Parameterization of an *in-silico* DNA pipeline with & laboratory-specific experimental data allows for efficient & validation of the DNA analysis process &

Boston University School of Medicine Program in Biomedical Forensic Sciences 72 E. Concord Street, Boston, MA 02118

Harish Swaminathan &

Forensic Science Error Management & International Forensics Symposium & NIST, Gaithersburg, MD & July 27, 2017 &

Quality of the electropherogram affects DNA mixture interpretation &

- Electropherogram (EPG): Allele signal + Background noise + Artifacts
- Interpretation can be challenging
- Mixtures with major and minor
- Low copy number samples typically exhibit signal loss
 - Sampling effects
 - Detection effects

Likelihood Ratio (LR) =
$$\frac{\Pr(\boldsymbol{E}|H_1)}{\Pr(\boldsymbol{E}|H_2)}$$

- By improving the information content of E, one can expect a more informative LR
 - For e.g. a large LR for a true contributor and a small LR for a non-contributor
- Focus of the talk is on development of a validation scheme to improve signal-to-noise resolution and to minimize detection error rates

Optimal AT is necessary to minimize detection errors &

- Analytical Threshold (AT): the minimum height requirement at and above which detected peaks can be reliably distinguished from background noise*
- Errors can occur while applying an AT
- False Positive or Type I error: Noise peaks are mislabeled as real peaks
- False Negative or Type II error: Real peaks are not labelled (dropout)
- Ideally, the chosen AT minimizes both types of errors
- > AT impacts downstream interpretation process, including the match statistic

*SWGDAM Interpretation Guidelines for Autosomal STR Typing by Forensic DNA Testing Laboratories – APPROVED 01/12/2017 &

Combined simulation + experimental approach &

- Time and cost are limiting factors in validation
 - For e.g. AT should be determined by large-scale in-house validation studies using negatives, dilution series, etc.
- In-silico execution of the forensic DNA analysis process allows for fast, easy, inexpensive generation of representative large-scale EPG data
- Quickly evaluate optimal laboratory conditions under various scenarios &
- Improve detection rates:
 - Determine optimal AT to minimize Type I and Type II error rates
- Improve signal-to-noise resolution:
 - Explore optimal values for parameters such as number of PCR cycles, time of injection, etc.

RESOLVEIt: Resolve Evidentiary Signal by Optimizing Laboratory's Validation &

	_		×
		Browse]
DNA conc (ng/uL):			
Prob (Observing noise):			
Volume (Amp):		Start	
Volume (CE):			
Final IT:)		
	Prob (Observing noise):	Prob (Observing noise):	Browse Browse Browse Browse DNA conc (ng/uL): Prob (Observing noise): Volume (Amp): Start

Step I: Parametrization

- Laboratory-specific data: Large number of single source samples of known genotypes at different targets and injection times
- > Calculate **CE sensitivity** α
 - Describes increase in signal wrt target concentration of DNA
- > Calculate **noise parameters mean** μ **and std dev** σ at each target concentration, assuming a lognormal distribution*

D8S1179 - 10s – heights of peaks at allele and stutter positions

D8S1179 - 10s – heights of peaks at noise positions

*Probabilistic characterisation of baseline noise in STR profiles, Monich et al, Forensic Science International Genetics 19 (2015) 107-122. &

UNIVERSIT

BOSIC

Height distribution 0.45 Allele signal 0.40 Background noise 0.35 0.30 Ledneucy 0.20 0.15 0.10 0.05 0.00 10 15 20 5 RFU

Sim 1 – 5s, 28 cycles & Allele signal: 1 copy, Background noise: 0.008ng &

Sim 2 – 10s, 28 cycles Allele signal: 1 copy, Background noise: 0.008ng

Sim 3 – 5s, 29 cycles Allele signal: 1 copy, Background noise: 0.008ng

BOSTON UNIVERSITY

Allele signal: 1 copy, Background noise: 0.008ng

10

RFU

15

20

UNIVERSITY

5

0.10

0.05

Sim 1 – 5s, 28 cycles

Sim 4 – 10s, 29 cycles & Allele signal: 1 copy, Background noise: 0.008ng &

Allele signal: 1 copy, Background noise: 0.008ng Height distribution 0.30 Allele signal Background noise 0.25 0.20 Anency 0.15 0.10 0.05 0.00 L 30 40 50 60 RFU **Error rates of AT** 1 0.8 0.6 0.4 0.2 0 10 20 30 40 50 0 RFU FPR — FNR — Accuracy

Sim 4 – 10s, 29 cycles

Sim 5 – 10s, 29 cycles & Allele signal: 1 copy, Background noise: 0.25ng &

FPR FNR Accuracy

RFU

BOSTON UNIVERSITY 1

0.8

0.6

0.4

0.2

0

0

Impact of Information Content on Low-Template Probabilistic Interpretation* &

*Production of High-Fidelity Electropherograms Results in Improved and Consistent DNA Interpretation: Standardizing the Forensic Validation Process, Kelsey C Peters, et al. Forensic Sciences International: Genetics, Submitted.

- Achieving signal_{1-copy}-to-noise resolution increases information content imported into LR calculation systems
- Choosing a condition-specific AT and laboratory parameters will maximize signal-to-noise resolution while simultaneously minimizing detection error rates
- A combined experimental & simulation-based approach makes the validation process fast and inexpensive

