
1

2003 International Conference
Characterization & Metrology for ULSI Technology

CMOS Devices and Beyond
A Process Integration Perspective

Jim Hutchby1, Victor Zhirnov1,2, Ralph Cavin1, George Bourinanoff3

1 Semiconductor Research Corporation
2 Materials Science & Engineering Dept., North Carolina State University
3 Intel  Corporation and SRC
March 25, 2003



2

Conventional Bulk-Si MOSFET
Scaling Issues

Gate Dielectric ScalingGate Dielectric Scaling
(ITRS 1999)(ITRS 1999)
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Primary barriers to MOSFET scaling are:
� High Ion/Ioff ratio (Ioff  =  Channel leakage current)
� Low Standby leakage current (Gate + Channel leakage)

– Low channel leakage current (Electrostatic scaling)
– Low gate leakage current 
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2001 ITRS Projections Vs. Simulations of Direct Tunneling 
Gate Leakage Current Density for Low Power Logic
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Implementation of high-k will be driven by Low Power Logic in 2005
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2001 ITRS Projections Versus Simulations of Gate 
Leakage Current Density for High-Performance Logic
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CMOS Devices and Beyond
Outline
� CMOS Devices ...

� MOSFET Scaling Issues
� Non-Classical CMOS Structures

� Ultra-Thin Body MOSFETs
� Channel Engineered Structures
� FinFETs
� Double Gate Structures

� … And Beyond - Novel FET Structures and/or New 
Information Processing Architectures

� Potential of Molecular, Nanowire and Nanotube Electronics
� MOSFET-like switches?
� New Information Processing Technology?

� Limits on Integration Density - Device Size or Power?
� Conclusions
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BulkBulk--Si Performance TrendsSi Performance Trends

Maintaining historical CMOS performance trend requires
new semiconductor materials and structures by 2008-2010...
Earlier if current bulk-Si data do not improve significantly.
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New Materials & Non-Classical 
Structures for CMOS

Antoniadis-ADT-0117%/Year



Nano-FET Scaling 
Fundamental Issues 
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Breaking the tyranny of the universal mobility: 
Alternative device structures & new Si-based materials
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Schematic cross section of planar 
bulk, UTB SOI, and DG SOI MOSFET
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Ultra-Thin-Body MOSFET

Challenges
� Requires ultra thin 

silicon channel
� Gate Stack
� Device characterization
� Compact model -

parameter extraction

Advantages
� Suppresses channel 

leakage 
� Improves Vt controllability
� Raised Si/Ge source/drain 

improves Ion
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UTB SOI MOSFET Scaling

� Issues for bulk-Si MOSFET scaling obviated
� Body does not need to be heavily doped
� Tox does not need to be scaled as aggressively

� EOT can be 5% lower for same Igate however (L. Chang et al., IEDM 2001)

� Ultra-shallow S/D junction formation is not an issue

� Body thickness must be less than ~1/3 x Lgate

Scale length                                      where d = TSi

Formation of uniformly thin body is primary challenge

2 2ddTl oxsiox += εε

U.C. Berkeley: S. - J. King
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Theoretical mobility as function of silicon film. At Tsoi = 3 - 5 
nm, mobility becomes higher than that in bulk Si MOSFET.

(S.Takagi et al.; SSDM ’97, p.154)
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Advanced Gate Stack Materials 
for Thin-Body SOI MOSFETs

• High-κ gate dielectrics
Desirable for reducing Tox,eq to

� improve Idsat
� reduce short-channel effects

� Metal gate materials
Desirable to

� eliminate gate depletion effect
� reduce gate-line resistance

Necessary to achieve proper Vt in UTB MOSFETs
(due to low body doping Nbody)

U.C. Berkeley: S. - J. King
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Thin-Body MOSFET Vt Control 
Gate Work-Function Engineering

- dual N+/P+ poly-Si
⇒ Vtn = -Vtp = -0.1V Å too low

- mid-gap gate material
⇒ Vtn = -Vtp = 0.4V Å too high

⇒ Need dual-work-function metal 
gates w/ tunable ΦM 
~4.5V for NMOS; ~4.9V for PMOS

• Low and symmetrical
Vt’s are desirable
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Band Engineered Transistor
(Strained Si/SiGe Mobility Enhanced Channel)
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y

Advantages
� High mobility channel 

film thickness for SOI
� Gate stack
� Integration process
� Device characterization

Challenges
� Higher drive current (Ion)
� Compatible with bulk 

and SOI CMOS
MIT - J. Hoyt
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Mobility Enhancement in Strained-Si-Channel 
n-MOSFETs
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FinFET Structure

G

DS

ChallengesAdvantages
� Higher drive current (Ion)
� Improved subthreshold 

Vt slope
� Improved short channel 

effect (electrostatics)
� Stacked NAND gate

� Silicon film thickness
� Gate stack
� Process complexity
� Gate width available in 

integral steps
� Accurate TCAD 
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FinFET Scaling

� Compared with UTB-MOSFET:
� Reduced short-channel effects => more scalable
� Higher current drive due to

� steeper subthreshold swing (60 mV/dec)
� lower channel electric field => higher carrier mobilities

� Fin width must be less than 2/3 x Lgate

Scale length                                    where d = 0.5xTSi

Formation of narrow fin is primary challenge
• sub-lithographic process needed

2 2ddTl oxsiox += εε

U.C. Berkeley: S. - J. King
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FinFET Vt Roll-Off Characteristics

Narrow Wfin shows less Vt roll-off.

0 10 20 30 40 50 60 70 80
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

NMOS

PMOS

Gate Length, Lg [nm]

Th
re

sh
ol

d 
Vo

lta
ge

, V
t [

V]

 

 

 Wfin=10nm
 Wfin=26nm
 Wfin=34nm

U.C. Berkeley: S. - J. King



22

Subthreshold Swing and DIBL
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Performance of Intel’s Tri-Gate 
p - and n - MOSFETs (Similar to the FinFET)

Company
Channel
Length

(nm)

n- or p-
Channel

Subthreshold
Slope

(mV/dec)

DIBL
(mV/V)

Ion
(mA/um)

Ioff
(nA/um)

Vcc
(V)

Intel 60 n-MOS 75 45 1.18 60  1.3

Intel 60 p-MOS 70 40 -0.65 -9 -1.3
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Double Gate Transistor

back-gate

channel

isolation

buried oxide

channel

top-gate

� Higher drive current (Ion)
� Improved subthreshold 

Vt slope
� Improved short channel 

effect (electrostatics)
� Stacked NAND gate

� Gate alignment
� Silicon film thickness
� Gate stack
� Process complexity
� Accurate TCAD 

ChallengesAdvantages
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Technology Scaling & Challenges

� High-κ gate dielectrics not necessary to control short-channel effects, but 
will be helpful for achieving high Idsat (High-κ gate dielectrics will be 
necessary for low standby power applications)

� Parasitic resistance will be an issue for TSi < 10nm
� Raised S/D technology – but Coverlap cannot be too high
� Schottky S/D technology eventually needed

� Metal gate electrodes (different from those used for classical MOSFETs) 
will be needed
� Multiple-Vt technology will require tunable metal gate ΦM

� Structures which are provide for dynamic control of Vt are desired by 
circuit designers

� Strained Si (for enhanced mobility) will be difficult to achieve

U.C. Berkeley: S. - J. King
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…. and Beyond

Fundamental Limits to Scaling 
Nanoelectronic Switch Elements
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Scope of Emerging Research Devices
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Ideal von Neumann’s Computer

�Highest possible integration density

�Highest possible speed

�Lowest possible energy consumption
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Two Questions

1. What is the best direction to pursue for alternate information 
processing technologies (e.g., carbon nanotubes, molecular 
electronics, etc.)?
� Replicate CMOS technology with new switches, gates, etc., 

directly one for one sustaining the von Neumann architecture? Or
� Eventually invent and develop a completely new information 

processing technology and systems architecture?

2. What is the best application of CMOS gate or switch
replacement technologies, e.g., carbon nanotube switches or 
molecular switches?
� A completely new technology embodying not only the switch, but 

also the interconnect, I/O, etc. (completely replace CMOS) Or
� Use of the CNT or molecular switch to replace the channel of a 

silicon MOSFET, thus extending the silicon MOSFET infra-
structure process technology for a longer time?
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Field Effect Transistor Electronic Switch
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Lowest Barrier: 
Distinguishability Barrier

Distinguishability D implies low 
probability Π of spontaneous transitions 
between two wells (error probability)

D=max, Π=0 D=0, Π=0.5 (50%)
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a
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w w
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Classic and Quantum 
Distinguishability

w w

a
Eb

a
Eb

Classical

a
Eb

a
Eb

Quantum



33

Limit Performance of Charge 
Based Switch

nmacrit 6.0=Minimum Barrier Width

Minimum Switch Width

2
1410×1=
cm
gate

nMaximum Gate Density

Minimum state switching
time

stsc
14-10×3.2=

2
710×0.2=
cm
W

PchipTotal Power Consumption 
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Comparisons with 2001 ITRS (2016)
� Gate density

� This analysis n = 1.0 x 1014 gates/cm2

� ITRS n = 1.4 x 109 gates/cm2

� Switching time
� This analysis t = 23 fs
� ITRS t = 150 fs (CV/I)

� Power density
� This analysis P = 2.0 x 107 W/cm2

� ITRS P = 93 W/cm2

� Power density normalized to density and switching time
� This analysis P = 43 W/cm2

� ITRS P = 93 W/cm2
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Comparisons with 2001 ITRS (2016)

Observations
� Transistor critical dimension limited to  ~ 1 nm (In the 

2001 ITRS physical gate length = 9 nm for 2016)

� Power density, not critical dimension, limits gate density 
to ~ 1 x 109 gates/cm2

� For the ITRS density and switching time, CMOS is 
approaching the maximum power efficiency
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A Point of View - - -

Are the most attractive directions for research?

Near term

Exploration of materials and structures for integration of 
alternate channels in an otherwise silicon MOSFET structure.

Long term

Synergistic exploration of new materials, structures and 
information processing architectures.
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CMOS Devices and Beyond
Conclusions
� CMOS Devices ...

� MOSFET Scaling Issues
� Low Power MOSFETs WILL need High-K Dielectric in 2005
� High Performance may stay with SiON Gate Dielectric

� Non-Classical CMOS Structures
� Ultra-Thin Body MOSFETs
� Channel Engineered Structures
� FinFETs (Good advancement by several laboratories)
� Double Gate Structures

� … And Beyond
� Potential of Molecular, Nanowire and Nanotube Electronics

� Near Term - MOSFET-like Switches
� Long Term - New Information Processing Technology

� Limits on Integration Density - Power.
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FinFET I-V Characteristics
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