Carbon nanotube metrology for science and manufacturing

John Hart

University of Michigan ajohnh@umich.edu www.mechanosynthesis.com

February 28, 2011

Configurations

Order = quality, purity, alignment

Applications

September 23rd and 24th 2010 Hosted by the National Institute of Standards and Technology Gaithersburg, MD 20899

Organizing Committee

Stephen Freiman

Jeffrey A. Fagan

Stephanie Hooker

Kalman B. Migler

Angela R. Hight Walker

Ming Zheng

http://www.nist.gov/mml/polymers/complex_fluids/4th-carbon-nanotube-workshop.cfm

practice guide

σ Ð σ C Ξ Ξ 0 \cup b <u>ــ</u> \sim Z

Measurement Issues in Single Wall Carbon Nanotubes

Stephen Freiman Stephanie Hooker Kalman Migler Sivaram Arepalli

NIST National Institute of

Standards and Technology U.S. Department of Commerce Special Publication 960-19 Special Publication 960-19

Measurement Issues in Single Wall Carbon Nanotubes

Edited by: Stephen Freiman Stephanie Hooker Kalman Migler

NIST Materials Science and Engineering Laboratory

and Sivaram Arepalli

NASA-JSC

March 2008

U.S. Department of Commerce Carlos M. Gutierrez, Secretary

National Institute of Standards and Technology Dr. James M. Turner, Acting Director and Deputy Director

RM 8281 is a set of dispersed nanotube populations with different average lengths; the set includes a long, medium and short fraction, as well as a 1 % (mass/volume) surfactant blank. A set contains a sealed, sterilized, ampule (~2.6 mL) of each component. These sets were produced using centrifugation based separation of a common parent dispersion produced from SRM 2483. Applications of these materials include fundamental research, instrument calibration, and EHS applications.

http://www.nist.gov/mml/polymers/complex_fluids/nanotube-reference-materials.cfm http://www.nist.gov/mml/polymers/complex_fluids/4th-carbon-nanotube-workshop.cfm

CNT material measurements

- Structure
 - Diameter and chirality
- TEM, AFM, Raman, Photoluminescence
 - Length <u>TEM, SEM</u>
 - Quality (= defect density) <u>Raman, TEM, TGA</u>
- Morphology

- Bundling
- Alignment
- Connectivity/ends

<u>SEM, TEM</u> <u>Optical polarization,</u> <u>X-ray scattering</u>

IR spectroscopy

- Chemistry
 - Purity; residual catalyst <u>TGA</u>
 - Functionalization
 - Interaction with surroundings (e.g., in composites)

Typical CNT film Raman spectrum

after Jorio et al., New Journ. Phys., 5:139.1–139.17, 2003

A. Swan, chapter 4 in "Measurement Issues in Single Wall Carbon Nanotubes", NIST 960-19

The Kataura plot: visibility vs. laser energy

A. Swan, chapter 4 in "Measurement Issues in Single Wall Carbon Nanotubes", NIST 960-19

A.J. Hart | 12

MWNT spectra – effect of collection time

→ Improvements in detectors, control of laser power

G/D ratio as a measure of quality

High-quality samples: G/D = 10-100

A.J. Hart | 14

Measuring purity by thermogravimetric analysis (TGA)

S. Arepalli, chapter 2 in "Measurement Issues in Single Wall Carbon Nanotubes", NIST 960-19

A.J. Hart | 15

Identification of defects in TEM

Figure 2 Atomic arrangement of the Stone–Wales (SW) model. a, The SW transformation leading to the 5-7-7-5 defect, generated by rotating a C–C bond in a hexagonal network. b, HR-TEM image obtained for the atomic arrangement of the SW model. c, Simulated HR-TEM image for the model shown in b.

Suenaga et al., Nature Nanotechnology, 2:358, 2007.

Growth/processing advances help metrology

- Precise control of catalyst size and composition
 - Growth of narrow chirality distributions
- CNT separations by diameter, chirality, and length
 - Ultracentrifugation
 - Gel electrophoresis
 - DNA wrapping/functionalization
- Directed placement of CNTs on substrates
 - Aligned (vertical, horizontal) growth
 - Dielectrophoresis
- Understanding of how dispersion methods modify CNT quality, bundling, length

Challenges in overcoming CNT growth limits

- How is carbon incorporated into growing CNTs?
- What determines CNT chirality?
 - When is it established?
 - What causes chirality changes?
- What limits CNT growth rate and length?
- How do interactions among CNTs affect collective growth and assembly?

→Can CNTs be grown to indefinite length?
→What are the limits of alignment and density?

CNT process metrology

Catalyst (Flightpath and detectors not shown) Size (and distribution) Nebulizer and injector Chemical state Carbon fuel Comb Catalyst feedstock Composition Gas Mixing zone sampling Gas chemistry Raman spot (into page) ≈1 m X-ray beam Hydrocarbons Hydrogen Oxygen and water Growth Temperatures and flows CNT C_nH_m How the CNTs evolve in situ 20 Catalyst Substrate/support

Watching SWNT nucleation in TEM

Hofmann, Sharma, et al. Nano Letters 7:602-608, 2007.

Watching SWNT nucleation in TEM

Figure 7. (a-c) ETEM image sequence of Ni-catalyzed CNT root growth recorded in 8×10^{-3} mbar C₂H₂ at 615 °C (extracted from Supporting Information video S2). The time of the respective stills is indicated. (d-f) Schematic ball-and-stick model of different SWNT growth stages.

Hofmann, Sharma, et al. Nano Letters 7:602-608, 2007.

Problem: CNT growth is a "black box"

Meshot, Plata, Tawfick, Zhang, Verploegen, Hart. *ACS Nano* 3(9):2477-2486, 2009. Hart and Slocum, *J. Phys. Chem. B* 110:8250-7, 2006. Hart, van Laake, Slocum, *Small* 3(5):772-777, 2007.

CNT forest: a model system to understand population dynamics during growth

- 1. Catalyst preparation and pre-treatment
 - deposit thin film
 - establish chemical state (e.g., $Fe_2O_3 \rightarrow Fe$)
 - establish particle size

2. Nucleation

- create cap and determine CNT structure
- maximize yield and uniformity

3. Growth

- control carbon "construction"
- maintain uniformity (diameter, density)

4. Termination

- maximum height = 1-20 mm ...why?

In situ X-ray scattering of CNT film growth

Catalyst particles form rapidly on the substrate

As-deposited

Measuring CNT diameter distribution by SAXS

Quantifying CNT alignment

Transmission SAXS

Hermans orientation parameter

 $H = \frac{1}{2} \left(3 \left\langle \cos^2 \phi \right\rangle - 1 \right)$ $\left\langle \cos^2 \phi \right\rangle = \frac{\int_{0}^{\pi/2} I(\phi) \sin \phi \cos^2 \phi d\phi}{\int_{0}^{\pi/2} I(\phi) \sin \phi d\phi}$

H = 1.0: perfect verticalH = 0.0: randomH = -0.5: horizontal

Time evolution of alignment

Collective growth model

Bedewy et al. J. Phys. Chem. C 113:20576-20582, 2009.

Metrology of the reactor environment

Plata, Meshot, et al. ACS Nano 4(10):7185-7192, 2010.

Discussion topics

- Accelerating rapid quality control of CNT production
 - Minimum suite of methods?
 - What are the key metrics of process health?
 - What are the needs/uses of in situ techniques?
 - Ways to close the loop between growth process and material properties
- Demands for advancement in tools/techniques
 - Statistical analysis of CNT populations
 - Characterization across entire SWNT/DWNT diameter range
 - Compact instruments and dedicated systems for in situ measurements
- Where do the "growth limits" matter?
- Characterization standards/protocols for EHS qualification

Mechanosynthesis Group

Meshot

Erik Polsen **Jinjing Li**

Davor Copic

Sei Jin Park

imec

Sameh Tawfick

Megan Michael De Volder **Roberts**

Dan McNerny

Ryan Oliver

Precursor chemistry: Desiree Plata (Mt. Holyoke) X-ray scattering at Cornell: Arthur Woll, Sol Gruner

Yongyi Zhang

Jong Ok

Aaron Schmidt

Juggernauth

Office of Naval Research

SAINT-GOBAIN

