Three-Dimensional and Spectroscopic Characterization of Devices at the Atomic Scale Using Aberration-Corrected Electron Microscopy

Robert Hovden¹, Peter Ercius², Yi Jiang¹, Deli Wang¹, Yingchao Yu¹,
Héctor D. Abruña¹, Veit Elser¹, David A. Muller¹

¹Cornell University, ²Lawerence Berkeley National Lab

New challenges in 3D imaging with the new generation of microscopes

Scanning **T**ransmission **E**lectron **M**icroscopy

Muller, Kourkoutis, Murfitt, Song, Hwang, Silcox, Dellby, Krivanek, Science 319, 1073 (2008).

Composition Maps from EELS

Etch Damage in Porous Low-K Dielectric

"SiC-like" C-bonding

"SiO₂-like Si bonding

2D→3D: Electron Tomography

De Rosier, Nature 217, 130 (1968); Hoppe, Naturwissenschaften 55, 333 (1968)

Midgley, Ultramicroscopy 96, 413 (2003)

Liner Thickness; Position Specific

3D Imaging of Porous Low-K Dielectric

Testing Resolution Limits

Single slice

3D visualization

- Pores look predominantly elliptical.
- Despite the presence of some large pore networks, on average there is little multi-pore connectivity
- Pore size, connectivity and porosity can be determined from auto segmented pores.

Pore Size Distributions

Comparison with Ellipsometric Porosimetry (Engstrom 1292.047)

- Most Likely Pore Size:
 - 1.0*nm*
- 95% of pore diameters:

$$D_{95\%} < 5.0nm$$

• Porosity:

Ellipsometric Porosimetry: 18.4% Tomography 6.9%

- Both techniques show quantitative agreement in the volume fraction for pore diameters larger than 2.5 nm, but demonstrate large discrepancies for smaller pores.
- Tomography fails to detect pores < 2 nm
 (need different segmentation thresholds for different pore sizes)

Missing Information In Tilt Series

Tomographic Tilt Series In Fourier Space

Finite Objects Elongate!

Tomography Resolution

Estimated Resolution Volume

 $0.5\pm0.1 \times 0.5\pm0.1 \times 0.7\pm0.2 \text{ nm}^3$

Can resolution in 3D improve with aberration correction?

Depth of Field of Aberration Corrected and Uncorrected STEMs

Model	Voltage (KeV)	Aperture (mrad)	Depth of Field (nm)	
Uncorrected VG501	100	10	63	
Uncorrected Tecnai F20	200	10	43	
Corrected Titan	300	23	6.5	
Corrected Nion Super STEM	100	35	5.1	

Intaraprasonk, V et al, *Ultramicrosopy* **108 (2008)**Nellist P D, et al, *Microsc. Microanal.* **14**: **82–88**. **(2008)**Xin, HL, Muller, DA, *Journal of electron microscopy*: **1-9 (2009)**

Cannot simultaneously image all particles in-focus

PtCo nano-particles on carbon black support

Traditional tomography fails for extended objects!

Extended Depth of Field

EDOF uses wavelet coefficients to identify the in-focus information in a through focal image stack—then merging to create an image with all regions in-focus

Aberration Correction: Small depth of field is bad for tomography

Through Focal STEM

STEM depth sectioning fails for 3D imaging

Comparison of Reconstruction Methods and how they fill in Fourier Space

Depth-Sectioning can fill Fourier Space between tilts, reducing the number of tilts needed

Comparison of 3D Reconstructions

Porous Pt-Cu Nanoparticles

PtCu nanoparticles treated in Nitric Acid acquire porous structure.

Tomography of Porous PtCu Nanocatalysts

Tomography of Porous PtCu Nanocatalysts

Pore Structure of Acid Treated PtCu Nanocatalysts

The SUDOKU Analogy

Projection Contraints

SUDOKU

_								
sub - volume constraint		2	4			6		
						5	3	
		6	3	5	4			
				8		2		
		7	4	9	6	8		1
8	9	3	1	5		6		4
		1	9	2		5		
2			3			7	4	
9	6		5			3		2

Projection Contraints

Through-Focal Tomography

Through-Focal Methods Provides Sub-Volume Constraints in Addition To Projection

Iterative Constraints and Difference Map Reconstructions

Direct Fourier Recon of Large Missing Wedge Object

Iterative Constraint + Diff Man Recon of Large Missing Wedge Object

Summary & Acknowledgements

Collaborators

Peter Ercius, Yi Jiang, Deli Wang, Yingchao Yu, Héctor D. Abruña, Veit Elser, David A. Muller

