NIST's RRBC Method to Reduce Registration Error

What is Registration?

Registration is a process to transform one coordinate frame to another coordinate frame.

Point-based, rigid-body transformation is used in this presentation.

This type of registration requires a set of 3 or more common or registration points to determine the transformation matrix (R, t).

O_X A

= Points measured in Frame 1

🗶 😑 Points transformed to Frame 1

After transforming to Frame 1, corresponding points are not mapped exactly onto each other.

For example, A and A' should be in the same location after transformation of A'.

The distances between any two points (e.g., AB & A'B') should be the same but are not.

Criteria for using RRBC Method

1. Need more positional accuracy

O_{K C'}

2.
$$\rho = \sigma_L / \sigma_{noise} > 2.5$$

where

0

- = sensor-robot differences* σ_L
- σ_{noise} = sensor noise from sensor spec

* See Franaszek, M. and Cheok, G. S., Improving Rigid-Body Registration Based on Points Affected by Bias and Noise," presented at the 8th Int. Precision Assembly Seminar, Chamonix, France, 2018 on how to determine this variable.

It is required when locations of objects measured in one coordinate frame are needed in

another frame. Examples: Robots using sensors to determine location of work objects or obstacles need to register the sensor to

Why is registration needed?

- the robot coordinate frame
- 2 Multiple robots carrying the same object need to register their respective coordinate frames Applications: 3.
 - Automated assembly and pick-and-place tasks
 - b. Humans/objects for collision avoidance and spatial awareness

What does the RRBC (restoration of rigid-body condition) method do?

O Point Q as measured in Frame 1 X Point Q after transformation from

Point Q is a target point (point

Frame 2 to Frame 1

of interest).

d, positional error:

- 1. Due to measurement error (e.g., robot, sensor, environment) of point location
- 2. Consists of measurement error and registration error
 - If there is no measurement error, then registration error is zero. b. If there is measurement error, then (R, t) will have errors which are propagated to ALL transformed points.

RRBC reduces *d*

Peg-in-Hole Experiments

Exp. 1

Exp. 2 & 3

Three experiments

- Robot in position control (no active compliance control)
- · Seven runs (repeats) in each experiment
- Each run = inserting a 12.7 mm peg into 80 holes
- Two peg types
- Metric
 - Pass = Peg fully inserted
 - Fail
 - · Peg not fully inserted or
 - Insertion force > 17 N

CONTACT:

Marek Franaszek, marek@nist.gov Gerry Cheok, cheok@nist.gov

	Peg type	Peg-Hole tolerance (in.)	Failed Insertions ^{1, 2} (%)			
			Baseline ³	Uncorrected	Corrected	Uncorrected Corrected
Experiment 1 (7 runs)	Ų	0.002	3.4	23.8	10.0	2.4
Experiment 2 (7 runs)		0.002	3.4	26.3	2.7	11.0
Experiment 3 (7 runs)		0.001	4.5	42.1	10.0	4.5

- 1. Values are averages for 7 runs in a given experiment.
- 2. Failed insertion = # failed insertions in a run/total # of holes.
- 3. Baseline = failures in this category are due solely to measurement noise.

Target Registration Error

Target registration error (TRE)

- metric for registration quality
- calculated for all 80 target hole locations in an experiment

• RMS_{τ} = root mean square of *TRE*

