Semiconductor Technology Research, Development, & Manufacturing: Status, Challenges, & Solutions

C. R. Helms* Past President & CEO International SEMATECH

*Professor Emeritus, Stanford Univ.

Semiconductor Technology Research, Development, & Manufacturing: Status, Challenges, & Solutions

A New Paradigm in the Making?

C. R. Helms* Past President & CEO International SEMATECH

*Professor Emeritus, Stanford Univ.

Agenda

Semiconductor Revenue Growth: Yes!

Realize Which Roadmap?

Technology Challenges

R&D Cost

Agenda

- Semiconductor Revenue Growth: Yes!
 - Historical Perspective & Extrapolation
- Realize Which Roadmap?
 - End Equipment & Product
 - Cost per Function

Technology Challenges

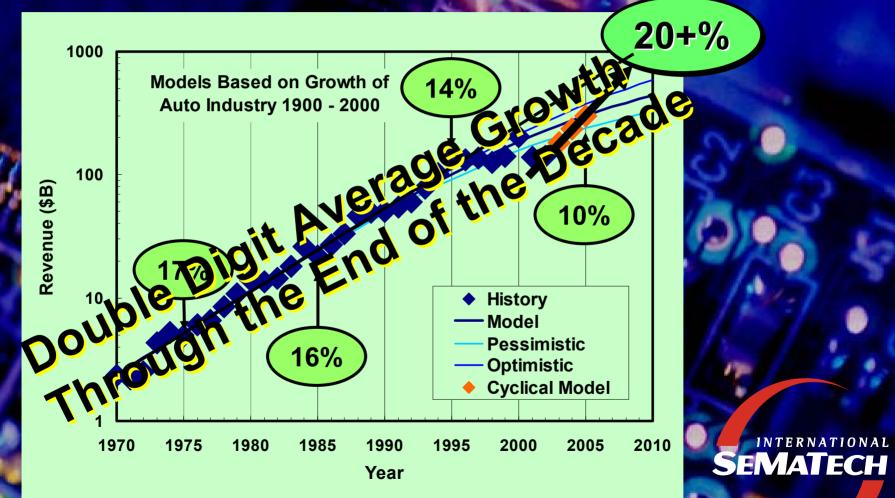
- Mask Availability, Cost, Cycletime
- Post 193nm Exposure Technology
- New Materials

R&D Cost

- How Many Si Tech R&D Centers Can the Industry Support?
- R&D Foundries, Partnerships, & Alliances Win!

international SEMATECH

Semiconductor Industry Revenue Growth Summary


- 17% CAGR in the 70's and 80's
- Drove High Rates of Capital Investment and R&D
 - In Turn Drove Better Penetration of Existing Markets and the Opening of New Ones
 - In Turn Drove Revenue Growth
- This is a Cyclical Growth Industry with a 5-Year Period

Maturation is Occurring

– But not that Fast!

Projections from a Historical Study of Industry Growth Trends

Agenda

- Semiconductor Revenue Growth: Yes!
 Historical Perspective & Extrapolation
- Realize Which Roadmap?
 End Equipment & Product
 Cost per Function

Technology Challenges

- Mask Availability, Cost, Cycletime
- Post 193nm Exposure Technology
- New Materials

R&D Cost

- How Many Si Tech R&D Centers Can the Industry Support?
- R&D Foundries, Partnerships, & Alliances Win!

Roadmap Hierarchy

End Equipment (PCs, DVDs, Hand-helds, Wireless)

Products (µPU, DRAM, DSP, Baseband)

Modules (Logic, Memory, Analog)

Specifications (V_{DD}, Freq., Pwr., Cost, Lifetime)

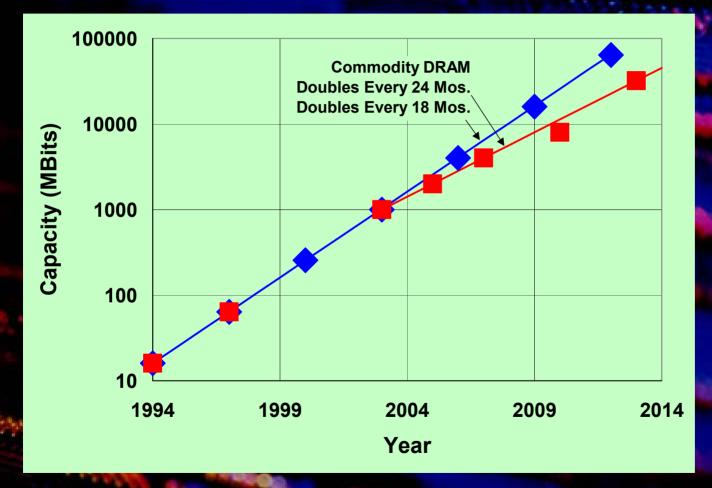
Requirements

RS

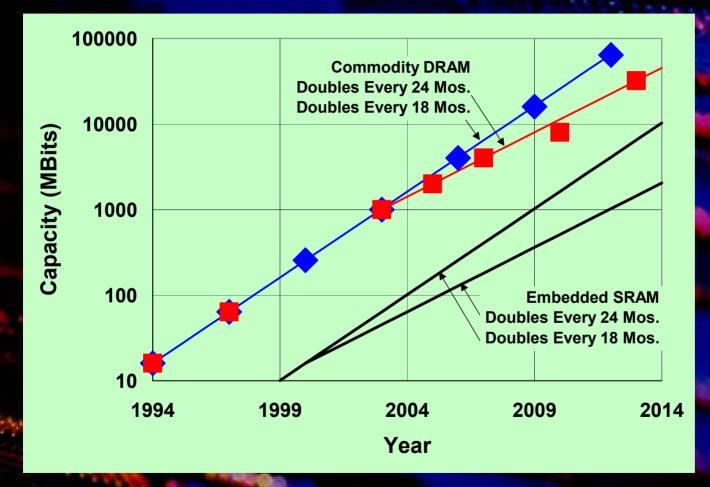
Layout/Architecture (Random, Gate Array, Logic-Based, Memory-Based)

Materials/ Structures (Cu, Low K, SOI, ½ Pitch) Processes/Tools

(193nm, CMP) Solutions



Too Much Focus on the Lower Level "REQUIREMENTS" can Drive Unprofitable Investments, i.e.


Low K Interconnects

Commodity DRAM Product Roadmap

Commodity DRAM & Embedded SRAM Product Roadmap

Manufacturing Cost per Function Roadmaps

Driven by Transistors per Area and Cost per Area

2-Year Cycle 3-Year Cycle

40%

8%

4%

27%

25%

4%

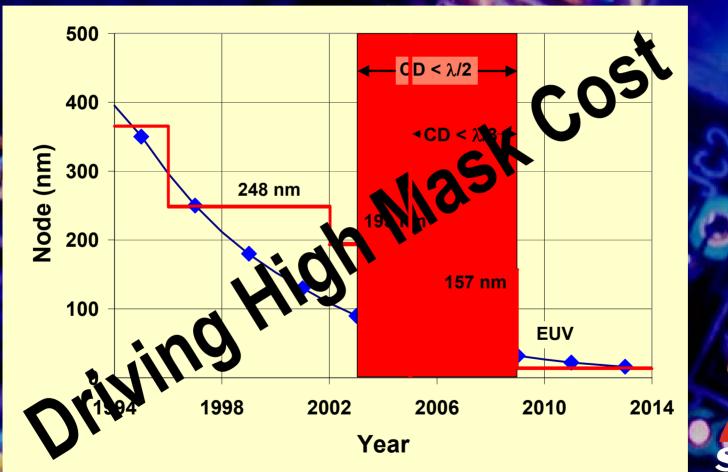
4%

Annual Transistor per Unit Area Increase

Average Cost per Unit Area Increase – Constant Wafer Size

Average Cost Reduction for Wafer Size Conversion Every 10 Years

Predicted Annual Cost per Function Decrease


2-Year Cycle Wins!

Validated ISMT Cost per Function Model Slope Change in 1998 due to 2-Year Cycle 300mm Cross-Over Predicted in 2004

Major Technology Challenge: The Sub – 1/2 Wavelength Red Zone

Agenda

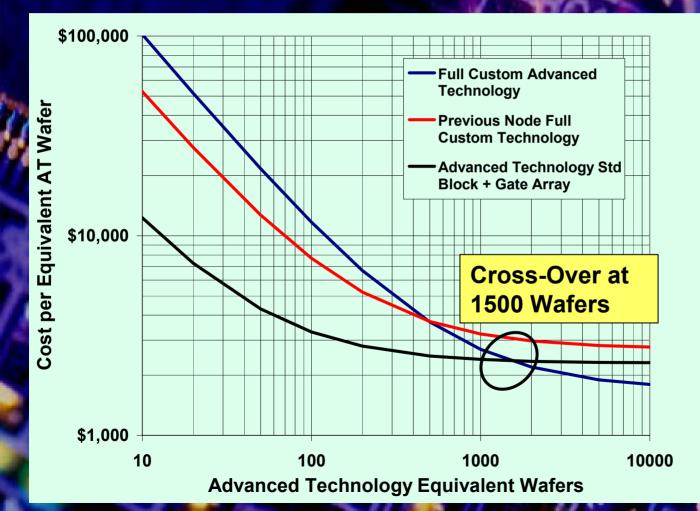
- Semiconductor Revenue Growth: Yes!
 - Historical Perspective & Extrapolation
- Realize Which Roadmap?
 - End Equipment & Product
 Cost per Function
 - **Technology Challenges**
 - Mask Availability, Cost, Cycletime
 - Post 193nm Exposure Technology
 - New Materials

R&D Cost

- How Many Si Tech R&D Centers Can the Industry Support?
- R&D Foundries, Partnerships, & Alliances Win!


Mask Issues

- Phase Shift & OPC Requires 2x+ Resolution Improvement
- Infrastructure Development Cost not **Supported by Revenue**
 - **Database Size Exploding**
 - **Cost Going up 2x per Generation**
 - Manufacturing () 130nm \$ 600K
 - \$1200K 90nm \$2400K ?


65nm

E

Mask Cost Analysis 130nm to 90nm Only Manufacturing Considered

Smart Gate Arrays Become More Attractive

Summary of Top Technical Challenges

- Mask Availability, Cost, and Cycletime
 - Especially for Custom Products
 - Post 193nm Litho Exposure Tools – 157nm in Mainstream Production in 2006/2007 – EUV in Mainstream Production in 2009/2010
- New Materials
 - Low K's
 - High K's
 - Memory Materials

Summary of Top Technical Challenges

- Mask Availability, Cost, and Cycletime
 - Especially for Custom Products
 - Post 193nm Litho Exposure Tools – 157nm in Mainstream Production in 2006/2007 – EUV in Mainstream Production in 2009/2010
- New Materials
 - Low K's
 - <mark>High K</mark>'s
 - Memory Materials

Agenda

- Semiconductor Revenue Growth: Yes!
 - Historical Perspective & Extrapolation
- Realize Which Roadmap?
 - End Equipment & Product
 Cost per Function
 - Technology Challenges
 - Mask Availability, Cost, Cycletime
 - Post 193nm Exposure Technology
 - New Materials

R&D Cost

- How Many Si Tech R&D Centers Can the Industry Support?
- R&D Foundries, Partnerships, & Alliances Win!

The New Economy for Microelectronics

- A New Factory (Fab) Runs 130nm Technology with Cu Wiring at 300mm
 - At a Capital Cost of \$2B \$4B — Increasing at a Rate of 15% per-Year

- Technology R&D to Support 2-Year Major & 1-Year Minor Product Cycles At a Cost of > \$500M per Year for a Tier 1 Logic Manufacturer
 - Increasing at a Rate of > 20% per Year

Table Stakes for Independent Semiconductor Manufacturer

- Cap Ex of \$1B per Year or Min. of 20% of Revenues
 - Implies Revenues of \$5B/yr

 Technology R&D Investment of \$500M per Year

> If Requirement of <5% of Revenues for IDM Implies Revenues of \$10B/yr

R&D Partnership Risks & Rewards

- Rewards
 - Faster Speed of Execution
 Lower Costs
- Risks
 - Sacrifice of IP & Potential Competitive Advantage
 - Cultural, Geographic, and NIH Factors can Slow Progress
 - Divergence of Interests

Summary

- Semiconductor Revenue Growth: Yes!
 > 10% CAGR Through the Decade
 - **Realize Which Roadmap?**
 - End Equipment & Product
 Cost per Function

Technology Challenges

- Mask Availability, Cost, Cycletime
- Post 193nm Exposure Technology
- New Materials

R&D Cost

Consolidation of Si Tech R&D Centers Required
 R&D Foundries, Partnerships, & Alliances Win!

INTERNATIONAL SEMATECH

Addenda

Killer App for the Future?

- Enabler Products
 - Broadband
 - 3+G Wireless
 - **Voice** Recognition
 - No Keyboards
 - **BioMedical Electronics**
 - Reduced Cost of Health Care
 - Enabler Technologies
 MEMS (MicroElectroMechanicalSystems)
 NanoTechnology NanoElectronics
 Biotechnology BioElectronics

Silicon Core CMOS – The Platform of Choice