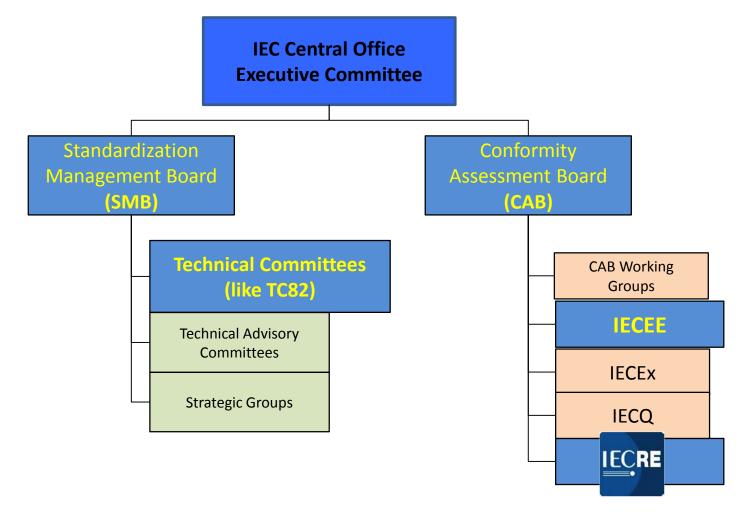


2019 NIST/UL Workshop on Photovoltaic Materials Durability

Gaithersburg, MD 12-13 December 2019

Steve Hogan George Kelly

Context and Background



- Continued industry growth
 - Demand increasing 20%+ per year multi GW/yr
 - Significant increase in large commercial plants
 - Transfer of manufacturing base to China
- Concern for quality / bankability
 - Doubts about adequacy of existing standards
 - Need for improved understanding of reliability
 - Validation of product lifetime for investors
- Overall Structure
 - IEC groups generate Standards (TC82)
 - IECRE utilizes Standards to generate Certification OD's
 - ARESCA coordinates US IECRE activities (through ANSI)

IEC Organization

NIST/UL Workshop

IEC Standards Process

- 170 countries represented
 - 83 "member" and 87 "affiliate" countries
 - One vote per country (national committee)
- 203 Technical Committees / Subcommittees
 - Scope and Work Programme for each TC approved by vote of participating national committees
 - National committees appoint experts to participate in each project
 - Minimum 5 participating countries for a new project
- Rules defined under ISO/IEC Directives

Standards Development Fundamental Principles

- Established by World Trade Organization
 - Common to ISO, IEC, ITU
- IEC procedures are intended to ensure:
 - 1. Transparency
 - 2. Openness
 - 3. Impartiality and consensus
 - 4. Effectiveness and relevance
 - 5. Coherence
- And to address the concerns of developing countries

TC 82 Impact

IEC TC 82 standards, implemented in all major markets, have contributed in the last 35 years to:

- ✓ High quality and reliability systems
- Cost Reduction
- Innovation
- ✓ Transparent markets and trade
- ✓ Safety

IEC System for Certification to Standards Relating to Equipment for Use in Renewable Energy Applications

NIST/UL Workshop

How the IECRE System Works

- IECRE itself does not certify, but administers the system and provide its framework through a systematic approach that system participants who issue certificates are qualified
- Qualified registered participants are competent to assess RE equipment and projects
- RECBs(RE Certification Bodies)
- REIBs(RE Inspection Bodies)
- RETLs(RE Test Laboratories)
- Competence validation through regular, revolving peer assessment
- Proper IEC and other international standards are referenced insuring appropriate interpretation of standards
- New standards and requirements can be adopted at any time if required by stakeholders (includes policy makers) and if fitting to the system
- Transparency
- Influence for all stakeholders All stakeholders have a voice (RECBs, REIBs, RETLs, OEMs, end users, policy makers)
- All national member bodies have a vote
- All participating RECBs recognize & accept IECRE certificates

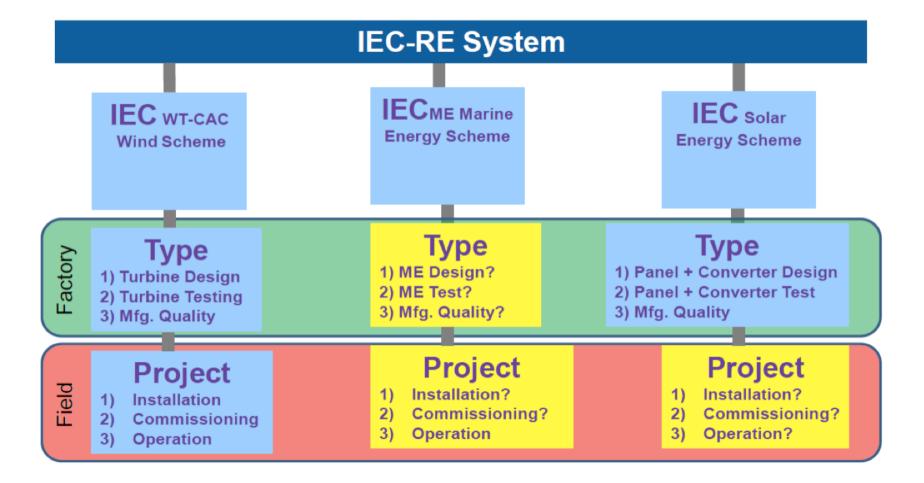
Conformity Assessment

- Evaluation against international standards
 - May use national or regional standards if no international standard is available
- Improved quality and performance
 - Assurance that PV plant will operate as designed for its expected lifetime
- Increased confidence for investors
 - Financial return meets expectations
 - Risk is reduced

Benefits of Certification

- Independent assurance of conformance with appropriate international standards
- Evaluation by accredited inspection bodies in open and transparent process
- Objective evidence of best practices for investors and financial institutions
- Common need in Renewable Energy (RE) systems across multiple industry sectors
 - PV Solar, Wind, Marine, and others?

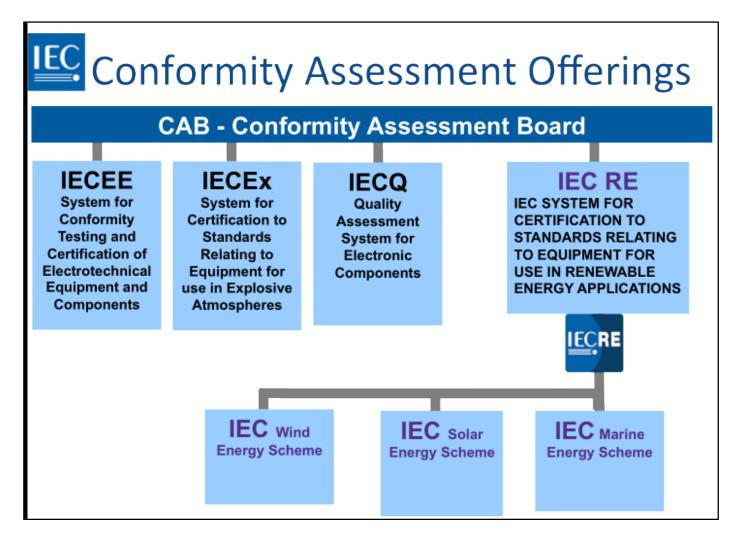
Benefits of IEC Systems



- IEC Brand
 - Global recognition multiple industries
 - International recognition (e.g. WTO + UN)
 - IEC Reports and Certificates used nationally
- Open and Transparent Process
 - Clear Rules in process and results
 - Consistency in processes among participating
 Certification Bodies & Test Labs
- Industry and market provide direct input
 - CA systems driven by market demand

RE Common Elements

IECRE Formation



- June 2013 CAB approves the creation of a Renewable Energy Conformity Assessment System
 - Oct 2013 Kick-off meeting in Aarhus, Denmark
- June 2014 CAB approves the Basic Rules for operation of the IECRE system
- September 2014 First Management Committee (REMC) meeting
 - Each industry sector established an Operating Management Committee (OMC) to address their specific needs and define the certification schemes required
- October 2016 First IECRE Certificates Issued for wind turbines

IEC Conformity Systems

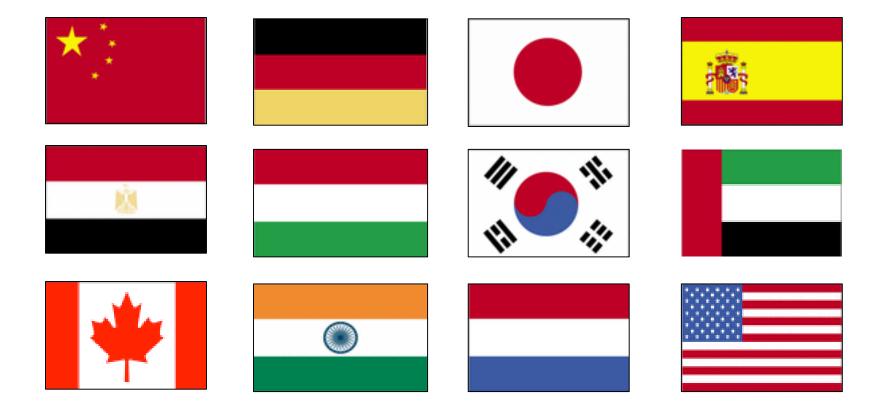
NIST/UL Workshop

Gaithersburg, MD

13-Dec-2019

Steve Hogan - ARESCA

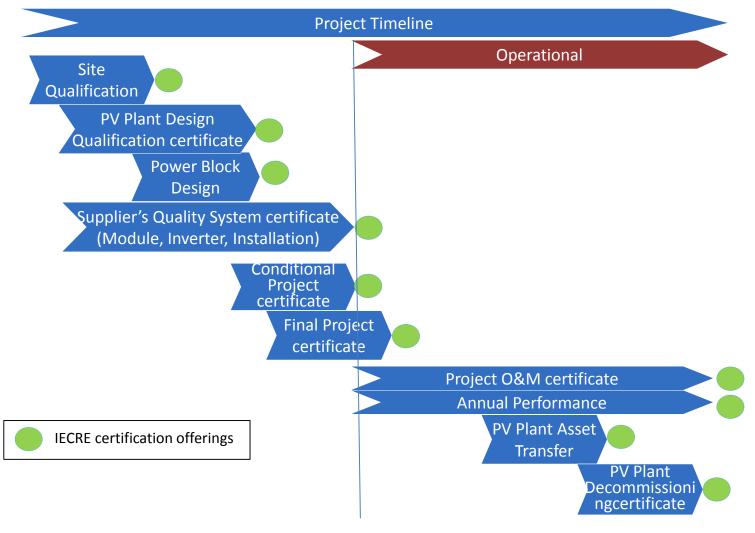
PV-OMC Progress


- Approved Rules of Procedure (RoP) April 2016
 - Updated Ed. 2 balloted in Sept 2017
- The PV-OMC is concentrating on determining the most critical issues for stakeholders and how they can be addressed by certifications
- Operational Documents will describe requirements for different certification offerings
 - Multiple aspects of certification tied to lifecycle / events
 - Certificate often required for financial milestones

PV-OMC Member Bodies

12 Countries represented by National Committees

Aspects of Certification


- Conformity assessment will be performed and a certificate issued for an individual PV power plant on a specific site
- Design Phase
- Site evaluation
- Design evaluation
- PV equipment evaluation
- Structural and electrical code compliance

- Implementation Phase
- Installation
- Output measurement
- Commissioning surveillance
- Operation and maintenance surveillance

System Timeline View

NIST/UL Workshop

Gaithersburg, MD

13-Dec-2019

Steve Hogan - ARESCA

Certificate Categories

- PV Site Qualification certificate
- PV Power Block design qualification certificate
- PV Plant Design qualification certificate
- Conditional PV Project certificate (construction complete / commissioning)
- Annual PV Plant Performance certificate
- PV Asset Transfer certificate
- PV Decommissioning certificate

Operational Documents

TITLE	OD	STATUS
Conditional PV Project certificate (commissioning)	401	Published 2016
Conditional PV Project certificate (construction complete)	401-1	Ed 1 approved
Annual PV Plant Performance certificate	402	Published 2016
PV Plant Design Qualification certificate	403	Ed 1 in comment
PV Site Qualification certificate	403-1	Ed 1 in comment
PV Power Block Design Qualification certificate	403-2	Ed 1 approved
PV Asset Transfer certificate	404	Ed 2 approved
PV Decommissioning certificate	409	In stand-by mode
PV Module Factory QMS certificate	405	Published 2016
PV System Installation QMS certificate	410	Draft in process
PV Inverter Factory QMS certificate	4xx	Future work

"Certifiable" Standards

Design

- 62548 Array Design (or 62738 Power Plant)
- 61724-1 Performance Monitoring

Commissioning

- 62446-1 Documentation, Test & Inspection
- 61724-2 Capacity Evaluation

Operation

- 62446-2 System Maintenance
- 61724-3 Energy Evaluation

Quality Management

- 62941 PV Module Manufacturing
- 63049 PV System Installation
- 63157 PCE Manufacturing

Project Timeline

Design Qualification Substantial Completion

Annual Performance

Asset Transfer

- Need confidence that each step during a project is completed correctly
- For simplicity, today we will discuss four steps:
 - Design qualification (ready to proceed with construction)
 - Substantial completion (ready to operate)
 - Annual performance (final completion, or annual check up)
 - Asset transfer (define health of plant as basis for acquisition)

Project Timeline

Design Qualification Substantial Completion

Annual Performance

Asset Transfer

- Local code requirements met
- Component selection
 - Qualified for application
 - Quality control during manufacturing
- Safety:
 - Restricted access if appropriate
 - Continuously monitored
 - Overcurrent protection
- Good design
 - Shading considered
 - Trenching

Project Timeline

Design Qualification Substantial Completion

Annual Performance

Asset Transfer

- Local code requirements met
- Commissioning completed
- Component quality verified
- Quality management during installation
 - Workers trained with oversight
 - Any design changes reviewed
 - Continuous improvement
- Performance check
 - Does power output match the design?

Project Timeline

Design Qualification Substantial Completion

Annual Performance

Asset Transfer

- Based on measured weather and original model, does plant perform as expected?
 - Energy availability (e.g. if inverters break, the plant could be unavailable)
 - Performance index (measured performance divided by expected performance based on measured weather)
- O&M costs
 - Relative to planned cost, how much did it cost to keep the plant running?

Project Timeline

Design Qualification Substantial Completion

Annual Performance

Asset Transfer

- Has plant output been consistent with original model?
- Have O&M costs been consistent with original model?
- Is there evidence of problems to come? (Cracked cells, weeds growing through the modules, hot spots)

Evaluation of OD-401 Commissioning

- ARESCA study funded by NREL
- Three large systems evaluated
- Three inspection bodies used

Findings from Study

Results presented at NREL PV Reliability Conference, February 2019

- Systems were well engineered, and installations were "clean" conformed to standards
- A massive amount of data being collected too much??
- Issues found: Cable management; vegetation control; arc flash hazard identification
- Trackers are more common, but standards are not up to speed yet
- CB's and IB's need clarification on responsibility
- Some prerequisite certifications are not practical

Challenge to IECRE (PV)

- Establishing value of certification
- Limited participation by IB and CB entities
- Need to establish user groups to promote use
- IEC will continue to support IECRE PV
- World Bank has interest in Rating System
- Existing processes seem to work for traditionally conservative utilities
- How to address smaller systems (cost)

Next Steps

- Finish Operational Documents (ODs)
 - Scope and requirements for each certificate offering
- Approve Participant Applications
 - Certification Bodies / Inspection Bodies / Test Labs
 - Begin peer assessment process during 2020
- Market the process and certification benefits
- Start Issuing Certificates in the PV sector
 - Project Completion
 - Power Plant Performance
 - Module Factory QMS

IEC System for Certification to Standards Relating to Equipment for Use in Renewable Energy Applications

International Electrotechnical Commission
Technical Committee 82 - Solar photovoltaic energy systems

Thank you for your attention Questions?

Contact: shogan710@gmail.com