THE JOURNAL OF CHEMICAL PHYSICS 134, 134106 (2011)
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We derive path-integral expressions for the second and third virial coefficients of monatomic quan-
tum gases. Unlike previous work that considered only Boltzmann statistics, we include exchange
effects (Bose—FEinstein or Fermi—Dirac statistics). We use state-of-the-art pair and three-body poten-
tials to calculate the third virial coefficient of *He and “He in the temperature range 2.6-24.5561 K.
We obtain uncertainties smaller than those of the limited experimental data. Inclusion of exchange
effects is necessary to obtain accurate results below about 7 K. © 2011 American Institute of Physics.
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Il. INTRODUCTION

Thermodynamic properties of fluids at very low temper-
atures are of significant interest. For example, the current
International Temperature Scale! makes use of volumetric
properties and vapor pressures of helium isotopes below the
triple point of neon (24.5561 K); below the triple point of hy-
drogen (13.8033 K), the scale is based entirely on properties
of *He and *He. The theoretical analysis of relevant properties
at these conditions, such as the virial coefficients that describe
the fluid’s departure from ideal-gas behavior, is complicated
by the presence of quantum effects.

The inclusion of quantum effects in the calculation of
virial coefficients was one of the first numerical applications
of the path-integral Monte Carlo (PIMC) method.” In a se-
ries of pioneering works published in the 1960’s, Fosdick and
Jordan showed how to calculate the second and third virial co-
efficient of a monatomic gas using computer simulations.=
Given the limited computational resources available at that
time, they were able to calculate the third virial coefficient
only in the case of two-body interactions, using a model po-
tential of the Lennard-Jones form and assuming distinguish-
able particles (Boltzmann statistics). They argued that their
method could be extended to include the proper quantum
statistics, but they were able to compute exchange effects only
in the case of the second virial coefficient.

Recently, the exponential increase in computational
power has enabled use of the path-integral method to calculate
the properties of quantum degenerate systems, notably super-
fluid helium.® At the same time, progress in the computation
of ab initio electronic properties of interacting atoms resulted
in the availability of very precise two- and three-body inter-
particle potentials, at least for the lightest particles such as
helium atoms’~!! or hydrogen molecules.'> '3
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A natural application for these potentials is the calcu-
lation of virial coefficients. As is well known, the second
virial coefficient depends only on the two-body potential, the
third virial coefficient depends only on two-body and three-
body interactions, etc. The second virial coefficient for a
monatomic gas can be rigorously obtained at the fully quan-
tum level from the calculation of the phase shifts due to
the pair potential, and previous work has shown that a com-
pletely ab initio calculation of second virial coefficients for
helium can have uncertainties comparable to and in many
cases smaller than those of the most precise experiments.'+'8

In the case of the third virial coefficient, no closed-
form solution of the quantum statistical mechanics problem
is known. First-order semiclassical approaches have been
derived'”?° and show that, in the case of helium, quantum
diffraction effects result in significant modifications of the
classical result, even at room temperature. However, there is
no rigorous way to evaluate the accuracy or uncertainty of the
semiclassical result, especially at low temperatures.

In recent work,”! we extended the methodology pio-
neered by Fosdick and Jordan, deriving a set of formulas
allowing a path-integral calculation of the third virial coeffi-
cient C(T') of monatomic species for arbitrary two- and three-
body potentials. Our results were limited to Boltzmann statis-
tics (i.e., distinguishable particles) and we did not present
results for temperatures lower than the triple point of neon
(24.5561 K), which we deemed to be a reasonable lower
bound so that exchange effects could be neglected. Neverthe-
less, we were able to compute the value of the third virial
coefficient of *He with an uncertainty one order of magnitude
smaller than that of the best experiments.

Recent experimental results overlapping with our temper-
ature range,”>>* although mostly consistent with our calcu-
lations, seemed to indicate a systematic deviation which the
authors speculated could originate from our neglect of the
proper quantum statistics of helium atoms.

In this paper, we extend our computational methodology
to calculate the quantum statistical contributions to the third
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virial coefficient, and compute C(T') for both isotopes of he-
lium in the temperature range 2.6-24.5561 K, extending the
temperature range considered in our previous work down into
the range where exchange effects are important. We show that
quantum statistical effects are significant only for tempera-
tures smaller than about 7 K and compare our results to low-
temperature experimental data.

In a subsequent publication,®* we will present results
covering the entire temperature range (improving on our pre-
vious results for “He at 24.5561 K and above) with rigorously
derived uncertainties. We will also extend our methodology to
include acoustic virial coefficients and compare those calcula-
tions to available data. In the present work, our focus is on low
temperatures and specifically on the effect of non-Boltzmann
statistics.

Il. PATH-INTEGRAL CALCULATION OF THE
VIRIAL COEFFICIENTS

The second and third virial coefficients, B(T) and C(T)
respectively, are given by?’

1
B(T) = - (z,-27}), (1

C(T) = 4B*(T) — % (23 -32,2,+2Z]. (@

where V is the integration volume (with the limit V — oo
taken at the end of the calculations), and the functions Z are
given by

Zs = A9/d1d2d3(123|e_ﬂﬁ3ZPM|123>, 3)

3

Z, = AG/d1d2<12|e—ﬁﬁ2 > Pal12), )

T

Z, = A3/d1<1|e—ﬁﬁ'|1> -V, 5)

where I:IN is the N-body Hamiltonian, § = 1/(kgT), P is a
permutation operator (multiplied by the sign of the permuta-
tion in the case of Fermi—Dirac statistics), the index 73 runs
over the 6 permutations of 3 objects (i.e., 123, 132, 213, 321,
231, and 312), and 7, runs over the 2 permutations of 2 ob-
jects (i.e., 12 and 21). A = h//2mrmkgT is the thermal de
Broglie wavelength of a particle of mass m at temperature
T. For the sake of conciseness, we denote by |i) an eigen-
vector of the position operator relative to particle i and by di
(i = 1,2, 3) the integration volume relative to the Cartesian
coordinates of the i-th particle. Note that, in order to produce
the molar units used by experimenters and in our subsequent
comparisons with data, the right side of Eq. (1) and the sec-
ond term in the right side of Eq. (2) must be multiplied by
Avogadro’s number and its square, respectively.

In the following, we will derive a path-integral expres-
sion for the calculation of the virial coefficients with Egs. (1)
and (2). We perform the derivation in detail in the case of
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B(T) to establish the notation, and then extend the results to
the more interesting case of C(T).

A. Second virial coefficient

In this paper, we adopt Cartesian coordinates to describe
the atomic positions. This differs from the approach devel-
oped in Refs. 4 and 21, where Jacobi coordinates were used.
This choice allows the exchange contribution to be computed
in a much simpler manner than would be the case if Jacobi
coordinates were used, especially in the case of three or more
particles.

From Egs. (1) and (4), it can be seen that there are two
contributions to B(T). The first one comes from consider-
ing the identity permutation, and takes into account quantum
diffraction effects. This is the only contribution that gives a
nonzero result at high temperatures, where the particles can
be treated as distinguishable (Boltzmann statistics).

The second contribution to B(T), which we will call
exchange (xc), comes from the other permutation involved in
the definition of the quantity Z, above.

The expression of these two contributions in Cartesian
coordinates is

A° R
Biouman(T) = ~ 5 / dr1dra(rir] exp [—B(R,

+0s(|r> — r1)] — exp [-BKa]|rir2),
(6)
A® N
B(T) = T3 / drydr(rirs] exp [~ (R,

+0s(Ir2 — ri)llrars), (7

where we denote by Ky the total kinetic energy of N bod-
ies and by U,(r) the two-body potential energy operator. The
upper (lower) sign in Eq. (7) corresponds to Bose—Einstein
(Fermi—Dirac) statistics.

Equations (6) and (7) can be rewritten by using the Trot-
ter identity,

e[eerlA]z — lim (elez/PeLA/z/P)P’ (8)
P—oo

with a positive integer value of the Trotter index P.

Following the procedure outlined in Ref. 21, one can then
write BBoltzmann(T) as

Bgolzmann (T) = _27[2/ rzdr(eXP [_IBUZ(VH - D), (9)
0

where the two-body effective potential U,(r) is given by

P—1
exp [—BU ()] =/HdAx(1i)dAx(2i)

i=1

P
X exp |:—% Z U2(|r + x(zi) — x(li)|):|
i=1

1 P
X Frng(Ax", ..., Ax{")

X Frng(AxS, ..., AxSD) (10)
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b DxDx, exp|:—%/0ﬂh % ldxdlr(f) ? Z dxdzif) :
+Ua(Ir +xl(f)—X2(f)|)df}, (1D
where
Fiing = A® (%) exp [—7;—2 3 |ax? 2] (12)
i=1
In the prev10us equations, we have defined Ax(l) r,(fH)

— r}(), where ! k ) is the coordinate of particle k (k = 1,2) in

the i-th “imaginary time slice.” These “slices” are obtained
by inserting P completeness relations of the form

/dr(ll)dr(l)|r(l) (l)>< (li)r(Zi)|’ (13)

between the factors eK2/? and eU/F of the Trotter expan-
sion of Eq. (8). We used the overall translation invariance
of the system to remove the factor V in Eq. (6) and fix the
T = 0 slice of particle 2 at the origin of the coordinate sys-
tem. We also denoted by x(l) and x(zi) the coordinates of two
ring polymers having one of their endpoints fixed at the origin
(x(ll) = x(zl) = 0), and we introduced the variable r denoting
the distance between the T = 0 time slice of the two ring poly-
mers. In the classical limit, where the paths x(7) and x,(7)
shrink to a point, the coordinate » reduces to the distance be-

tween the particles and one has ﬁz(r) = Uy(r).

Note that the effect of the identity permutation
is to set riPH) = rfcl). The path-integral formalism al-

lows one to map the quantum statistical properties of
a system with N distinguishable particles (Boltzmann
statistics) onto the classical statistical properties of a
system of N ring polymers, each having P beads,
which are distributed according to the function Fj,, of
Eq. (12).?° The mapping is exact in the P — oo limit, al-
though convergence is usually reached with a finite (albeit
large) value of P.
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Equation (9) shows that the second virial coefficient at
the level of Boltzmann statistics is obtained from an expres-
sion similar to that for the classical second virial coefficient,
using an effective two-body potential. This effective potential,
U,(r), is obtained by averaging the intermolecular potential
U,(r) over the coordinates of two ring polymers, correspond-
ing to the two interacting particles entering the definition
of B(T).

Equation (9) is equivalent to Eq. (19) of Ref. 21. The
only difference is that the current approach uses Cartesian
coordinates, and therefore we are left with an average over
two ring polymers of mass m instead of one ring polymer
of mass pu = m/2, corresponding to the relative coordinate
of the two-particle system. The two approaches are of course
equivalent, and in fact it can be shown that Egs. (9) and (10)
reduce to the form derived in Refs. 3 and 21. Equation (9) is
the same expression previously derived by Diep and Johnson
for spherically symmetric potentials on the basis of heuristic
arguments,'? and later generalized by Schenter to the case of
rigid bodies and applied to a model for water.”’

Equation (10) is actually the discretized version of a path
integral, as shown in Eq. (11). The circled integral is defined

ph 2
fDx exp |:—% f % dt]
0

P—1
= lim /HdAx(i)Fring(Ax(l),...,
i=1

P—o0

dx(7)
dr

AxPy =1,

(14)

and it indicates that one has to consider all the cyclic paths
with ending points at the origin, that is x(0) = x(8#) =
The normalization of the path integral is also indicated in
Eq. (14).

We can perform on Eq. (7), describing the exchange con-
tribution to the second virial coefficient, the same steps lead-
ing from Eq. (6) to Eq. (9). The only difference is the presence
of the permutation operator, whose main consequence is the
fact that r(PH) = r(zl) nd r(ZPH) = rll) In this case, defining
X® = r(ll) and X9 = r(;), one obtains

A® B P . )
— (D 2P) (P+i) @)
By.(T) = ZF2 /dX ...dX exp |: '_El U)(|1X X |)]

P3/2 2P
X —
(%)

2P
P . .
Xp [__M > (XD — X(’))2:| (15)
i=1

A3 Jp . .
= :Fﬁde(l)...dX(2P)exp _FZ Up(IX P — x D)

2P
AL (@Py”
X 2 3 exp
"
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1A* B < ,
(P+i) (@)
T3 <exp [_Fz (X -X |)]>

n
25/2y§DXexp|: / E’

where we have defined A, = V2A. The exchange contribu-
tion to the second virial coefficient is given simply as an av-
erage of the two-body potential taken on ring polymers cor-
responding to particles of mass u = m/2. In the discretized
version of the path integral, one has to consider 2 P beads. In
Eq. (17), we have used the overall translation invariance of
the integral to remove the factor of V in the denominator.
The effect of the various permutations can be visualized
as generating paths with a larger number of beads, which are
obtained by coalescing the ring polymers corresponding to the
particles that are exchanged by the permutation operator.

B. Third virial coefficient

We now discuss the third virial coefficient, starting from
the expression given in Eq. (2). Since 4B?(T) can be calcu-
lated by the methods of the previous section, we concentrate
on the second term, whose summands can be written as fol-
lows:

Z3 = A9/d1d2d3<123|e—“73ZPN3|123>, (19)

3

7,7, = A9/d1d2d3<123|e”3(ﬁ2+ﬁ)an2|123),

2

(20)

zZ = A9/d1d2d3<123|e—ﬂ’<3|123>, (21)
where f, = —%Vf
particle 7.

We can simplify the expression in square brackets on the
right-hand side of Eq. (2) by writing the three Z,Z; terms
choosing each time a different particle for Z; [in Eq. (20), we
have chosen particle 3 as coming from Z;]. After consider-
ing all the permutations of two and three particles, we end up
with 6 +3 x 24+ 1 = 13 terms building the term in square
brackets of Eq. (2). It is useful to collect these 13 terms as
follows:

is the kinetic energy operator of

(1) Term 1 (identity term): we sum together permutation
123 from Zj3, the identity permutations from the three
Z,Z, and the whole 2Z7 term. Adding 4B2 ;,mann(T):
one obtains the Boltzmann expression for C(T), al-
ready discussed in Ref. 21. In the present formulation
based on Cartesian coordinates, the value C(T') in the
case of Boltzmann statistics involves an average over
three independent ring polymers, which correspond to

dX()|?
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A7)

i (18)

+ U2(1X (T + B1i/2) — X(f)l)df} ;

the three particles. In the following, this contribution to
C(T) will be referred to as Cpolizmann(7") and is made by
143+ 1 =75 of the 13 terms described above.

(2) Term 2 (odd term): we take permutations 132, 213, and
321 from Z3 and the three exchange permutations from
the Z,Z, terms. These permutations are all odd, and we
consider them with a positive sign (Bose—Einstein statis-
tics). In the case of Fermi—Dirac statistics, this term has
to be multiplied by an overall minus sign. All of these
permutations correspond to configurations where two of
the three particles are exchanged. The sum of these 6
terms will be referred to as Cogq(T).

(3) Term 3 (even term): we take the permutations 231 and
312 from Zj3. These are the remaining two terms from
the 13, and are both even permutations, hence the name.
Both of these terms correspond to a cyclic exchange of
the three particles, and their sum will be referred to as

Ceven(T).

Using these definitions, the full C(T), including quantum sta-
tistical effects, can be written as

C(T) = Crotzmann(T) £ Codd(T) + Ceven(T) + Cp(T),
(22)
where the last term in the right-hand sum is given by
Co(T) = £8Botman(T) Bxe(T) + 4B(T), (23)

since the contribution of 4BZ .. (T) to C(T) is already
included in Cgolzmann(7T). In Egs. (22) and (23), the up-
per (lower) sign corresponds to Bose—Einstein (Fermi-Dirac)
statistics.

Using the same procedure outlined above in the case of
B(T), one can write the Boltzmann contribution to the third

virial coefficient as

1 _
CBoltzmann(T) - 4Béohzmann(T) - g / drler[eiﬂvz(rl’rZ)

—e FUAIND _ o=BUIR2) _ o=BUIr=r2) 4 o

(24)

P—
eXp [_IBVS('-I’ "2)] — / l_[ Ax(l)Ax(l)A (I)F(l) F(z) F(%)

ring * ring* ring

X exp [ — ﬂvl;(rl, r2)] 25)
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1 (Pm (|dxi(0)]?
Dx,Dx,D — [ (=
pmf 1= x3eXp[ h/o 2(‘ dr
2)

+ Va(r1 + x1(1), r2 + x2(7), x3(7))dr], (26)

dx>(7)
dr

g L |45

+ dr

where F (1 ) denotes the probability distribution of the path rel-
ative to partlcle k, as defined in Eq. (12). In Eq. (25), the three-
body effective potential energy V3 is obtained as an average
performed over three independent ring polymers of the total
three-body potential energy:

Us(x, y,2) + Ux(lx — y|)
+ Ua(lx —zD+ Ua(ly — 2z, (27)

Vi(x, y,2) =

where Us(x, y, z) is the nonadditive three-body potential of
three atoms. In Eq. (25), the total three-body potential energy
for the Boltzmann contribution to the third virial coefficient is

Vi(rir) =— ZU3r1+x1,rz+x x{)

+ Uz(‘l‘] —i—x(') xg)|)
+ Ux(|r +x(’) x3’)|)

+ Us(|ra + x5 —xP)). (28)

where the variables with superscript (i) denote the coordi-
nates of three ring polymers with one of the beads at the
origin. Notice that in passing from Eq. (2) to Eq. (24), we
have used the translation invariance of the integrand to per-
form the integration over r3, which removed the factor of V
in the denominator. As a consequence, the paths correspond-
ing to particle 3 have their endpoints at the origin of the co-
ordinate system (or, equivalently, the third particle is fixed at
the origin when the classical limit is performed.) In the same
limit, the variables r; and r, appearing in Eq. (26) reduce to
the positions of particles 1 and 2, respectively, and one has
Vi(ri,r) = Via(ry, ra).

The term C,qq(T) is obtained by exchanging the posi-
tions of two particles. This operation reduces the number of
ring polymers to two: one having 2 P beads, corresponding to
the exchanged particles, and the other having P beads, corre-
sponding to the remaining one. The odd contribution is given
by

A® R
Coad(T) = — 7/d1dzd3<123|exp [—BH;]

— exp[—B(K, + Us(ra — ri))1|213),
(29)

A3

=35 / dri(exp[ — ,BV;)dd] —exp[ - /Bﬁgddp’
(30)
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A} 1 [P m |dx(0)|?
= 23/2/dr3{ DxDy exp |:—%/(; T &

2
m ‘dy(t) + V3(x(t + BHi/2), x(x), 13 + y(r))dt:|
2| dt
1 (Pm |dx()]?
‘fp“”‘p [7/0 il e
+ Ux(|x(z + B#/2) — X(T)I)df} } , (31)

where we have defined

—odd

P
Vs () = Z Us(XD, XP) py - x()

i=1
+ Up(| X9 — X0
+ U(|]X0 = ry = x{))
+ Uo(|XTHP —ry — %)), 32)

P

Z Ur(|1 XD — XEHP), (33)

The 2P variables X have been defined analogously to what
has been done in Eq. (15). Notice that in the discretized ver-
sion, the average defining the odd exchange term in Eq. (30)
is performed over two different kinds of ring polymers: the
first has 2 P beads of mass m /2 and connects particles 1 and
2 whose coordinates are exchanged by the permutation oper-
ator, whereas the second—corresponding to the third particle
of mass m—has P beads.

A similar derivation holds for the even contribution to the
third virial coefficient, which is given by

2A° N
Coven(T) = —W/d1d2d3(123|exp(—,3H3)|312)

2 A6 —even

= 2 e (— BT (4

B 2A6¢D 1/f‘hm dx(7) |?
DD bt B N

+ Va(x(t +2B%/3), x(r + p#/3), X(f))df} ., (35)

where we have defined

—even

P
1 . . .
V3 — F § U’;(Y(l), Y(l+P), Y(I+2P))

i=1

+ 0(YO = YD)
+ U (Y — Y n))
+ Up(YTED -y, (36)
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together with Y = r{), Y0P = p and y+2P) = rg). In
the discretized version, the even contribution to the third virial
coefficient is an average over the coordinates of the 3 P beads
of a single ring polymer corresponding to a particle of mass
m/3.

Notice that, from a computational point of view, the eval-
uation of the exchange contributions to the third virial co-
efficient is much less demanding than the calculation of the
Boltzmann part, which is given as an integral over the posi-
tions of two particles. In fact, the odd contribution is calcu-
lated as an integration over the position of one particle only,
whereas the even contribution is given by a simple average
over ideal-gas ring-polymer configurations. In particular, the
full calculation of C(T') at the lowest temperature with 2.5
GHz processors required ~2400 CPU hours, only 15% of
which was needed to calculate the exchange contributions.

lll. RESULTS AND DISCUSSION
A. Details of the calculation

We have calculated C(T') for both isotopes of helium with
the path-integral method described above. We used the highly
accurate two-body potential of Przybytek et al.,'' which in-
cludes the most significant corrections (adiabatic, relativistic,
and quantum electrodynamics) to the Born—-Oppenheimer re-
sult. We also used the three-body ab initio potential of Cencek
et al.,'9 which was derived at the full configuration interac-
tion level and has an uncertainty approximately one-fifth that
of the three-body potential® used in our previous work.?!

We generated ring-polymer configurations using the
interpolation formula of Levy.>?® The number of beads
was chosen as a function of the temperature 7 accord-
ing to the formulas P = int[(1200K)/T]+ 7 for “*He and
P = int[(1800K)/T1 + 7 for 3He, where int[x] indicates the
integer closest to x. These values of P were enough to reach
convergence in the path-integral results at all the tempera-
tures considered in the present study. The spatial integra-
tions were performed with the VEGAS algorithm,” as im-
plemented in the GNU Scientific Library,® with 1 million
integration points and cutting off the interactions at 4 nm.
The three-body interaction was pre-calculated on a three-
dimensional grid and interpolated with cubic splines. The val-
ues of the virial coefficient and their statistical uncertainty
were obtained by averaging over the results of 256 indepen-
dent runs.

First of all, we checked that our methodology was able
to reproduce well-converged fully quantum B(T') calculations
for helium, which were obtained using the same pair poten-
tial as the present work.'® Our results agree within mutual
uncertainties with these independent calculations, and con-
firm the observation, already made when analyzing theoretical
B(T) calculations performed using Lennard-Jones potentials,
that exchange effects are significant only for temperatures
lower than about 7 K.3! The exchange contribution to the sec-
ond virial coefficient is negative in the case of Bose—Einstein
statistics and positive in the case of Fermi—Dirac statistics, as
one would expect.

J. Chem. Phys. 134, 134106 (2011)

0 5 10 15 20 25
Temperature (K)

FIG. 1. The third virial coefficient of *He. The black circles are the re-
sults of the present calculations, with error bars representing expanded un-
certainties with coverage factor k = 2. The gray area shows the results
of the recent low-temperature experiments by Gaiser and collaborators
(Refs. 22 and 23).

B. The third virial coefficient of *He

We report in Table I the values of the third virial
coefficient of “He, together with the various contributions
of Eq. (22), for temperatures in the range from 2.6 to
24.5561 K, which is the lowest temperature studied in our pre-
vious work.?! The same data are plotted in Fig. 1, where they
are compared with the recent experimental measurements by
Gaiser and collaborators.?>?3

More extensive comparison with available data over a
wide range of temperatures will be presented elsewhere.?* In
Fig. 1, our results are plotted with expanded uncertainties with
coverage factor k = 2 as derived in Ref. 24; the uncertainty at
the same expanded level for the experimental results was es-
timated from a figure in Ref. 22.

First, we notice that exchange effects are completely neg-
ligible in the calculation of the third virial coefficient for tem-
peratures larger than 7 K, where their contribution to the over-
all value is close to one thousandth of that of the Boltzmann
part. This is analogous to what has already been observed for
the second virial coefficient.

When the temperature is lower than 7 K, the various ex-
change terms have contributions of similar magnitude and op-
posite sign, but their overall contribution to C(T) is positive
at all the temperatures that have been investigated. The ex-
change contribution to C(7T') is comparable to the statistical
uncertainty of the calculation, which progressively increases
as the temperature is lowered.

In Fig. 1, it can be seen that our theoretical values of C(T)
are compatible with those of recent experiments®>>* down to
the temperature of 10 K. For lower temperatures, the experi-
mental results are somewhat larger than the calculated values,
even though agreement is found again for temperatures below
4 K, where C(T) passes through a maximum.
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TABLE 1. Values of the third virial coefficient of *He and its components at selected temperatures. The & values reflect only the standard uncertainty of the
Monte Carlo integration; see Ref. 24 for complete uncertainty analysis.

Temperature C CBoltzmann Codd Ceven Cp
(K) (cm® mol~?) (cm® mol~2) (cm® mol~2) (cm® mol~2) (cm® mol~2)

2.6 266 +21 245 +21 — 863 +3 —88.1 +0.5 972 +1
2.8 631 +21 607 +20 —504 +2 —49.0 +0.3 577.5 +0.7
3 848 +17 828 +17 —301.7 +1.4 —28.0 +0.2 349.67 +0.5
3.2 937 +14 923 +14 —184.9 +0.8 —16.29 +0.12 215.0 +0.3
3.5 1061 +10 1050 +10 —88.9 +0.5 —17.35 +0.06 106.89 +0.15
3.7 1070 +9 1062 +9 —55.5 +0.4 —4.50 +0.05 67.97 +0.12
4 1082 +8 1077 +8 —279 +0.2 —2.14 +0.02 35.14 +0.07
4.2 1074 +7 1070 +7 —17.79 +0.16 —1.352 +0.017 22.83 +0.05
4.5 1049 +6 1047 +6 —9.156 +0.09 —0.663 +0.008 12.18 +0.03
5 986 +5 985 +5 —3.28 +0.05 —0.227 +0.004 4.50 +0.02
6 861 +3 861 +3 —0.361 +0.014 —0.027 +0.001 0.682 +0.004
7 746 +2 746 +2 —0.029 +0.003 —0.004 +0.0003 0.115 +0.001
8.5 620.7 +1.6 620.7 +1.6

10 532.3 +0.8 532.3 +0.8

12 449.7 +0.8 449.7 +0.8

13.8033 401.0 +0.4 401.0 +0.4

15 375.1 +0.5 375.1 +0.5

17 342.2 +0.4 342.2 +0.4

18.689 321.2 +0.2 321.2 +0.2

20 307.7 +0.3 307.7 +0.3

24.5561 274.2 +0.2 274.2 +0.2

C. The third virial coefficient of *He value obtained with Boltzmann statistics, which is the oppo-

site trend to that observed for “He.
Similar behavior is observed in the case of the third virial The effects of the various contributions to the third virial

coefficient for *He, whose calculated values are reported in coefficient, in both the Bose—Einstein and Fermi—Dirac case,
Table II. Also in this case the exchange contributions are are summarized in Fig. 2 for the representative temperature of
of opposite signs, but their combined effect is to reduce the T = 3 K. First, we notice that the largest contribution to the

TABLE II. Values of the third virial coefficient of *He and its components at selected temperatures. Note that the odd contribution Cogq contributes with a
negative sign to the overall value of the third virial coefficient C [see Eq. (22)]. The = values reflect only the standard uncertainty of the Monte Carlo integration;
see Ref. 24 for complete uncertainty analysis.

Temperature C CBollzmann Codd Ceven CB
(K) (cm® mol~?) (cm® mol~2) (cm® mol~?) (cm® mol~2) (cm® mol~2)

2.6 1338 +29 1857 +28 — 1803 +4 —274.8 +0.8 —2047 +2
2.8 1477 +24 1817 +23 — 1164 +3 —167.9 +0.6 —1336.6 +1.3
3 1480 +17 1712 +17 —760.2 +2.2 —105.7 +0.4 —886.4 +0.9
32 1463 +17 1621 +17 —503.5 +1.7 —66.8 +0.3 —594.2 +0.6
3.5 1395 +13 1487 +13 —277.2 +1.2 —34.89 +0.15 —333.7 +0.4
3.7 1376 +11 1439 +11 —189.2 +0.8 —23.12 +0.11 —229.6 +0.3
4 1303 +9 1342 +9 —107.0 +0.5 —12.69 +0.07 —133.43 +0.16
4.2 1245 +9 1273 +9 —739 +0.5 —8.65 +0.05 —93.82 +0.13
4.5 1173 +7 1190 +7 —43.7 +0.3 —4.86 +0.03 —55.94 +0.09
5 1071 +6 1079 +6 —18.41 +0.16 —1.963 +0.016 —24.42 +0.05
6 895 +4 897 +4 —3.56 +0.06 —0.353 +0.005 —5.143 +0.013
7 772 +3 773 +3 —0.78 +0.02 —0.0784 +0.002 —1.196 +0.005
8.5 645 +2 645 +2 —0.059 +0.006 —0.0087 +0.0003 —0.155 +0.001

10 558.3 +1.6 558.3 +1.6

12 475.5 +1.1 475.5 +1.1

13.8033 426.2 +0.8 426.2 +0.8

15 402.0 +0.7 402.0 +0.7

17 369.6 +0.5 369.6 +0.5

18.689 347.8 +0.4 347.8 +0.4

20 333.4 +0.4 333.4 +0.4

24.5561 297.8 +0.3 297.8 +0.3
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FIG. 2. The magnitude and sign of the various contributions to C(7T') at
T =3K.

third virial coefficient comes from the Boltzmann term. The
even exchange term has only a minor contribution, whereas
the two remaining terms (Coqq and Cg) have almost equal
magnitudes and opposite signs. In the case of Bose—Einstein
statistics, the contribution to C from C,qq is negative, while
that from Cg is positive; the opposite situation is observed in
the case of Fermi—Dirac statistics. The overall sum of the ex-
change contributions is positive for “He and negative in the
case of *He.

The magnitude of each exchange contribution at a given
temperature is significantly greater for *He; this reflects the
larger de Broglie wavelength, which not only appears directly
in the exchange terms but also affects the range of space sam-
pled by the ring polymers.

In the case of He, the exchange contribution is signifi-
cantly larger than the uncertainty of our calculations, at least
at the lowest temperatures that we have investigated. Simi-
larly to the case of “He, quantum statistical effects on C(T)
contribute less than one part in a thousand for temperatures
higher than 7 K. Even in the case of 3He, we observe C(T')
pass through a maximum, at a temperature around 3 K, which
is 1 K lower than the temperature where C(7') reaches a max-
imum for the “He isotope.

There are only a few sources of experimental data
for C(T) for 3He. Keller’> measured five pressure-volume
isotherms at temperatures below 4 K; these were later re-
analyzed by Roberts et al.** and meaningful values of C
were obtained only for the two highest temperatures. A later
analysis of the Keller data was performed by Steur (unpub-
lished), whose equation for temperatures below 3.8 K was
reported by Fellmuth and Schuster.>* Some points were also
extracted from volumetric data by Karnatsevich et al.> Re-
cently, Gaiser and Fellmuth3®-37 extracted virial coefficients
from their measurements of two isotherms for 3He with
dielectric-constant gas thermometry.

Figure 3 compares our calculated values to the available
experimental data, where the error bars represent expanded
uncertainties with coverage factor k = 2. Error bars are not
drawn for our values above 5 K because they would be smaller
than the size of the symbol. As was the case in our previous
work,?! the uncertainty of our values of C(T) is determined
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FIG. 3. The third virial coefficient of 3He.

by the statistical uncertainty of our Monte Carlo calculations
(shown in Tables I-II) and by the uncertainty in the two- and
three-body potentials. At the temperatures considered here,
the statistical uncertainty is the dominant contribution to the
overall uncertainty. The full uncertainty analysis is presented
elsewhere.?*

For the experimental points, these expanded uncertain-
ties were taken as reported in the original sources; we note
that in some cases (notably Ref. 35) this appears to be merely
the scatter of a fit and therefore underestimates the total
uncertainty.

Our results are qualitatively similar to the rather scattered
experimental data. We are quantitatively consistent with the
values based on analysis of the data of Keller, but values from
the other experimental sources are more positive than our re-
sults. We note that a similar comparison for “He,>* where the
experimental data situation is much better, shows the C(T)
values of Ref. 35 for “He to deviate in a very similar way
not only from our results but from other experimental data we
consider to be reliable.

IV. CONCLUSIONS

We used path-integral methods to derive an expression
for the third virial coefficient of monatomic gases, including
the effect of quantum statistics. We applied this formalism to
the case of helium isotopes, using state-of-the-art two- and
three-body potentials.

We showed that exchange effects make no significant
contribution to the third virial coefficient above a tempera-
ture of approximately 7 K for both the fermionic and bosonic
isotope. This is the same behavior observed in the calculation
of the second virial coefficient. For temperatures lower than
7 K, the sign of the contribution to C(T") from exchange ef-
fects depends on the bosonic or fermionic nature of the atom.
In the case of “He, the exchange contribution to C(T) in-
creases its value compared to the value obtained with Boltz-
mann statistics, although in our simulations the total exchange
contribution has the same order of magnitude as the statistical
uncertainty of the PIMC integration. In the case of *He, the
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exchange contribution is negative, and its magnitude is much
larger than the statistical uncertainty.

The range of temperatures that we have investigated cov-
ers the low-temperature maximum of C(7") for both isotopes.
The third virial coefficient of “He reaches its maximum close
to 4 K, whereas in the case of 3He the maximum is attained at
a lower temperature.

For both helium isotopes, the uncertainty in our calcu-
lated third virial coefficients is much smaller than that of the
limited and sometimes inconsistent experimental data. For
“He, we obtain good agreement with the most recent exper-
imental results, except for some temperatures below 10 K. A
full comparison with available experimental data for “*He, in-
cluding the higher temperatures of importance for metrology,
will be presented elsewhere.?* For He, we are qualitatively
consistent with the sparse and scattered experimental values;
in this case especially our calculations provide results that
are much less uncertain than experiment. In both cases, at the
temperatures considered here, the uncertainty is dominated
by the statistical uncertainty of the Monte Carlo integration,
meaning that the uncertainty of C(T') could be reduced
somewhat with greater expenditure of computer resources.

We note two directions in which extension of the present
work could be fruitful. One is the calculation of higher-order
virial coefficients, which is a straightforward extension of the
method presented here. This would be much more computa-
tionally demanding, but the fourth virial coefficient D(T') may
be feasible, at least at higher temperatures where the number
of beads in the ring polymers would not be large. Second, the
method can be extended to calculate temperature derivatives
such as dC/dT; such derivatives are of interest in interpreting
acoustic measurements. Work on the evaluation of acoustic
virial coefficients is in progress.’*
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