High-resolution, high-speed 3D perception and sensing data streaming

Song Zhang, Ph.D., F. OSA, F. SPIE Professor of Mechanical Engineering Purdue University <u>szhang15@purdue.edu</u> <u>xyztlab.com</u>

December 3, 2019

Outline

High-speed, high-resolution
 3D sensing

- Holostream: 3D video streaming
- Applications

Structured light technology

Three-step phase shifting algorithm

• Phase shifted fringe images

$$I_{1}(x,y) = I'(x,y) + I''(x,y)\cos[\phi(x,y) - 2\pi/3]$$

$$I_{2}(x,y) = I'(x,y) + I''(x,y)\cos[\phi(x,y)]$$

$$I_{3}(x,y) = I'(x,y) + I''(x,y)\cos[\phi(x,y) + 2\pi/3]$$

• Wrapped phase

$$\phi(x,y) = \tan^{-1} \frac{\sqrt{3} [I_1(x,y) - I_3(x,y)]}{2I_2(x,y) - I_1(x,y) - I_3(x,y)}$$

• 2D texture

 $I'(x,y) = [I_1(x,y) + I_2(x,y) + I_3(x,y)]/3$

Structured light system calibration

S. Zhang and P. S. Huang, Opt. Eng. 45(8), 2006.

3D coordinate calculation

• From world to camera image coordinates $\begin{bmatrix} u^c \end{bmatrix} \begin{bmatrix} \alpha^c & \gamma^c & u_0^c \end{bmatrix} \begin{bmatrix} r_{00}^c & r_{01}^c & r_{02}^c & t_x^c \end{bmatrix} \begin{bmatrix} x^w \\ y^w \end{bmatrix}$

$$s^{c} \left\{ \begin{array}{c} u \\ v^{c} \\ 1 \end{array} \right\} = \left[\begin{array}{ccc} 0 & \beta^{c} & v_{0}^{c} \\ 0 & 0 & 1 \end{array} \right] \left[\begin{array}{ccc} 0 & 0 & 0 & 0 & 0 \\ r_{10}^{c} & r_{11}^{c} & r_{12}^{c} & t_{y}^{c} \\ r_{20}^{c} & r_{21}^{c} & r_{22}^{c} & t_{z}^{c} \end{array} \right] \left\{ \begin{array}{c} y^{w} \\ z^{w} \\ 1 \end{array} \right\}$$

• From world to projector image coordinates

$$s^{p} \left\{ \begin{array}{c} u^{p} \\ v^{p} \\ 1 \end{array} \right\} = \left[\begin{array}{ccc} \alpha^{p} & \gamma^{p} & u_{0}^{p} \\ 0 & \beta^{p} & v_{0}^{p} \\ 0 & 0 & 1 \end{array} \right] \left[\begin{array}{c} r_{00}^{p} & r_{01}^{p} & r_{02}^{p} & t_{x}^{p} \\ r_{10}^{p} & r_{11}^{p} & r_{12}^{p} & t_{y}^{p} \\ r_{20}^{p} & r_{21}^{p} & r_{22}^{p} & t_{z}^{p} \end{array} \right] \left\{ \begin{array}{c} x^{w} \\ y^{w} \\ z^{w} \\ 1 \end{array} \right\}$$

- Absolute phase constraint: $u^p = f[\Phi_a(u^c, v^c)]$
- 7 equations
- 7 unknowns: (x^{w} , y^{w} , z^{w}), u^{p} , v^{p} , s^{c} , s

S. Zhang and P. S. Huang, Opt. Eng. 45(8), 2006.

Single-chip DLP projector

Pictures from www.ti.com

Real-time 3D sensing

S. Zhang and P. S. Huang, Opt. Eng. 45(12), 2006

DLP technology

Pictures from www.ti.com

Limitations of using sinusoidal patterns

Projected timing signals with different grayscale input

- Precise synchronization requirement
- Speed limit of 120 Hz
- Projector's nonlinear gamma effect

Binary defocusing method

- DLP Discovery 4100 (0.7")
 - Resolution: 1024 X 768
 - 8-bit image switching rate: 291 fps
 - 1-bit binary image switching rate: 32,552 fps

S. Zhang, Opt. Lett. 35(7), 2010; S. Lei and S. Zhang, Opt. Lett. 34(20), 2009

Dithering/halftoning

- Dithering (halftoning)
 - Approximate an image with fewer colors or bits
 - Adopted extensively in printing (halftoning)
- Methods
 - Single thresholding
 - Random dithering
 - Ordered dithering (Bayer, 1973)
 - Error-diffusion dithering (Floyd & Steinberg, 1976; Stucki, 1981)

Y. Wang and S. Zhang, Appl. Opt. 51(27), 2012

8-bit

Thresholding

Bayer

Error diffusion

Comparing results

Fringe pattern (Square binary) 3D result (Square binary) Fringe pattern (Error diffusion) 3D result (Error diffusion)

B. Li, et al., Opt. Laser Eng. 54, 2014

Dithering optimization

Objective function min || I(x, y) − G(x, y) ⊗ B(x, y) ||
− I(x,y): ideal sinusoidal
− G(x,y): Gaussian filter
− B(x,y) binary pattern

3D result (Error diffusion)

3D result (Optimized dithering)

W. Lohry and S. Zhang, Opt. Lett. 38(4), 2013; J. Dai et al., Opt. Laser Eng. 52, 2014

Microstructure imaging

B. Li et al. Opt. Laser Eng. 96, 2017

Large-scale imaging

Y. An et al., Appl. Opt. 55(3), 2016

Multimodal imaging

2D texture Y. An and S. Zhang, Opt. Express 24(13), 2016

3D geometry

3D + temperature

Holostream: 3D video communication

Smart phones with 3D cameras

Over 100M phones with a 3D sensor shipped in 2018

Why not 3D video communication?

3D compression method

Decoding

T. Bell et al., Appl. Opt. 56(33), (2017)

FaceTime is about to become a relic

Mashable

Applications

Cardiac imaging

J. Laughner et al., Heart and Cir Physio 303(5), 2012; Y. Wang et al. Opt. Express, 21(5), 2013

Flapping wing robot

- Flapping rate: 21 cycles/sec
- 3D imaging rate: 5,000 Hz
- Resolution: 800 x 600

B. Li and S. Zhang, Meas. Sci. Technol. 29(4), 2018

Forensic science

Forensic science

Laptop USB 3.0 Port

Forensic science

"House of Cards" created with English rock band Radiohead

Thank you!

Song Zhang Purdue University szhang15@purdue.edu xyztlab.com