Human Sensing at mmWave and Sub-THz: NIST Channel Measurement and Modeling Methodologies

Radio Access and Propagation Metrology Group

National Institute of Standards and Technology (NIST), USA

28 GHz Context-Aware Channel Sounder

Tri-System

Monostatic configuration

- 1 dual-polarized TX phase-array antenna board (64 microstrip antennas), synthesized into quasi-omnidirectional V and H patterns
- 4 dual-polarized RX phased-array antenna boards (256 microstrip antennas) "Tetris" configuration have 5.2° EL and 3.7° AZ beamwidths
- Optical cable use for phase synchronization between TX and RX
- 2 GHz bandwidth
- 360° (AZ) camera
- 360° (AZ) lidar

RF

Switched Beamforming

Analog beamforming:

- 6-bit phase precision per antenna: coarse beams, limited tapering, cannot compensate for hardware non-idealities
- Takes 3.5 µs to write to each antenna register to change phase
- Takes 3.5 µs x 64 antennas ≈ 0.23 ms to form a single beam
- Takes 4 s to sweep 1800 beams (finest angular precision)

Switched beamforming¹:

- Effectively infinite phase precision: ideal beams, Kaiser tapering, can compensate for hardware non-idealities
- Takes 3.5 μs to write to each antenna register to toggle on/off
- Takes 3.5 μ s x 64 \approx 0.23 ms to switch through all antennas
- Takes 0.23 m to sweep 1800 beams

¹Caudill, Derek, et al. "Real-time mmWave channel sounding through switched beamforming with 3-D dual-polarized phased-array antennas." IEEE Transactions on Microwave Theory and Techniques 69.11 (2021): 5021-5032.

RF Measurement Error

Domain error based on ground-truth LoS path:

Use Case: Gesture Recognition

Measurement Campaign

80 cases:

- 20 motions:
 - 16 hand gestures (while sitting):
 - 4 hand motions (up, down, left, right)
 - 2 hands moving simultaneously
 - 4 body motions:
 - Standing up
 - Sitting down
 - Standing still
 - Sitting still
- 4 human subjects
 - A: 168 cm, female
 - B: 160 cm, female
 - C: 169 cm, male
 - D: 179 cm, male

• Tri-system sampled in time at 2.6 ms over 3.9 s (1500 time samples)

MPCs from RF

- One RF time sample consists of 256 phase-synchronized complex CIRs captured in 0.5 ms
- The 256 CIRs are synthesized through the SAGE superresolution to extract discrete MPCs indexed in path gain, phase, delay, azimuth AoA, and elevation AoA
 - Super-resolution algorithms nominally provide 5x the resolution of inherent beamwidth/beamwidth
- SAGE also de-embeds the microstrip antenna/ beam gain patterns so that the MPC properties reflect the channel alone (not the channel + the hardware)

Time Clustering

- MPCs are clustered jointly in the path gain, EL, AZ, delay, and time domains²
 - Clustering is conventionally processed just in the path gain, EL, AZ, and/or delay domains
 - Augmenting to the time domain not only increases resolvability and robustness, it also makes spatial/temporal consistency a byproduct of the clustering process
- Eight body parts can be consistently resolved over the 80 cases

² Varshney, Neeraj, et al. "Quasi-deterministic channel propagation model for an urban environment at 28 GHz." *IEEE Antennas and Wireless Propagation Letters* 20.7 (2021): 1145-1149.

RF Signature

160 cm, female

179 cm, male

Keypoints from Camera/Lidar

Camera time sample

Lidar time sample

- 2D keypoints (EL, AZ) are extracted from camera samples
 - 17 keypoints based on salient body features (hands, knees, shoulders, etc.)
 - Machine-learning based algorithm
- Camera and lidar images are combined to convert 2D keypoints to 3D keypoints (EL, AZ, delay)

MPCs vs. Keypoints

Temporal and spatial (EL, AZ, delay) calibration in tri-system paramount!

Quasi-Deterministic Channel Model

Deterministic component given through keypoints:

Spatial/temporal consistency given as a Sum-of-Sinusoid (SoS) process:

Stochastic component given through residual between cluster centroid per and keypoint (per time):

Stochastic component and spatial/temporal consistency parameters can be body-part and/or human-subject specific (or simply aggregate)

Machine-Learning Based Applications

Channel modeling:

Use Case: Gait Recognition

Measurement Campaign

9 cases (bistatic angles) by moving TX

Bistatic configuration

MPC Properties

2D (side) view

140 GHz Channel Sounder

Keysight M8199A AWG

Keysight UXR0404AP digitizer

- 28 GHz: 2 GHz bandwidth
 -> 140 GHz: 20 GHz bandwidth
- 28 GHz: 3.7 AZ beamwidth
 -> 0.74 AZ beamwidth
- Sign language recognition

140 GHz phased-array antennas (Rebeiz @ UCSD)

