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General Strategy

Use the accelerated test data and knowledge of the
physics and chemistry of the degradation process to help
identify the functional forms for the experimental variables
as they relate to the degradation path model.

Use the identified functional forms and the accelerated test
data to build a degradation path model linking the sample
degradation paths and the experimental variables.

Use the identified model to generate predictions of
degradation for a given covariate histories.

To verify the effectiveness of the accelerated test
methodology, compare predictions, based on the
accelerated test degradation data and model, with
observed degradation paths for outdoor-exposed
specimens.
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Data for Building Predictive Model

PPE is used as the studying material.
The chemical damage (1475/1410, 1715/1410, 1245/1410,
and 1685/1715), and discoloration are used as the
degradation indices.
Experimental variables: UV spectrum, UV intensity,
temperature, and RH.
Spectra study (four filters): 306 nm (±3), 326 nm (±6), 353
nm (±19), and 452 nm(±80).
Reciprocity law study (four intensity filters): 40%, 60%,
80%, 100% (nominal percentages).
Temperature: 45C, 65C, 75C, and 85C.
RH: 0% and 60%.
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Experiment Configuration for Yellowing

EXP_ID TEMP RH DEN SAMPLE BP SAMPLE EXP_ID TEMP RH DEN SAMPLE BP SAMPLE

45_0_R 45 0 40% 8, 11, 14, 17 - - 75_0_W 75 0 100% 2, 3, 4, 5 - -

45 0 60% 7, 10, 13, 16 - - 75 0 - - 306 8, 12, 16

45 0 80% 6, 9, 12, 15 - - 75 0 - - 326 9, 13, 17

45 0 100% 2, 3, 4, 5 - - 75 0 - - 354 6, 10, 14

75 0 - - 389 7, 11, 15

65_0_R 65 0 40% 2, 8, 12, 16 - -

65 0 60% 3, 9, 13, 17 - - 85_0_W 85 0 100% 2, 3, 4, 5 - -

65 0 80% 4, 6, 10, 14 - - 85 0 - - 306 8, 12, 16

65 0 100% 5, 7, 11, 15 - - 85 0 - - 326 9, 13, 17

85 0 - - 354 6, 10, 14

65_0_W 65 0 100% 2, 3, 4, 5 - - - - 389 7, 11, 15

65 0 - - 306 8, 12, 16

65 0 - - 326 9, 13, 17 85_60_R 85 60 40% 2, 8, 12, 16 - -

65 0 - - 354 6, 10, 14 85 60 60% 3, 9, 13, 17 - -

65 0 - - 389 7, 11, 15 85 60 80% 4, 6, 10, 14 - -

85 60 100% 5, 7, 11, 15 - -

75_0_R 75 0 40% 8, 11, 14, 17 - -

75 0 60% 7, 10, 13, 16 - -

75 0 80% 6, 9, 12, 15 - -

75 0 100% 2, 3, 4, 5 - -

The total sample is 112 under 7 experiments. 98 used for
model training, 14 used for model testing (marked by red).
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Plot of Degradation Data for Yellowing
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Lamp Spectral Irradiance and Filters
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The lamp irradiance is denoted by E(λ).
Filters, denoted by F (λ): bandpass 306nm, 326nm,
354nm, and 452nm; intensity: 40%, 60%, 80%, and 100%
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Building Predictive Model - Effective Dosage Model

The wavelength-specific intensity is I(λ) = E(λ)× F (λ).

To incorporate the effect of wavelength and intensity, we
introduce the idea of effective dosage.

The usual dosage is computed as d(t) =
∫ t

0

∫
λ I(λ)dλdτ .

The effective dosage is modeled as

s(t) =
∫ t

0

∫
λ
[I(λ)]pφ(λ)dλdτ = t ×

∫
λ
[I(λ)]pφ(λ)dλ

The effect of wavelength is φ(λ) = exp[β(λ− 354)],
log-linear relationship. Here, we use the 354nm as the
baseline. That is the acceleration factor at 354nm is one.

The effect of intensity is [I(λ)]p, power law relationship.
8



Summary of Variable Effects

Wavelength effect is modeled by log linear model.

The intensity effect is modeled by the power law
relationship.

The Arrhenius relationship is used to describe the
acceleration factor of temperature: exp

(
βt ·11605

TempC+273.15

)
.

The RH effect is updated as (1 + RH)βr .
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Illustration of Effective Dosage Computing

Apply filter F(λ)

E(λ)

Intensity
I(λ)= E(λ)x F(λ)

𝑰𝑰𝒑𝒑

Intensity Effect

𝑰𝑰 𝝀𝝀 𝒑𝒑Wavelength Effect

𝝓𝝓 𝝀𝝀 = 𝐞𝐞𝐞𝐞𝐞𝐞(𝜷𝜷𝝀𝝀)

𝑰𝑰 𝝀𝝀 𝒑𝒑𝝓𝝓(𝝀𝝀)

𝑰𝑰 𝝀𝝀 𝒑𝒑𝝓𝝓(𝝀𝝀)𝑺𝑺 𝒕𝒕 =

𝒕𝒕 × �𝑰𝑰 𝝀𝝀 𝒑𝒑𝝓𝝓(𝝀𝝀) 𝒅𝒅𝝀𝝀

Effective Dosage
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Statistical Model for Degradation Path

The model for degradation measurements is

yij = D(tij) + εij .

εij ∼ N(0, σ2
ε ) is the error that can not be captured by D(tij).

The model used for an increasing degradation path is

D(t) =
A

1 + exp
{
−

log[s(t)]−µ−βt
11605

TempC+273.15−βr log(1+RH)

σ

}

s(t) = t ×
∫
λ
[I(λ)]pφ(λ)dλ

φ(λ) = exp[β(λ− 354)].
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Parameter Interpretation

A is initial degradation.

Let η = exp(µ) and γ = 1/σ.

η is the half-degradation effective dose. That is the amount
effective dose needed for the degradation to reach 0.5A.

γ is related to the steepness of the damage curve. For
example, the slope at s(t) = η is A

4ηγ. So the larger the γ,
the steeper the curve.
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Illustration of Predictive Model
𝑫𝑫 𝒕𝒕 =

𝑨𝑨

𝟏𝟏 + 𝐞𝐞𝐞𝐞𝐞𝐞
𝐥𝐥𝐥𝐥𝐥𝐥 𝑺𝑺 𝒕𝒕 − 𝝁𝝁 − 𝜷𝜷𝒕𝒕

𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏
𝐓𝐓𝐞𝐞𝐓𝐓𝐞𝐞𝐓𝐓 + 𝟐𝟐𝟐𝟐𝟐𝟐.𝟏𝟏𝟏𝟏 − 𝜷𝜷𝒓𝒓𝐥𝐥𝐥𝐥𝐥𝐥(𝟏𝟏 + 𝐑𝐑𝐑𝐑)

𝝈𝝈

𝑺𝑺 𝒕𝒕 = 𝒕𝒕 × �𝑰𝑰 𝝀𝝀 𝒑𝒑𝝓𝝓(𝝀𝝀) 𝒅𝒅𝝀𝝀

𝝓𝝓 𝝀𝝀 = 𝐞𝐞𝐞𝐞𝐞𝐞(𝜷𝜷𝝀𝝀)

Find the curve to minimize the 
sum of the squares of the 
vertical distances.

The curve depends on parameters A, µ, σ, β,p, βt , and βr .
Parameter estimate are obtained by finding values of
A, µ, σ, β,p, βt , and βr which minimize the sum of the
squares of the vertical distance over the 98 units in the
training set.
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Indoor Model Summary for Yellowing

Parameter estimates

Parameter Interpretation Value
A ultimate degradation 16.297

η = exp(µ) half-degradation dose 310.132
γ = 1/σ steepness 0.458

β wavelength effect −0.147
p intensity effect 1.03
βt temperature effect 0.192
βr RH effect −1.724
σ2
ε error variance 0.390
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Plot of Variable Effect
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Plot of Fitted Paths for Colorimeter

The overall R2 is 95.5%.
The x-axis is the observed degradation and the y-axis is
the predicted degradation from the model.
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The fitting for individual samples is shown in the following
slides for a subset of units in the training set.
The shaded area shows the 90% statistical interval for
uncertainty quantification.
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Out of Sample Prediction for NIST Data

Use the fitted model to predict the test samples in NIST
data (14 samples in total).

The prediction for individual samples is shown as follows.

Overall, the out of sample test works quite well for the
NIST data.
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Test Datasets from Company

Use the predictive model to predict the degradation for
samples tested at industrial labs.

Three sources of datasets:
Company 1: 2 samples: 65C RH uncontrolled, full
wavelength
Company 2: 2 samples: BPT 70C RH 50%, full wavelength
Company 3: 4 samples: BPT 50C, 50C, 70C, 90C; RH
uncontrolled, 30%, full wavelength

The following plots show four different lamp spectral
irradiances and model testing results.
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Outdoor Data

The outdoor experiments are carried out at three locations
with four different settings.

The settings are Arizona, Florida, Maryland rack, and
Maryland box.

The outdoor units are measured every three months. So
far ten measurements are available.

Outdoor sun irradiance, temperature, and RH are also
available as functions of time.

The following slides show the outdoor degradation and
time-varying covariates.
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Effective Dosage for Time-Varying Covariates

To incorporate time-varying environmental variables for
outdoor degradation, the effective dosage model is
extended as

s(t) =
∫ t

0
exp

[
βt · 11605
TempK(τ)

]
[1 + RH(τ)]βr

∫
λ

[E(λ, τ)]pφ(λ)dλdτ

The effect of wavelength is φ(λ) = exp[β(λ− 354)].

The effect of intensity is [E(λ, τ)]p.

The temperature effect is modeled as exp
[

βt ·11605
TempC(τ)+273.15

]
.

The RH effect is modeled as [1 + RH(τ)]βr .
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Outdoor Prediction Model

The input for the effective dosage model is the data for
outdoor irradiance, temperature, and RH as functions of
time and the model parameters estimated from indoor
data.

The effective dosage s(t) can be computed as a function
of time.

With the effective dosage, the outdoor degradation can be
computed as

D(t) =
A

1 + exp
{
− log[s(t)]−µ

σ

} .
The following slide shows the predicted degradation for the
four settings at three locations, along with 90% prediction
intervals.
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Concluding Remarks

We developed a statistical predictive model for degradation
model, which can be used for service life prediction.
The statistical model can fit and predict the degradation
path reasonably well, and it can be applied to different
datasets collected from different companies under different
testing conditions.
We can generate prediction for outdoor tested samples.
The modeling framework can be applied to other
degradation indexes, such as chemical changes, although
the yellowing data is used for illustration.
Toward SLP, we still need to know how to correlate
degradation and failures.
Develop software for the developed methodology.
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