

SiC Power Device and Material Technology For High Power Electronics

High Megawatt Power Technology R&D Roadmap Workshop

April 8, 2008

David Grider

Cree, Inc. 4600 Silicon Drive Durham, NC 27703; USA

Tel:: 919-313-5345 Mobile: (919) 201-3590 Email: david grider@cree.com

Support Provided By DARPA - Sharon Beermann-Curtin
ARL - Skip Scozzie

AFRL - Jim Scofield

Cree Excellence in SiC Materials and WBG Device Manufacturing

- World's Largest Fabricator of GaN-on-SiC
 - Ship > 15 million devices per day
- World's Largest Supplier of SiC substrates
 - Supply 95% of the world's supply of single crystal SiC
- Vertical Integration
 - Crystal Growth => Device Fabrication => Package/Test

Dramatic Reduction in 4HN SiC Substrate Micropipe Densities

Monthly median micropipe density of 4H n-type wafers is < 0.8 cm⁻²

100-mm work supported by ARL MTO (W911NF-04-2-0021) and DARPA (N00014-02-C-0306)

100 mm 4HN-SiC Substrate Quality

Almost Double the Area of a 3-inch 4HN-SiC Wafer

Typical 100 mm 4HN-SiC Wafer MPD ~ 0.6 cm⁻²

SiC Substrate and Epi Defect Mapping For Enhanced SiC Device Yield

Candela Tool For Automated SiC Material Defect Mapping

 Measured Yield for 10.6 x 8.3 mm
 SiC JBS Diodes = 72%

 Predicted "Material" Yield for 8.1x8.1 mm SiC DMOSFETs = 77%

Cree WBG Technology Center of Excellence

- Opened August 2006 For Large-Scale Commercial Production
 And Advanced Research in WBG Power and RF Products
- Located in Research Triangle Park (RTP), North Carolina
- Worlds Largest Dedicated WBG Production Device Facility
 - 40,000 total sq. ft.
 - WBG Device Fabrication Capacity: 10K Wafer Starts per Year
 - SiC Power Device Characterization & Reliability Labs
 - SiC Power On-wafer Probe and Dice
 - SiC Power Applications Support

Cree's SiC Power Product Roadmap

- SiC Power Products
 - -ZERO RECOVERYTM Rectifiers -
 - SiC JBS Diodes
 - 300V 10A to 20A
 - 600 V 1A to 20A
 - 1200V 5A to 50A
 - 10kV/10A Product Development
 - SiC PiN Diodes
 - > 2400V Product Development
 - -SiC DMOSFETs
 - 1.2kV 10kV / 10A 67A
 - Product Development
 - -SiC IGBTs
 - ≥ 12kV Advanced Development

Growth in Commercial Production of SiC JBS Diodes at Cree

In Q2-FY08 (Ending 12/07) Cree Shipped 7.8 Mega-Amps of SiC JBS Diodes

- Over 2x Reduction in Price of SiC JBS Diode – 3 Factors
 - Higher Quality SiC Material
 - Larger Production Volumes
 - Increase SiC Wafer Size From 3 inch to 100 mm Diameter

Double Implanted MOSFET (DMOSFET)

Pursuing DMOSFET
As Power Switch
From 1.2kV Up To 10kV

DMOSFET Requirements

- Low Ron,sp
- High Switching Speed
- Manufacturable Design/Process
- Acceptable Reliability

Scaling of SiC DMOSFET Technology

SIC MOSFET Power Module for FCS Hybrid Electric Vehicle (HEV) Propulsion

All SiC 1.2kV / 1400A Power Module

Replace Si IGBT with SiC MOSFET => 40% Reduction in Loss

> Replace Si diode with SiC JBS Diodes => 20% Reduction in Loss

 $R_{\rm G} = 0.5 \text{ ohm, } f = 10 \text{ kHz}$

> 2x Reduction in **Converter Losses**

150 °C Operating **Temperature** (Si = 125 °C)

> 4x Reduction in **Cooling Requirements**

1.2kV/67A SiC DMOSFETs Fabricated on 3-Inch 4HN-SiC Wafer

High Temperature Device Characteristics For 1.2kV/10A SiC DMOSFETs

Typical Output Characteristics T_J = 150°C

Normalized On-Resistance vs. Temperature

1.2kV/67A SiC DMOSFET Switching Measurements at 150 °C

 $V_{DS} = 600 \text{ V}$

- 1.2kV/67A SiC DMOSFET Switching 67A at 150°C
 - $-E_{on} = 4.2 \text{ mJ}$
 - $-T_{rise} = 65 \text{ nsec}$
 - $-E_{off} = 3.1 \text{ mJ}$
 - $-T_{fall} = 68 \text{ nsec}$

Boost Converter Demonstration of 1.2kV/10A SiC DMOSFET High Temperature Operation

- Thermograph Demonstrates
- 1.2kV/10A SiC DMOSFET
 High Temperature Operation
 (> 183 °C) Under Hard
 Switching Conditions
- 1.2kV/10A SiC DMOSFET
 Junction Temperature
 > 183 °C for 12 hrs
 - No failures
 - Stable operation

Excellent Current Sharing of Parallel 1.2kV/10A DMOSFETs in Boost Converter

SiC 1.2 kV DMOSFETs Dramatically Improve Efficiency of 3-Phase 7kW Solar Inverter

- Dr. Bruno Burger at Fraunhofer-Institute for Solar Energy Systems – 9/07
- Replaced Si IGBTs with 1.2kV SiC DMOSFETs In Existing Solar Inverter Without Further Optimization
- Efficiency Increased by 2.36%
- Huge Impact on Market -Typically Struggle for Tenths of a Percent Improvement

DARPA HPE High Power SiC Module Development

Power Module for Solid State Power Substation (SSPS)

- CVN-78 Power Distribution Uses 2.75 MVA/60HZ
 Power Transformers Each Weighing Several Tons
- Develop SiC Power Module for Replacement SSPS
 2.75 MVA 3-Phase Converter 13.8kV AC to 465 AC
- Reduce System Weight by Factor of 10x
- Reduce System Size by Factor of 3x
- Demonstrate Comparable Efficiency ~ 97%

High Yield Fabrication of 10kV/10A SiC JBS Diodes

- High Yield Fabrication of 10kV/10A SiC JBS Diodes on 3-inch Wafers
 - Highest Yield = 78%
 - Green ⇒ Good Device on 3-inch Wafer

Reverse Leakage Current Histogram of 10kV/10A SiC JBS Diodes

- Low-1c SiC Wafers Dramatically Increase Yield of 10kV/10A SiC JBS Diodes
 - Median Reverse Leakage CurrentDecreased > 50X
 - Device Yield Increased > 3x

10kV/10A SiC DMOSFET

10kV/10A SiC DMOSFETs
52 Die Fabricated on
3-in 4HN-SiC Wafer

High Yield Fabrication of 10kV/10A SiC DMOSFETs

- High Yield Fabrication of 10kV/10A SiC DMOSFETs on 3-inch Wafers
 - Highest Yield = 55%
 - Green ⇒ Good Device on3-inch Wafer

10kV SiC DMOSFET/JBS Diode Clamped Inductive Switching

10 A Turn-On Gate Drive, $V_{GS} = 20 \text{ V}$

10 A Turn-Off
Gate Drive, V_{GS} = 20 V

 $E_{on} = 4.48 \text{ mJ}$

160 W/cm² Switching Losses Within Module Thermal Limits

 $E_{off} = 0.81 \text{ mJ}$

500V - 5kV / 20 KHz Boost Converter Using 10kV/10A SiC DMOSFETs and JBS Diodes

10kV/10A **SIC DMOSFET**

10kV/10A **SiC JBS Diode**

<u>Input</u> $I_{IN} = 1.35 A$ $P_{IN} = 679 \text{ W}$

Output $V_{IN} = 503 \text{ V}$ $V_{OUT} = 5 \text{ kV}$ $I_{OUT} = 0.12 A$ $P_{OUT} = 617 \text{ W}$ **Duty Cycle** 90% **Operating** at 20kHz

- 500V 5kV Boost Converter **Operating at 20kHz**
- Maintained Efficiency > 90% **Over Full Load Range**

DARPA HPE-II 10kV/50A SiC Half H-Bridge Module

- Each Switch Comprised of 5 Paralleled 10kV/10A SiC DMOSFETs
- Each Rectifier Comprised of 5 Paralleled 10kV/10A JBS Diodes
- 10kV/50A Half H-Bridge Module Only Half Filled
- 10kV Half H-Bridge Module Capable of 100A When Fully Populated

TDDB Measurements of SiC DMOSFET Oxide Reliability

Measurements carried out on smaller DMOSFET devices fabricated without termination.

Device size: 4.9x10⁻⁴ cm²

 DMOSFETs show acceptable oxide lifetime at an operating field of ~3 MV/cm, despite ion implantation and high temperature annealing

Stability of SiC 1200V/5A SiC DMOSFETs Under Constant Gate Stress at 175°C

5 A parts – Device size: 0.0753 cm²

- Packaged SiC DMOSFETs
 Stressed at 175°C for
 Constant V_g = 15 V With
 Source & Drain Grounded
- Devices Cooled to RT and remeasured
- SiC DMOSFET I-V Curve Remains Relatively Unchanged After 1050 hrs of Stress

10 kV / 5 A 4H-SiC DMOSFET High Temperature Gate Stressing

- Packaged DMOSFETs stressed with $V_g = 15V$ at 175°C, with source and drain grounded
- Devices cooled to RT and measured
- I-V curve remains unchanged after about 300 hrs of stress

What Is Next for SiC Power Devices?

- 10 kV ~ Upper Limit of SiC Unipolar Devices
 - DMOSFETs and Schottky diodes
- Higher Voltage ⇒ Bipolar Devices
 - Si IGBT Replace Si DMOSFET at > 1kV
- For SiC devices, this holds true for >10 kV
 - SiC breakdown field 10x that of silicon
- >10kV We Need SiC IGBT

12kV SiC n-IGBTs and SiC p-IGBTs

- 12kV/10A SiC n-IGBTs and SiC p-IGBTs Demonstrated
 - -SiC n-IGBTs Already Beyond R_{on,sp}/BV Limits for SiC DMOSFETs
 - -⇒ SiC IGBTs Superior to SiC DMOSFETs at BV > 10kV
 - -n-IGBT ~ n-type SiC drift layer p-IGBT ~ p-type SiC drift layer

SiC n-IGBTs Beyond R_{or}/BV Limits for SiC DMOSFETs

12kV SiC p-IGBTs

12 kV SiC p-IGBT Reverse Blocking Characteristics @ 25°C

- 12kV SiC p-IGBTs Demonstrated From 25°C to 200°C
 - 12kV SiC p-IGBT V_f and Current Maintained From 25°C to 200°C
 - -⇒ Reduced Conduction Losses from 25°C up to 200°C
- SiC IGBTs Offer Advantages over SiC DMOSFETs at Blocking Voltages > 10kV

Comparison 12kV SiC p-IGBTs and Si IGBTs

12kV SiC p-IGBT Switching Measurement

- SiC IGBTs Are Superior to Si IGBTs at Higher Voltages
 - Much Lower Forward Voltage (V_F) & Higher Current Rating for Given Blocking Voltage
 - Dramatic Increase in Switching Speed 12 kV SiC p-IGBT Turn-Off Time < 3 μs

Comparison of SiC n-IGBTs and Si IGBTs

- SiC IGBTs Are Superior to Si IGBTs at Higher Voltages
 - -12kV SiC n-IGBTs Have >3x Lower R_{on.sp} Than 6.5kV Si IGBTs
 - -SiC n-IGBTs Have Much Lower Forward Voltage (V_F) & Higher Current Than Si IGBTs at Same BV
 - -12kV SiC n-IGBTs Have 4x Faster Switching Speed and >4x Lower Switching Loss than 6.5kV Si IGBTs

12kV SiC n-IGBTs Boost Converter

SiC n-IGBT/JBS Diode

5kV/5KHz Boost Converter

• 12kV SiC n-IGBTs Used to Demonstrate 5kV/5KHz Boost Converter With 85% Efficiency

Its Time for SiC Power Technology!

"All I'm saying is <u>now</u> is the time to develop technology to deflect the asteroid."

Creating Technologies
That Create Solutions

Silicon Carbide
The Material Difference