

In-line, Non-destructive Electrical Metrology of Nitrided Silicon Dioxide and High-k Gate Dielectric Layers

Robert J. Hillard, P.Y. Hung*, William Chism*, Robert G. Mazur, C.Win Ye, William H. Howland, Louison C. Tan and Christine E. Kalnas

Solid State Measurements, Inc. Pittsburgh, PA

*International Sematech Corp.(ISMT) Austin, TX

SID[®] Electrical Characterization for MOS

- Device performance depends heavily on electrical properties of MOS structure
 - Bias dependence
 - Current dependence
- Atomic Profiles(SIMS), physical measurements(TEM) and optical measurements(Ellipsometry) do not correlate to final device behavior as well as electrical measurements
- Electrical data can be used for
 - Rapid monitoring of semiconductor processes
 - Monitoring Product Wafers
 - Predicting device performance
 - Determining reliability issues

- Gate Engineering
 - On-state Drive Current
 - Capacitance Effective Thickness(CET)
 - Equivalent Oxide Thickness(EOT)
 - Effective Dielectric Constant
 - Off-state Leakage Current
 - Gate Leakage Current(I_{LK})
 - Interface Trap Density(D_{IT})
 - Gate Dielectric Charge and Stability
 - Current-Voltage Behavior
 - Current Transport Mechanisms
 - Current-Voltage(IV) Profile
 - Stress Induced Leakage Current(SILC)
 - Reliability
 - Time Dependent Dielectric Breakdown(TDDB)
 - Time Zero Dielectric Breakdown and Defect Density
 - Alternate High-k Dielectrics

SSIT[®] Ultra-thin (<3 nm) Leakage Effects on CV

Si

Poly Gate

Conventional Method:

- 1. MOS gate formed by depositing polysilicon
- 2. Gate formation time: 6 hours to days

3. Processing required to form gate

4. For monitor wafers only

Slide YYMMDDSS

Corona Biasing

SiO₂

Introduced in 1995:

- 1. COS gate formed through deposition of corona charge
- 2. charge formation time: 5 min. for 1 Q-V sweep.
- 3. Smallest test area: 5 mm diameter

4. For monitor wafers only ©20YY Solid State Measurements ALL RIGHTS RESERVED

EM-gate

- 1. MOS gate formed through elastic deformation of noninvasive probe.
- 2. Gate Formation Time: 2 seconds
- 3. Small diameter gate for scribe line positioning
- 4. Measures Product Wafers

Gate Voltage

Gate Voltage(V)

CET Short Term Repeatability EM-gate Short Term Repeatability Test 8 Angstrom SiON Wafer 40 Mean = 9.83 Ang. Sigma = 0.051 Ang. 30 C (pF) 20 10 0

-1.2

-1.8

-1.6

-1.4

-0.8

-0.6

-0.4

-0.2

-1.0

Gate Voltage (V)

• <u>Short Term</u>	
•CET: <0.1 Ang.	
•VFB: ~ 6 mV	
•DIT: ~ 1 %	

•Multiple Day	
•CET: ~0.1 Ang.	
•VFB: ~12 mV	
•DIT: ~ 2 %	

EM-gate CET 3 Day repeatability

CV - 13.6A and 13.5A

- Un-annealed Oxides Exhibit lower C_{OX}, Higher D_{IT} and V_{FB} Shift
- No Leakage Effects Present

- Un-annealed Oxides Exhibit lower C_{OX}, Higher D_{IT},
 V_{FB} Shift and Distortion in CV Curve
- No Leakage Effects Present

SSIT[®] EM-gate CV: EOT Comparison

EM-gate GV Comparison: 21 Ang. Oxides

EM-gate Series GV 21 Ang. SiO₂ Gate Ox Preclean Matrix

SSIT Effects of Electrical Stress on Vfb

EM-gate CV: Effects of Electrical Stress on Vfb

EM-gate GV: Effects of Electrical Stress on Dit

SSIT MOSCAP IV: SiON Leakage Current Comparison

1000 C Anneal SiON Wafers

Nitridization Time(sec)

SSIT MOSCAP IV Example A: 8 to 17 Ang. SiO₂

EM-gate IV Comparison

SSIT[®] EM-gate IV Example A: 8 to 17 Ang. SiO₂ & SiON

EM-gate vs Polysilicon Gate IV Leakage Correlation

EM-gate CV, GV: Scribe Line Test Areas on Patterned Wafer

EM-gate MOS CV: High k Dielectrics

Elastic Probe CV Curve Comparison

High K Dielectrics(25 to 200 Angstroms)

Summary

- ♦ FastGate[™] Technology
 - Is Rapid(60 Wafers/Hr)
 - Is Repeatable
 - is Non-damaging and non-contaminating
 - Can measure Oxides and Oxynitrides as thin as 7 Ang.
 - Can measure Product Wafers
- EM-gate CV and IV Capability Includes
 - CET, EOT
 - V_{FB} and $V_{\text{T,CV}}$
 - D_{IT}
 - Delta V_{FB} Hysteresis
 - N_{SURF} and Carrier Density Profile
 - Leakage Current
 - IV Profile
- Applications on thin SiO₂, SiON with EOT values between 8 Ang. and 20 Ang. have been shown