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Objective

The overall objective is to make service life predictions for
polymeric components in PV systems.

Degradation models provide tools for service life prediction.

One major step is to build a predictive model for the
degradation path.
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is the correlation function.  In this case, μ��� will be used to characterize the image features at 
the macroscale and Z��� will be used to characterize the image features at the microscale. The 
parameters in μ��� will be presented as the physical feature variables for the entire sample under 

testing, denoted by 1, n
P P⋯  where n  is the number of feature variables. As those features can be 

extracted as a function of time, the sequences are denoted by 1( ), ( )
n

tP P t⋯  which will be used in 

Task 3. To link the physical feature to the accelerated time scale, the models for environmental 
acceleration factors in Task 1.2 can be used. 

Task 3: Building prediction model and quantifying uncertainties 
Through the modeling of the chemical and physical degradation, the team will create degradation 
indices for different failure modes related to polymeric components. For a particular failure 
mode, the corresponding physical and chemical degradation paths will be identified by statistical 
modeling. The chemical and physical changes modeled in Tasks 1 and 2 are the intrinsic and 
fundamental causes for the deterioration of other properties (e.g., transmittance and adhesion), 
and eventually leading to different failure modes (i.e., discoloration and delamination).  

Task 3.1: Develop degradation indices for different failure modes 

Let ( )M t  be the measurements of the material property that is corresponding to a particular 

failure mode. Consider the causation model
101 0

( ) ( ) ( ) ( ) ,( )
m t tn

ii i i ii
s C sM t ds s P s dsβ γ

= =
= +∑∫ ∫∑

where ( )
i

C t  and ( )
i

P t  are the chemical and physical changes that are potentially lead to the 

deterioration of the material property ( )M t . Here ( )
i

sβ  and ( )
i

tγ  are functional coefficients for 

the effects of chemical and physical changes on the properties changes. Through statistical 

hypothesis testing, that is to test if ( ) 0
i

sβ =   and ( ) 0
i

sγ =  , a subset of ( )
i

C t  and ( )
i

P t  will be 

selected for building the degradation index. Those with significant effects on property change 
will be included in the degradation index. In particular, the degradation index is defined as 

{significant set} {significant set}0 0
( ) ( ) ( ) )( ) (

t t

i i iii i
D t s C s ds s P s dsβ γ

∈ ∈
+=∑ ∑∫ ∫ . The degradation index will 

be used for building prediction model in the next task. The construction of degradation index can 
be valuable for understanding of the intrinsic degradation mechanism. For example, if a 
particular chemical changes has a strong effect on the material property change, then the root 
cause can be found and further 
research can be done to improve the 
component design.  

Task 3.2: Build reliability prediction 

model 

The time to failure of the component 
due to a particular failure mode is 

0{ }min ), (T t D t D<=  if the 

degradation path is monotone 
decreasing and is 

0{ }min ), (T t D t D>=  if the 

degradation path is monotone 

increasing. Here 0D  is the failure 

threshold which can be calibrated by 
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General Strategy

Use the accelerated test data and knowledge of the
physics and chemistry of the degradation process to help
identify the functional forms for the experimental variables
as they relate to the degradation path model.

Use the identified functional forms and the accelerated test
data to build a degradation path model linking the sample
degradation paths and the experimental variables.

Use the identified model to generate predictions of
degradation for given covariate histories.

To verify the effectiveness of the accelerated test
methodology, compare predictions, based on the
accelerated test degradation data and model, with
observed degradation paths for outdoor-exposed
specimens.
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Data for Building Predictive Model

A Laminated Glass/EVA/PPE System is used as the
studying material.

The yellowing index is used as the degradation index.

Experimental variables: UV spectrum, UV intensity,
temperature, and RH.

Spectra study (four filters): 306 nm (±3), 326 nm (±6), 353
nm (±19), and 452 nm(±80).

Reciprocity law study (four intensity filters): 40%, 60%,
80%, 100% (nominal percentages).

Temperature: 45C, 65C, and 85C.

RH: 0%, 30%, and 60%,
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NIST Datasets

NIST datasets are used as training datasets to build the
predictive model.

Two sets of data were collected based on two slightly
different material compositions.

The first dataset contains 80 test samples. Data from 72
samples were used for training the predictive model and 8
samples were set aside for testing the model.

The second dataset contains 32 test samples. Data from
28 samples were used for training the predictive model and
4 samples were set aside for testing the model.
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Experiment Configuration for Dataset 1

SET 1

ND ID BP ID

45C/0%RH 40% 6,12 306 11,17

60% 9,15 324 10,16

100% 2,3,4,5 354 8,14

383 7,13

65C/0%RH 40% 6,12 306 11,17

60% 9,15 324 10,16

100% 2,3,4,5 354 8,14

383 7,13

85C/0%RH Reciprocity (RE) 40% 2,8,12,16

60% 5,7,11,15

80% 4,6,10,14

100% 3,9,13,17

85C/0%RH Wavelength (WA) 306 2,8,12,16

324 5,7,11,15

354 4,6,10,14

383 3,9,13,17

85C/60%RH 40% 2,8,12,16

60% 5,7,11,15

80% 4,6,10,14

100% 3,9,13,17

IDs marked with red were used as testing samples.
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Experiment Configuration for Dataset 2

SET 2

ND ID BP ID

Repeated 85C/0%RH 100% 2,3,4,5 306 7,11,15

324 6,10,14

354 9,13,17

383 8,12,16

85C/30%RH 100% 2,3,4,5 306 9,13,17

324 8,12,16

354 7,11,15

383 6,10,14

IDs marked with red were used as testing samples.
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Lamp Spectral Irradiance

The lamp irradiance is denoted by E(λ).
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Bandpass and Neutral Density Filters
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Absorbance Spectrum

The absorbance spectrum is denoted by A(λ).

300 350 400 450 500 550

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Temp:  85 RH: 0

Wave

A
bs

or
b

11



Sample Degradation Paths
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Degradation Characteristics

Degradation is increasing and “nearly” linear over time.

Dosage with smaller wavelength tends cause more
damage (higher degradation).

The degradation rate under the full spectrum seems to be
slower than the sum of the rates under the four filtered
spectrum.

We also observe higher temperature causes higher rate;
higher intensity causes higher rate, and higher humidity
causes higher rate.
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Degradation Path Modeling

We model the degradation path under experimental
condition x as

D(t ; x) = α(x) · tγ .

The acceleration factor α(x) depends on UV spectrum and
intensity, temperature, and RH
The Arrhenius relationship is used to describe the
acceleration factor of temperature, exp (βt · Temp).
Temp = 11605

TempC+273.15 − 11605
85+273.15 .

Based on preliminary data analysis, the RH effect is
modeled as linear, (1 + q · RH).
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Wavelength Effect
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Wavelength effect is modeled by log linear plus some
adjustment for 383nm,
φ(λ) = exp[β(λ− 354)] + exp(β0 + β0t · TEMP).
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Wavelength Specific Intensity Effect

The wavelength specific intensity effect is modeled by the
power law relationship,

[F (λ)]p·exp(pt ·TEMP),

which is also adjusted by temperature.

We observe that degradation rate under the full spectrum
seems to be slower than the sum of the rates under the
four filtered spectrum, which could be related to bleaching
effect.

We introduce a term for full wavelength adjustment,
exp[1full · (ξ + ξt · TEMP)].
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Model Summary

In summary, the acceleration factor is modeled as,

α(x) =
(∫

λ

E(λ)B(λ)[F (λ)]p·exp(pt ·TEMP){1− exp[−A(λ)]}φ(λ)dλ
)

× exp[1full · (ξ + ξt · TEMP)]× exp (βt · Temp)

× (1 + q · RH)× exp(µ)

Here φ(λ) = exp[β(λ− 354)] + exp(β0 + β0t · TEMP), and µ
is a baseline constant.
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Statistical Model for Degradation Path

The model for degradation measurements is

yij = Di(tij) + εij

for unit i at time tij .

Here εij is the deviation that can not be captured by Di(tij).

Also,
Di(t) = α(xi) · tγ ,

which are determined by unknown parameters.

18



Model Fitting

Let θ denote all unknown parameters in D(t) (e.g.,
β,p, · · · ).

We need to find the θ to minimize the sum of squares of
the errors.

That is to minimize ∑
ij

[yij − Di(tij)]2.
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Illustration of Model Fitting
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Analysis of Dataset 1: Parameter Estimates

Parameter Interpretation Value
β wavelength effect −0.101
p wave. specific intensity effect 0.679
pt intensity by temperature 0.322
βt temperature effect −0.473
q RH effect 2.430
γ shape parameter 1.058
µ baseline constant −3.619
β0 383nm adjustment −1.621
β0t 383nm adjustment by temp. −0.262
ξ full wavelength adjustment −2.554
ξt full wavelength adj. by temp. 0.008
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Plot of Variable Effects
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Plot of Variable Effects
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Plot of Fitted Paths
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Fitted vs Observed
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Overall, the model can fit the data well.
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Out of Sample Prediction
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Overall, the model can predict the test sample well.
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Analysis of Dataset 2: Parameter Estimates

Parameter Interpretation Value
β wavelength effect −0.114
q RH effect 1.183
γ shape parameter 0.566
µ baseline constant −2.530
β0 383nm adjustment −0.196
ξ full wavelength adjustment −2.928
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Plot of Variable Effects
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(a) Wavelength Effect (b) RH Effect
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Plot of Sample Fitted Path
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Fitted vs Observed
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Overall, the model can fit the data well.
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Out of Sample Prediction
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Concluding Remarks

We developed a statistical predictive model for degradation
model, which can be used for service life prediction.

The statistical models for covariates are based on
physical/chemical mechanisms.

The statistical model can fit and prediction the degradation
well, and it can be applied to different datasets.
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