Replicable Analysis and Blind Review

Charlie Hagedorn

October 10, 2014

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Who am I?...

 Senior grad student finishing up a short-range inverse square law test

Two topics

Replicable Analysis

- It's possible to go from raw data to final publication with a single computer command.
- That process can be shared along with the publication.
- Blind Review
 - It is possible for a measurement to remain blind until all concerned parties are convinced of correct execution.
 - Irreversible unblinding can be distributed.
 - Opinion: Correct execution of a measurement does not depend upon its final central value.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Replicable Analysis

- Elementary School: "Showing your work"
 - Provenance
 - Partial Credit
- Allows you to answer the question, "So, how exactly did you come up with that number?"
- Only become practical in last 10-20 years
 - ► Fast computers
 - Fast internet
 - Great software
- ► Many have written on reproducible research software:
 - The case for open computer programs, Ince, Hatton, and Graham-Cumming, etc...

(ロ) (型) (E) (E) (E) (O)

http://researchcompendia.org/ , etc....

Replicable Analysis

- From data to publication with a single command.
- I need to start an example program while I tell you about a small experiment.

(ロ)、

A small experiment

► Measure the density of Seattle City water.

Experimental method

- Weigh plastic mass M
- Alternate weighing to extract mass of displaced water W
 - calibration mass
 - cup with water $(W_0 + W)$
 - calibration mass
 - cup with water+plastic $(W_0 + M)$
 - calibration mass
 - •
- Using measured volume V of plastic mass M,

$$\rho = \frac{(W_0 + W) - ((W_0 + M) - M)}{V} = \frac{W}{V}$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Raw Data

・ロ> < 回> < 回> < 回> < 回> < 回

Linearity

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Bootstrapped uncertainties....

▲ロト ▲圖ト ▲画ト ▲画ト 三画 - のへで

Result.... before unblinding

Quantity	Magnitude
Auto-zeroing	0.1 g
Scale nonlinearity	0.1 g
Hysteresis	0.1 g
Buoyancy, plastic mass	110 mg
Dissolved solids/impurities	50 mg
Buoyancy shift, calibration mass	$2 imes 10^{-4}$
Plastic Cylinder Mass	(99.01 ± 0.17) g
Displaced Water Mass	(86.27 ± 0.36) g
Plastic Cylinder Diameter	(44.550 ± 0.056) mm
Plastic Cylinder Length	$(55.520 \pm 0.074) \; { m mm}$
Thermal volumetric expansion	$2 imes 10^{-3}$
Plastic Cylinder Volume	$(86544\pm451)~ m mm^3$
Water Density	$(996.9\pm 6.9)~{ m kg/m^3}$

Expected: 997 \pm 3 kg/m³ \rightarrow (\Rightarrow) ((\Rightarrow) (\Rightarrow) (\Rightarrow) ((\Rightarrow)) ((\Rightarrow) ((\Rightarrow)) ((

Freely available.

Software tools

- ► All tools are freely available, with auditable source code
- Git a source-code management system
- GNU Make manages the recipe
- GNU Octave does most of the computation
- Gnuplot nicer plots
- L_YX/L^AT_EX typesetting
- Assorted GNU/Linux standard tools (shell scripts, sed, etc.)

- How to include a number? TEX child documents.
 - $(996.9 \pm 6.9) \text{ kg/m}^3$
 - \$ (996.9 \pm 6.9) \$~kg/m\$^{3}\$

Unblinded!

Quantity	Magnitude
Auto-zeroing	0.1 g
Scale nonlinearity	0.1 g
Hysteresis	0.1 g
Buoyancy, plastic mass	110 mg
Dissolved solids/impurities	50 mg
Buoyancy shift, calibration mass	$2 imes 10^{-4}$
Plastic Cylinder Mass	(99.01 ± 0.17) g
Displaced Water Mass	(86.27 ± 0.36) g
Plastic Cylinder Diameter	(44.550 ± 0.056) mm
Plastic Cylinder Length	(55.520 ± 0.074) mm
Thermal volumetric expansion	$2 imes 10^{-3}$
Plastic Cylinder Volume	$(86544\pm451)~ m mm^3$
Water Density	$(996.9\pm 6.9)~{ m kg/m^3}$

Expected: $997 \pm 3 \text{ kg/m}^{3}$

Replicable Analysis

- Strengths:
 - Repeatable, clear analysis that's easy to audit.
 - You catch your own errors.
 - Encourages clarity
 - It's liberating. Your responsibility is quality, above all else.
- Weaknesses:
 - It is work, and it takes time.
 - Hardware execution cannot be documented with comparable precision.
 - Can get trapped in a framework as analysis evolves.
 - It's intimidating, as everyone will see your work.
- Replicable Analysis
 - It's possible to go from raw data to final publication with a single computer command.
 - That process can be shared along with the publication.

Blind Review

- How do I know when to stop looking for systematics in a null measurement?
- Reproducibility problem
 - ► G has one, but many others do/did too (Neutron lifetime, etc.)
 - Amgen (Begley and Ellis) found that 47/53 "landmark" cancer papers could not be reproduced

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

► Too few negative results in the literature.

Important objections to blind analyses

- "No experiment is ever truly blind."
 - If there's a gross error after the opening of a blind, you'll revisit the measurement before publication.
 - Agreed: Unblinding must be irreversibly public.
- "Just because a measurement is blind doesn't mean that it's correct."
 - Blindness alone is insufficient to guarantee anything.
 - ► Agreed: There is no substitute for quality work. Blinds are tools to temper our own flaws.
- "If a measurement is blind, it's harder to find problems."
 - Comparison with known results yields efficiency gains.
 - Agreed: Yep. Blind measurements force consideration of all possible errors.
 - Upside: You stop looking for systematics when you've considered everything you can think of.

Risks and Consequences in precision measurement

- Measurements that agree with the status quo are safe.
 - Higher precision \Rightarrow impress peers, get/keep a great job
- ▶ Measurements that disagree with the status quo are scary.
 - Small chance of major revolution and big payoff
 - Long term consequences of failure

Blind Review

Chalkboard time...

- Strengths
 - Allows blind peer review to the highest hierarchy of error-checking
 - Asynchronous irreversible public unblinding
 - Blind is immutable, but analysis may change; even a nefarious actor may be uncovered.

- Shared responsibility; (acknowledge accepting referee?)
- Requires no change to existing structures.
- Results accepted for quality, sensitivity and import, not statistical significance of the result.
- Weaknesses
 - Still depends upon a strong/unmeasureable blind.
 - Requires time and care.

Two topics

Replicable Analysis

- It's possible to go from raw data to final publication with a single computer command.
- That process can be shared along with the publication.
- Blind Review
 - It is possible for a measurement to remain blind until all concerned parties are convinced of correct execution.
 - Irreversible unblinding can be distributed.
 - Opinion: Correct execution of a measurement does not depend upon its final central value.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・