the job mix 

defined in Fig.12. 

 VI SIMULATION RESULTS FOR BOUNDED PENALTIES 
Through simulation, we demonstrate that our analytical model 
for unbounded penalties can be applied to maximize provider 
revenue even when penalties are bounded. We simulated a 
5000-processor cluster facing a stream of jobs with the general 
characteristics given in Table 1. 
 

Table 1. General Job Characteristics 
Job Width                             500 processors  

Average 7200 seconds 
Std. Dev. 2400 seconds Job Length 
Minimum 300 seconds 
Base Value $1.00/processor/hour1 Job Value High Skew 5 x Base Value 
Base Decay $0.10/second Job Decay Rate Urgent Skew 10 x Base Decay 

minτ                              3 x Job Length 
Maximum Penalty                             5 % of Job Value 

  
For our job mix, we assumed 20 % of jobs had high value (80 
% had base value) and 20 % of jobs were urgent (80 % were 
not). We combined these assumptions about value and 
urgency to form four job classes, as shown in Table 2, which 
also indicates the value and decay rate for an average job in 
each class. On average, low-value (Lv) jobs are worth $1000 
and high-value (Hv) jobs are worth $5000; thus, the weighted 
average job value is $1800. Low-urgency (Lu) jobs expire 

)(τ 10,000 seconds after minτ  and high-urgency (Hu) jobs 

expire 1,000 seconds after minτ . An expired job is removed 
from the queue and the provider is assessed the maximum 
penalty. 
 

Table 2. Characteristics Distinguishing Job Classes 
Class LvLu LvHu HvLu HvHu 
Ratio 64 % 16 % 16 % 4 % 

Value 

Job Length 
x 

Job Width  
x  

Base Value 

Job Length  
x  

Job Width 
x 

Base Value 

Job Length  
x  

Job Width 
x 

Base Value  
x  

High Skew 

Job Length  
x  

Job Width 
x 

Base Value  
x  

High Skew 
 For 
Avg. 
Job  

2 x 500 x 1 = 
$1000 

2 x 500 x 1 = 
$1000 

2 x 500 x 1 x 
5 = $5000 

2 x 500 x 1 x 5 
= $5000 

Decay 
Rate Base Decay 

Base Decay  
x  

Urgent Skew 

Base Decay  
x 

High Skew 

Base Decay  
x 

High Skew 
x 

Urgent Skew 
For 
Avg. 
Job 

$0.10/s $0.10/s x 10 
= $1.00/s 

$0.10/s x 5 = 
$0.50/s 

$0.10/s x 5 x 
10 = $5.00/s 

 
 Our simulator scheduled jobs in priority order according to 
(14)-(15). We simulated two alternatives for admission 
control: (a) admit all jobs and (b) admit jobs according to 

                                                           
1 Base job value derived from recent commercial offerings. 
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opt
sq , where s denotes the job class. To compute opt

sq we used 
numerical methods as outlined in previous sections, but we 
made one minor adjustment. Specifically, we multiplied 
estimated queuing delay by a coefficient )56.0( =Φ to 
account for the fact that expired jobs are removed from the 
queue, which reduces queuing delay under higher utilizations. 
To determine a value for Φ we compared results from two sets 
of simulations that admit all jobs. In one set, penalties were 
bounded and expired jobs were removed from the queue. In 
the second set, penalties were unbounded and jobs did not 
expire. Simulated queuing delays diverged with increasing 
utilization, with the greatest divergence occurring over the 
range of 0.85 to 1.00, where bounded penalties led to queuing 
delays on average 56 % of those with unbounded penalties.   
 We incorporated Φ  into (28) to yield a modified revenue 
function, 

 ∑ ⎥
⎦

⎤
⎢
⎣

⎡
−−
−⋅Φ

−=
+s ss

s
s

s

s vTp
b

CR
)1)(1(
),0max(

1

1
min

0
0)1( σσ

τρ
,      (30) 

and then at each load of interest we solved for opt
sq . Figure 15 

plots opt
sq for the job classes depicted in Table 2. 

   

 

 

 

 

 

 
 
 
Figure 15. Optimal admission probability vs. aggregate load for 

simulated job classes described in Table 2. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 16. Average revenue per second vs. aggregate load when 
admitting all jobs (red) and when applying optimal admission 

probabilities (blue). 

  Using our two admission-control strategies, we subjected 
our simulation to aggregate workloads of up to 500 % and 
measured various performance indicators, such as utilization, 
revenue per second, revenue per job and queuing delay. At 
each load we simulated 500 six-month periods. Figures 16-19 
graph key performance results for two cases: no admission 
control and optimal admission control, where both cases 
assume optimal priority scheduling. Note that due to bounded 
penalties, even in a case of “no control”, optimal priority 
scheduling effectively introduces a form of admission control 
since expired jobs are removed from the queue. This can 
explain some peculiarities in Figures 16-19, including revenue 
rate increase even as the system becomes overloaded (Fig. 16) 
as well as decreases in queuing delay (Fig. 18) and utilization 
(Fig. 19) with increase in aggregate load. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 17. Average revenue per job vs. aggregate load when 

admitting all jobs (red) and when applying optimal admission 
probabilities (blue). 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 18. Average queuing delay vs. aggregate load when 

admitting all jobs (red) and when applying optimal admission 
probabilities (blue). 

 
 
 
 
 
 
 
 
 
 

 
Figure 19. Average utilization vs. aggregate load when admitting 
all jobs (red) and when applying optimal admission probabilities 

(blue). 
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 As illustrated in Figure 16, applying optimal admission 
probability for each of the four job classes enabled the service 
provider to achieve higher revenue beyond 300 % load and to 
reach maximum revenue as load neared 500 %, where the 
arrival of high-value jobs was sufficient to allow rejection of 
all low-value jobs. In an interval between 65 % and 300 % 
load, admitting all jobs achieved more revenue, which results 
from the approximation of Φ used in (29). 

When all jobs were admitted, the maximum penalty for 
expired jobs limited the provider’s lost revenue. Further, 
expiring jobs were removed from the queue, which served as 
an ex post facto admission control. These factors enabled the 
provider to increase earned revenue until load reached about 
300 %, after which revenue declined because of an increasing 
rate of expired jobs. These effects can also be seen in Figure 
17, where both control strategies yield an average value of 
$1800 per job until 90 % load. Beyond 90 % load, admitting 
all jobs led to a steady decline in revenue per job as losses 
mounted due to the increasing rate of expired jobs. On the 
other hand, beyond 90 % load, applying optimal admission 
probabilities had two positive effects on revenue per job: (a) 
rejected jobs did not incur penalty costs and (b) a higher 
proportion of high-value jobs were admitted in place of low-
value jobs. Beyond 285 %, applying optimal admission 
probabilities resulted in acceptance of only high-value jobs, 
leading to average revenue of $5000 per job. 
 Figure 18 shows that applying optimal admission 
probabilities enabled the service provider to hold queuing 
delays low, as compared with the case of admitting all jobs, 
where high queuing delays caused some jobs to decay in value 
and other jobs to expire and incur penalty costs. Figure 19 
illustrates that limiting admissions to maximize revenue 
reduced utilization. When all jobs were admitted, cluster 
utilization reached 100 % (given sufficient load). When job 
admissions were restricted, cluster utilization averaged about 
69 %. 

We also simulated a scenario where job widths varied: 50 
% of the workload required 250 processors, 30 % of the 
workload required 750 processors and 20 % of the workload 
required 1500 processors. Those results (not shown here) 
provide the same fundamental pattern of revenue and queuing 
delay. Of course, sometimes a scheduled job would not fit into 
the cluster and had to be delayed until there was sufficient 
space (we did not simulate backfilling). This led to lower 
utilizations: 90 % average when all jobs were admitted and 65 
% average when optimal admission probabilities were applied. 
Traditionally, operators of large compute clusters strive to 
achieve utilizations above 90 % (higher is considered better). 
Our results suggest that in market-based compute grids service 
providers might need to take a different view. 

 VII CONCLUSIONS 
Market-based compute grids encompass service providers 
offering limited resources to potential users with varying 
demands and utility (willingness to pay). Researchers typically 
model utility as a reward for completing a job by a deadline 
and a decay rate, which defines the slope of a linearly 

decreasing function of the reward over time if a job is late. As 
reward decays beyond zero, user utility becomes negative and 
a provider must pay a corresponding penalty. Under such 
conditions, providers face difficult decisions about which jobs 
to admit and when to schedule admitted jobs. For this reason, 
researchers investigate various heuristics for admission control 
and scheduling that aim to yield high revenue for providers. 
 This paper has proposed a tractable analytical model for 
joint optimization of job admission and scheduling strategies 
aimed at provider revenue maximization. We solved this 
model under the assumption that potential provider penalties 
are unbounded, and we analyzed key model parameters. We 
demonstrated how the model could be used to compute 
optimal admission probabilities under a complex mix of jobs. 
We reported simulation results suggesting that, in market-
based compute grids, where poor service has associated costs, 
providers must restrict resource utilization in order to 
maximize revenue. Our model could be used to understand the 
operating limits of proposed heuristics for admission control 
and scheduling, and could also be used to investigate the 
implication of varying job mixes and workloads.  

Further work remains to incorporate effects from server 
price adjustments and to consider collections of multiple 
service providers and clients within a grid economy. We also 
plan to validate our optimization results against available data 
[9] on current web services. 
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