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ABSTRACT

We have simulated the fast streamer stage of lig-
uid dielectric breakdown as stochastic growth of a
branching fractal tree. Breakdown and threshold
properties of the fluid are represented in the random
filter procedure. A range of fractal densities, from
sparse to bushy, is approximated by the choice of
power-law (cube to linear). The choice of threshold
(cutoff) voltage also significantly affects the growth
form. These parameters combine with the shape and
concentration of the electric field, to regulate the
distribution and directedness of the local discharge
growth pattern. A large grid (128 cubed) is used
for the discretization. Diagonal growth paths to
neighbor-vertices are included, increasing the choice
of available directions for each discharge event. We
use a combination of data-parallel programming and
three-dimensional visualization. Complete growth
histories, evolving from the voltage distribution,
can be displayed in animation or in color banding
against the “trials” variable, which simulates a time
tick. Side views of the structures provide compari-
son against sub-microsecond snapshots from experi-
ment. Results include sparse, directed trees evolving
from a cube-law filter; also dense trees from a lin-
ear filter, whose conical upper-envelope boundary is
strongly influenced by the choice of threshold (cut-
off) potential.

INTRODUCTION

Filamentary streamers evolve rapidly in a surround-
ing voltage field, which influences their shape and
density. We explore a simplified “stochastic Lapla-
cian fractal” simulation for this phenomenon [1]. We
do not include microscopic details of the physical
processes. Our purpose is to capture the global fea-
tures of the growth.

Elements of the algorithm are:

1. Assume the streamer tree is fully conductive,
and attached to the starting electrode.

2. Solve Laplace’s equation throughout the full in-
terior region of a 128 x 128 x 128 cube.

3. Examine neighbor sites one grid-step away from
the tree. Where voltage at these sites exceeds
a threshold level, then compare against random
numbers by a method which yields a weighted
distribution of survivors. Attach these sur-
vivors to the tree.

4. Cycle steps 2 and 3 until the counter-electrode
is reached.

By varying the weighting power-law exponent from
3 to 1 we demonstrate that the increasing visual
bushiness (sparse to dense) results from the spread
of forward directional concentration, about the axes
of the individual growth tips.

High geometric resolution, detailed three-
dimensional calculation of the voltage field,
and a plausible method for estimating time progres-
sion are essential. As Biller has noted [2], length,
voltage, and time must be explicitly scaled in the
discretized model to approximate a history of the
physical growth, which is more than a geometrical
abstraction.

Our simulation has several features in common
with the recent work of Karpov and Kupershtokh
[3], including simultaneous (concurrent) distributed
growth, and growth along diagonal links to neigh-
bors. They calculate a “stochastic time”, whose in-
tent is similar to our “Monte Carlo” time tick. In our
case the time tick is directly counted unless the wait-
ing time is very long, in which case it is estimated
by a method [4] adapted from molecular mechanics.

Some differences include:

e They assume an ohmic potential drop from tips
to base along the streamer tree.

e They assume a spherical outer boundary condi-
tion about a starting point, with the tree grow-
ing as a ball. They find the local fractal dimen-
sion declining as the tips reach larger radii. Our
simulation, confined between electrode plates,
shows some increase in local fractal density, as
the tips progress.



e They assume a statistical spread of lower
threshold (cutoff) values; whereas we take a
sharp threshold [5].

The model is non-specific with regard to the micro-
scopic mechanism of streamer growth. It does not
treat the microscopic electric field strength at the
tip surface. Neighbor-voltage values are taken at
a common radius (one grid step length) from the
tip; they are considered to be proportional to the
vector electric field strength. (For statistical unifor-
mity, each diagonal-step voltage is down-weighted
by a 1/r factor.)

Clocking of Monte Carlo time is considered in this
model; thus the distribution, directions, and rate of
growth are followed together, as they are controlled
by the evolving voltage field. In the examples we
give, the “Monte Carlo” time tick is extremely short
— nanoseconds or less — taking its scale from the
overall duration of the discharge growth.

Display is carried out in three dimensions. On a
work station, color banding can be used to mark
the time history of growth; dynamic rotation of the
image is extremely useful in distinguishing details of
the growth form. Animation of frames against the
time-tick variable is also readily achieved.

CUBE-LAW

Figure 1 is a representative case of streamer simu-
lation, modeled with a probability filter which pro-
duces a cube-law survivor population. Note that the
branches are sparse and forward-directed. The bare-
tree appearance results from differential preference
for tip extension versus lateral branching. Cube-law
also tends to maximize the apparent growth speed
in the short-gap stages of the path, so that the ad-
vance across the second half of the interval occurs
in about one-eighth of the total elapsed time.

Experimental streamers, of similar sparse appear-
ance, can be identified in recent results by Miyano
et al. [6], which describe positive streamer propaga-
tion in perfluoro liquids.

SQUARE-LAW

Figure 2 is a representative growth obtained with a
square-law weighting. In this example a relatively
low threshold (cutoff) voltage has been assumed
(0.0500), corresponding to a higher overvoltage in
experiment. Noticeable features are the more pro-
nounced major side-branching, and the wider enve-

Figure 1. Cube-law simulation on a 128 x 128 X
128 grid. Top surface of the cube represents starting
electrode, with an attached central needle of length fif-
teen grid steps. Lower surface is counter-electrode; side
boundary conditions are periodic. The threshold (cut-
off) voltage is set at 0.0700, just slightly below the
largest voltage on a neighbor site to the needle. 2544
statistical tries have produced 1525 discharged links.

lope shape. The streamer tree has more branches
and a generally more dense, bushy appearance, be-
cause the relative probability of lateral branching
has increased. Individual branches are less tightly
forward-directed by the voltage distribution.

Experimental cases having a similar structure are
found in results by Lesaint and Massala [7] on posi-
tive streamer propagation in large oil gaps. At var-
ious levels of overvoltage, they find streamer forms
with a range of sparseness and branching patterns,
having a range of growth rates.

LINEAR WEIGHTING

Figures 3 and 4 show the dense, widely-branched
structure which a linear-weighted growth filter pro-
duces. By contrast with the cube- and square-law
cases, these trees tend to divide immediately into
several (3 or 4) large major branches, which spread
densely through the volume but remain self-avoiding
and singly connected. Figure 3 evolves from a his-
tory with threshold (cutoff) voltage of 0.1200, Fig-
ure 4 with 0.2000. The strong influence of this pa-
rameter on the conical upper envelope of the dense
structure is noted. The bushiness (fractal density)
increases in the later stages of growth, as higher val-



Figure 2. Square-law simulation. In these examples,
the continuous “leader” path between electrodes is in-
dicated by heavy line weight. 346 statistical tries have
produced 4503 discharged links. The needle is 31 grid
steps in length. Threshold voltage is set at 0.0500, well
below the largest neighbor voltage.

ues of neighbor voltages occur in the reduced gap
to the cathode. The effect of electrical screening is
pronounced. The upper development of the tree,
near the anode, is limited at a roughly conical enve-
lope, where growth has ceased as the voltage field is
screened back below the abrupt cutoff value.

A conical envelope, for dense positive streamers in
n-hexane, has been noted experimentally by Strick-
lett em et al. [8]. Badent, Kist, and Schwab [9]
have observed a constriction of the conical propa-
gation sector, associated with increasing pressure,
in experimental positive streamers in insulating oil.
Earlier high-resolution images by Chadband [10] had
demonstrated the fine filamentary detail of dense
positive streamers.

SUMMARY

Thus, as its parameters are changed, the model sim-
ulates a range of effects which have experimental
counterparts.

The power-law lines for different exponents are
sketched in Figure 5. These correspond to nominal
response curves for the fluid. Raising the exponent
exerts an axial constriction on the local growth cone,
concentrating growth ahead of the tip [11]. Lower-

Figure 3. Linear filter. The needle has been length-
ened to 47 grid steps, approximating the point-to-plane
configuration. The threshold (cutoff) voltage is set at
0.120. The very dense, spheroidal cone of growth has
produced 27837 discharged links, in 91 statistical tries.
The upper envelope of growth is a flat cone, almost level
with the tip of the needle.

ing the exponent gives rise to a more dense, spread
pattern of twig growth in a more rounded frontal
zone. This effect is seen more clearly when diagonal
growth paths are included.

Varying the threshold (cutoff) voltage parameter
also has a noticeable effect on the overall density of
discharged links. (The lines in Fig. 5 are limited by
a drop to zero at their left end, which is positioned
by this choice.) Choice of threshold value controls
the conical sector angle into which the dense linear-
weighted fractal tree can spread.

PROGRAMMING METHODS

Keeping track of the voltage field surrounding the
streamer tree, which is a growing highly irregular
object, poses the major difficulty. We re-evaluate
the voltage field at each growth stage, throughout
the full interior volume. The enormous flow of nu-
merical activity is handled by parallel (SPMD) com-
puting methods.

We have developed a scalable block-parallel program
to realize this model. It exploits the power and lo-
cal memory of multiprocessors to handle the bulky
Laplacian calculation. Each process is assigned a



Figure 4. Linear filter. The threshold (cutoff) voltage
has been raised to 0.200. Branches next to the narrower
conical upper envelope show a more sparse appearance
than the dense structure approaching the cathode. Total
number of discharged links has been reduced to 10000, in
127 statistical tries. The cutoff from screening is having
a pronounced narrowing effect on the conical sector of
propagation.

rectangular slab subdivision of the cube volume.
Data is passed through the face-planes between ad-
joining blocks. Details are given in an earlier article
[12, 13].

The program CADMUS is written in a readable
high-level language, which leaves the physics clear.
Fortran 90 is used as the parallel language for the
code. It is supplemented by NIST’s DPARLIB, a set
of subroutines which extend F90 instructions across
block-process boundaries [14], in the environment
of the Message Passing Interface (MPI) [15]. It has
run on networks of workstations, in the LAM envi-
ronment [16], but is faster on more tightly coupled
multiprocessors, such as the IBM SP2 and SGI Ori-
gin 2000. We offer the source code for interested
users, via Internet:

http://www.itl.nist.gov/div895/sasg/
dielectric/dielabs.html

Certain commercial equipment and software may
be identified in order to adequately specify or de-
scribe the subject matter of this work. In no case
does such identification imply recommendation or
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Figure 5. Local breakdown probability (for a link dis-
charge), P(V;) as a function of neighbor-site voltage.
Scales are log-log. Choice of power-law exponent repre-
sents the nominal response of the fluid. Threshold (cut-
off) parameter determines where the left end of each line
drops to zero. Voltage distributions overlap this dropoff
point.

endorsement by the National Institute of Standards
and Technology, nor does it imply that the equip-
ment or software is necessarily the best available for
the purpose.
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