
SYNCHRONIZATION OF DATA STREAMS IN DISTRIBUTED REALTIME MU LTIMODAL
SIGNAL PROCESSING ENVIRONMENTS USING COMMODITY HARDWARE

L. Diduch, A. Fillinger, I. Hamchi, M. Hoarau, V. Stanford

{ldiduch, fantoine, ihamchi, mhoarau, vstanford}@nist.gov

ABSTRACT

We describe an API built on top of the NIST Data Flow
System II, a sensor-net middleware, which allows to synchro-
nize high volume data streams in real-time, using commodity
hardware in distributed computation environments. Experi-
ences with synchronization issues arising from working with
multiple data streams in applications such as real-time multi-
sensor data fusion and ad hoc video processing are addressed.

Index Terms— Multimedia Signal Processing, Data
Transport Middle-ware, Distributed Sensor Networks, Multi-
modal Interfaces, Smart-spaces, Ambient Assisted Living

1. INTRODUCTION

High volume data generated in sensor networks, e.g. micro-
phone array or multiple high-definition video feeds used in
applications like industrial monitoring, biological or naval
research, medical image processing, smart environments,
surveillance applications, ambient assisted living environ-
ments or other areas requiring constant monitoring, becomes
difficult to handle with rising network and processing loads.
New technology standards like multi-core processors help
to distribute the load of those applications. High bandwidth
interfaces like firewire allow capture of data from a broad
set of hardware. Using one machine and operating system
however, these technologies only offer limited computational
power and provide limited sets of data acquisition nodes. Dis-
tributed stream processing, which refers here to processing of
streamed data on multiple computer systems applying a high
bandwidth network, can help to distribute the processing load
and extend the number of data acquisition nodes.

We describe applications of our sensor-net middleware,
the NIST Data Flow System II (NDFS-II) [1] developed at the
Smartspace Lab of the Information Access Division at the US
National Institute of Standards and Technology (NIST). On
top of this framework we recently developed an API assisting
in real-time high volume signal processing, which will be
main point of discussion. We describe our experience with
high volume streaming data and synchronization of time-
stamped datastreams using different data- and framerates.
Two experimental results are presented, as well as two of our
research applications to better explain the described features.

2. PLATFORMS FOR DISTRIBUTED SIGNAL
PROCESSING

Many recently developed Distributed Stream Management
Systems (DSMS) focus on continuous query database-like
event stream processing. SQL like operations are used to
process continuous sensor data streams. Platforms like Tele-
graphCQ [2], PIPES [3] and Borealis [4] fall into this cate-
gory. While being very powerful in processing and record-
ing high volume event streams (e.g. RFID data feeds from
thousands of sensors), those are not designed to handle raw
high-volume multi-modal data streams like a set of encoded
HD video combined with multi channel audio feeds as used
in multi sensor data-fusion applications. Platforms whichfo-
cus on raw data transport are rare, and mostly custom coding
solutions to one problem set instead of a generic framework.
Most of those do not operate in distributed environments.

3. NIST DATA FLOW SYSTEM II

3.1. Overview

Development of the first version of the NDFS began in 1997
and was applied in distributed data acquisition tasks produc-
ing large multi-modal corpora (10 TByte) used in context sen-
sitive environment research. International programs likeAMI
[5] or CHIL [6]) combining audio and video processing with
focus on scene analysis use these corpora for evaluation pur-
poses. Hundreds of sensors including multichannel micro-
phone arrays, stand alone microphones and a set of HD video
cameras, producing data at an aggregate rate of over three gi-
gabytes per minute, form the Rich Transcription 2007 Meet-
ing Recognition Evaluation (RT-07) [7] referred to above.

Requirements for operating system independence, better
integration of platform specific sensors (OS specific drivers)
and more dynamicity in ad hoc subscription to computing
nodes drove a redesign of the NDFS culminating in the
NDFS-II. It is a decentralized, lightweight framework for
distributed computing and data transport. The system devel-
oped in C++ also provides a Java API, runs on mainstream
platforms like Windows, Mac OSX, Linux and Java VM and
its source code is in the public domain. Strengths of the sys-
tem are focus on raw data transport, generic application and



Fig. 1. A distributed multi-modal sensor fusion application
estimating location of active speakers, based on block- and
timestamp synchronization.

design simplicity. We use the NDFS-II not only for multi-
modal data acquisition, but also for research on smartspaces
and real-time multi-sensor data fusion and processing. Com-
plex system research applications like distributed simulations
of ant colony optimization algorithms (ACO) have been in-
cluded recently into the spectrum of applications as well.

3.2. Advanced Features and Synchronization

Features besides raw data transport are implemented inFlows
[8], e.g. on the fly video source coding using selectable
codecs or endianess conversion. Advanced features can be
implemented ontop of the NDFS-II API. This strategy gives
users the possibility to refuse or accept new experimental
extensions and allows our team to research more complex
extensions, without modifying underlying system features.
The framework comes with a set of Flows derived from our
research needs. Flows are generally crafted by users to trans-
port specific data acquired from their sensors.

Different kinds of sensors, however, like microphones
and cameras, might produce varying sampling- and data-
rates. Sensors capturing at the same frequency on different
hosts might have varying data rates due to hardware setup
differences, local clock offsets and drifts, uninterruptable ker-
nel time, scheduler delays or unpredictable disk operations.
Those stream imperfections occur using non real-time oper-
ating systems and commodity hardware. Of course, by using
hardware solutions likeGenlock, some of these sensors can
be synchronizeda priori. There are scenarios however, where
new sensors do not have hardware synchronization solutions,
or commodity hardware is used to capture and process data
because of pecuniary boundaries. While we successfully syn-
chronized sources of different type captured with commodity
hardwarepost hoc [9], the need ofad hoc synchronization
becomes more apparent in real-time multi-sensor data fusion
and distributed signal processing.

To address this issue we developed multiple simple strate-
gies of ad hoc software synchronization. Experiments are
conducted on non real-time operating systems, using software
generated block- and timestamps, referred to asaugmented
timestamps, using the local clock synchronized with a central

NTP server. It is possible however, to use timestamps gener-
ated by hardware solutions in the synchronization algorithms,
which will likely provide a better timing accuracy.

To illustrate the data flow in a distributed environment
let us take a look at two fundamental queuing policies of
the NDFS-II. Upon Flow initialization the user might set the
blocking or non blocking data transport policy. Blocking pol-
icy simply blocks the application should the user want to re-
trieve data when none is in the queue. The non blocking pol-
icy never blocks the application and allows a Flow to drop
data in case its queue is full, usually due to lacking processing
power. While the blocking policy is useful in research scenar-
ios where no data loss may to occur, non-blocking policies are
used preferably in real-time scenarios with live signal capture
or heavy processing tasks.

In a first scenario as presented in Fig. 1 we suppose no
blockstamp and timestamp synchronization (see ’Sensor Fu-
sion’ box). Two main effects occur which determine basic
rules of the processing pipeline: First, video and audio signal
sources capture live withdifferent sampling and data rates.
Second each branch introduces its ownprocessing time-delay
due to varying processing time. Simply fusing those live
multi-modal signals at the end of the pipeline, without drop-
ping any data (by applying theblocking policy), will demand
the user to synchronize the signals by hand and due to varying
data rates knowledge about sampling rates of the sources has
to be used. Even without overloaded processor nodes and ne-
glecting branch specific processing delaysthe fusion results
in signals drifting away from each other in this case.

In a second scenario we solve problems of different sam-
pling rates and processor overload using thenon blocking pol-
icy: The user now acquires data asynchronously. This still
does not resolve processing time delay introduced by different
processing branches, but allows a satisfactory way of fusing
data together. Fused signals do not drift away from each other
anymore, but ashift with a constant delay can be experienced.
That is, audio signal can be heard before the corresponding
video sequence because the video pipeline works slower, so
streams are fused but still not synchronized.

Finally let us look at an application of the synchronization
API developed on top of the described basic queuing policies:
We augment acombined block- and timestamp (BTStamp) to
the signal in the pipelines capture nodes (left in the figure).
The BTStamp is generated by an incremental counter (block-
stamp) and the local clock (timestamp), assuming the sys-
tems time has been synchronized with a global NTP server
in advance. A timestamp allows to mix sensor signals of
different data rates while a blockstamp allows data originat-
ing from one source, split across multiple computation nodes
to be fused back in synchronicity (e.g. on multiple hosts or
multi-core processors). Moreover the blockstamp is used to
keep track of dropped frames. It might find future application
in statistical ad hoc regression algorithms such as Widrow
or Kalman filters estimating inter-frame timing. At data fu-



Fig. 2. A distributed, real-time, face localization task used
in computer vision research. Only blockstamp based syn-
chronization is applied since data is emerging from a single
source.

sion side (right in the figure), we just feed the instance of
our Synchronizer before the fusion step with incoming frames
and request synchronized frames from it. The Synchronizer
also provides useful information like detection of data loss
or synchronization statistics, as well as strategies used to re-
cover from data loss and additional optimization of memory
consumption due to buffering. Mainly three synchronization
strategies have been implemented, tested and applied so far:

Exact Blockstamp Match: applied in scenarios of sin-
gle source dataflow split among multiple processing pipelines
subject to stream and processing imperfections (e.g. proces-
sors of different speed). Used to detect dropped frames.

Tolerant Timestamp Match: simplest form of times-
tamp synchronization, similar to blockstamp match without
detection of dropped frames. Ascending timestamps match-
ing within a tolerance interval are assumed to be synchro-
nized. This policy is only useful for sources with equal rates.

Overlay Timestamp Match: most applied form of times-
tamp synchronization. Timestampintervals of several data-
flows with different sampling rates are grouped in case of an
interval overlay. The output rate of synchronized data might
be higher than the rate of the fastest stream. Combined with
blockstamp information about the sequence integrity of the
stream this algorithm is a very powerful way to synchronize
even streams with a large difference in frequency.

Applying the same example scenario but using the Over-
lay Timestamp Match algorithm (the timestamp and block-
stamp synchronization of Fig. 1 boxes are used now) relieves
the user of dealing with different data-rates. The shift due
to processing delays is also eliminated because only frames
which overlap in time are returned grouped. A last inevitable
effect is a delay to all frames which occurs due to the largest
processing time-delay because of the slowest pipeline branch.

For more details about the synchronization algorithms,
application cases and limitations please refer to the API doc-
umentation.

Fig. 3. Exact Blockstamp Match synchronization of three
processing nodes with variable computation frequencies. In-
creasing processing time delaytd for Node 3. Due to dropped
frames, synchronization occurs rarely.

4. EXPERIMENTAL RESULTS

To demonstrate the difference between Exact Blockstamp
Match and Overlay Timestamp Match algorithms we intro-
duce atest scenario similar to the Multi Layer Perceptron
(MLP) face localization box from Fig. 2. We split the com-
putational needs by three to simulate distributed processing.
A video signal originating from a single source is processed
with different speeds by three computation nodes (Node 1,
2, 3) and collected in the ’Exact Blockstamp Sync’ box. All
Nodes operate in non-blocking mode and while Node 1 and
2 have similar processing speeds,Node 3 computes slower as
can be seen in the update frequency of the lowest graph in
Figures 3 and 4. The nodes input flows have a history buffer to
compensate for stream imperfections. If this buffer overflows
(e.g. because a node cannot consume its data in time) the
node drops incoming data. This effect can be seen for Node
3 in a processing time delay drift (td1 < td2) (buffering)
between Flow 3 and the other two Flows before simulation
time of 1.3 seconds. The Flows graphs become parallel af-
ter 1.3 seconds, indicating that Node 3 starts dropping data
constantly, introducing aconstant processing time delay td

of approx. one and a half seconds. The Exact Blockstamp
Match algorithm only groups frames with equal blockstamps
and for those frames dropped (more or less randomly) by
Node 3 no grouping of all three Flows can occur. As it can be
seen in Fig. 3, the density of synchronized frames is small.

In case we replace the Exact Blockstamp Match with
the Overlay Timestamp Match algorithm in the ’Blockstamp
Sync’ box inside the MLP box of Fig. 2, a better synchro-
nization of all three sources can occur (high density of synced
frames in Fig. 4). In this new case it does not matter if frames
have been dropped or the Nodes computational frequencies
differ because timestamp information is used.



Fig. 4. Overlay Timestamp Match synchronization demon-
strates better synchronization in a scenario of dropped frames
and different computation frequencies.

5. APPLICATION EXAMPLES

The multi-modal sensor fusion shown in Fig. 1 is one of our
test applications and performs a speaker localization based
on sensor fusion of audio and video data. The setup con-
sists of an HD-video and an audio feed generated from one
of our NIST Mk-III 64-channel 44-kHz 24bit microphone ar-
rays. The video branch of the pipeline performs image pre-
processing for the second stage of face localization. The face
localizer returns a feed with a region of interest (ROI) repre-
senting the coordinates of the localized face. The audio pro-
cessing branch applies FIR filtering on 64-channels as a first
step. The filtered data is fed into a tri-gaussian speech model
processor for thresholding of active speech segments and into
a beam-former to find the angle of a sound source. The sensor
fusion box evaluates the correlation between the ROI and the
angle based on a Overlay Timestamp synchronization due to
the very varying sampling and computation rates.

Another application example, real-time processing with a
high throughput (computer vision research), can be seen in
Fig. 2. Using one video source, threedifferent face local-
ization algorithms are run in parallel in order to enhance the
localization rate. The resulting ROIs are fed into a Bayesian
network which usesa priori information about each localiz-
ers credibility. Sensor fusion occurs here in two flavors: The
MLP part of the processing branch is split into three smaller
computation nodes for faster processing. It uses blockstamp
synchronization and data level fusion. In the Bayesian net-
work box three different algorithms are compared using fea-
ture level fusion. Blockstamp based synchronization is used
to avoid different frames being grouped in case a frame has
been dropped.

6. CONCLUSION

By using a distributed processing system for real-time multi-
sensor data-fusion applications, the ability to synchronize var-
ious data streamsad hoc has a crucial role. Our newly de-
veloped API built on top of the NDFS-II allows to synchro-
nize such streams on commodity hardware using augmented
time- and blockstamps. Synchronization of hardware gener-
ated timestamps is theoretically possible as well, howevernot
yet verified by experiments.

Disclaimer: Specific commercial products, or open
source software projects referred to by name are offered
for the information of the reader. There is no endorsement
by the US National Institute of Standards and Technology
expressed or implied by such references.

7. REFERENCES

[1] V. Stanford, J. Garofolo, O. Galibert, M. Michel, and
C. Laprun, “The nist smart space and meeting room
projects: Signals, acquisition, annotation and metrics,”
Proceedings of ICASSP, 2003.

[2] Chandrasekaran, Sirish, O. Cooper, A. Deshpande,
M. Franklin, J. Hellerstein, W. Hong, S. Krishnamurthy,
S. ¡adden, V. Ramman, F. Reiss, and M. Shah, “Tele-
graphcq: Continous dataflow processing for an uncertain
world,” January 2005.

[3] C. Heinz, J. Kraemer, A. Markowetz, and B. Seeger,
“Pipes: A multi-threaded publish-subscribe architecture
for continuous queries over streaming data sources,” July
2003.

[4] Abadi and J. Daniel et al., “The design of the borealis
stream processing engine.,” January 2005.

[5] T. Hain, L. Burget, M. Karafiat, J. Dines, D. van
Leeuwen, G. Garau, M. Lincoln, and V. Wan, “The
AMI Meeting Transcription System: Progress and per-
formance,” 2007, pp. 419–431.

[6] “Chil: Computers in the human interaction loop,”
http://chil.server.de.

[7] J. Fiscus, J. Ajot, M. Michel, and J. Garofolo, “The
rich transcription 2007 meeting recognition evaluation.,”
2007.

[8] V. Stanford, M. Michel, and O. Galibert, “Network trans-
fer of control data: an application of the nist smart data
flow,” J. of Systemics, Cybernetics and Informatics, vol.
2, January 2005.

[9] M. Michel and V. Stanford, “Synchronizing multi-
modal data streams acquired using commodity hard-
ware,” VSSN, 2006.


