IONTOF

Application of TOF-SIMS and LEIS for the Characterization of Ultra-thin Films

<u>T. Grehl</u>, D. Rading, H. Brongersma, E. Niehuis ION-TOF GmbH, Germany R. ter Veen , M. Fartmann, B. Hagenhoff TASCON GmbH, Germany

> ION-TOF GmbH Heisenbergstr. 15 D-48149 Münster / Germany www.iontof.com

TOF-SIMS Technique

Characteristics

- General
 - Detection of elements and molecules
 → detailed chemical information
 - Parallel detection of all masses

Thin film analysis

- O₂ and Cs sputter depth profiling in dual beam mode
- Depth resolution < 1 nm
- Detection limit 1E16 atoms/cm³

Problems in ultra-thin film analysis

- Quantification (complex systems)
- Need for reactive species implantation (transient effects in sputter yield and ionisation over first several nm)
- Information depth 1 3 monolayers

Detection limits at surface

High mass resolution and sensitivity

- Detection of all elements
- High mass resolution: $\Delta M/M > 12,000$
- High sensitivity
 - < 1 ppm of 1 ML
 - 5E7 to 1E9 atoms/cm²

Shallow implants

Routine analysis with TOF-SIMS

- high dynamic range (> 1E5)
- good detection limits
- high speed analysis
- reliable quantification
- < 0.5 % RSD reproducibility</p>
- high throughput, unattended operation

Very high dose \rightarrow dilute limit?

Shallow implants

Reproducibility

Example:

- 33 profiles of 1E16 at/cm² As implanted in Si
- one automated run

Shallow implants

Reproducibility

Example:

- 33 profiles of 1E16 at/cm² As implanted in Si
- one automated run

Features of Low Energy Ion Scattering (LEIS)

³He⁺, ⁴He⁺, Ne⁺, Ar⁺, Kr⁺

- Energy of projectiles: 1...8 keV
- Energy of scattered particles yields mass of target atom
- Intensity of scattered ions directly proportional to surface coverage
- Ultra-high surface sensitivity top atomic layer analysis
- Detection limits:
 Li O ≥ 1 % of 1 ML
 F Cl 1 % 0.05 % of 1 ML
 K U 500 ppm 10 ppm of 1 ML

Ultimate surface sensitivity

- In spinels of type AB₂O₄ the ions of A are in tetrahedral sites below the surface
- LEIS spectra of ZnO and ZnAl₂O₄ (spinel)

Zn not detected at the surface, but directly below!

Design of LEIS Instrument

- Dedicated high sensitivity LEIS analyzer
 - scattering angle 145 ±1 degrees
 - integration over all azimuths
 - parallel energy detection
- Limitations in conventional LEIS / ISS instruments
 - low sensitivity (destructive technique)
 - mass resolution not sufficient

Sputter depth profiling in dual beam mode

- Sputter depth profiling in dual beam mode
 - LEIS analysis while sputtering with low energy noble gas ions (Ar, Xe)
- Static depth profiling
 - scattering energy is specific for sample atom
 - additional energy loss on the way through the sample
 - → in-depth distribution visible in spectrum under appropriate surface conditions (similar to MEIS and RBS)

WN_xC_u Diffusion Barrier for Cu on Silicon

 WN_xC_y on silicon

ZrO₂ Atomic Layer Deposition on Silicon

- no matrix effect
- easy calibration / quantification for a two component system

Diffusion Study in Mo/Si layers

- 10 nm Mo/1.6 nm B₄C/5 nm Si
- Depth scale from variation of Si layer thickness

IONTOF

de Rooij-Lohmann *et. al.,* Appl. Phys. Letters **94** 063107 (2009)

Diffusion Study in Mo/Si layers

- = 10 nm Mo/1.6 nm $B_4C/5$ nm Si, annealing @ 500 °C
- Diffusion coefficient without B₄C: (8±2)·10⁻²⁰ m²/s with 1.6 nm B₄C: (4±1)·10⁻²¹ m²/s

Calipso

Principle of Atomic Layer Deposition

Atomic Layer Deposition used for

- diffusion barriers
- high-k dielectrics (gate stack, DRAM capacitors)
- new applications are being developed (not only semiconductor!)

- nucleation phase
- growth per cycle
- homogeneity, conformity of films, pinholes

TOF-SIMS Analysis of Ta (SiN) Film on Si

TOF-SIMS dual beam profiling: Bi analysis and 500 eV O2 sputtering at 45°

of ALD 10000 10 30 1000 Intensity (a. u.) 1000 50 100 -100 -10 - $2,0x10^{17} 4,0x10^{17} 6,0x10^{17} 8,0x10^{17} 1,0x10^{18} 1,2x10^{18} 1,4x10^{18}$ 0,0 0,0 2,0x10¹⁷ sputter PIDD (cm⁻²) sputter PIDD (cm⁻²)

LEIS Analysis of Ta (SiN) Film on Si

LEIS static analysis

He, 3 keV, 0°

IONTOF

LEIS Analysis of Ta (SiN) Film on Si

Separation of surface composition and depth information

subtraction of sub-monolayer surface peak after appropriate scaling

LEIS Analysis of Ta (SiN) Film on Si

In-depth signal shows

- nucleation behaviour
- layer closure
- possible intermixing with substrate

slide 20

LEIS Analysis of Ta (SiN) Film on Si

In-depth signal shows

- nucleation behaviour
- layer closure
- possible intermixing with substrate
- initial change in growth rate

slide 21

LEIS Analysis of Ta (SiN) Film on Si

LEIS depth profiling in static mode combined with sputtering

- Sample with 10 cycle
- Analysis with 3 keV He scattering after each 500 eV Ar sputter cycle

LEIS Analysis of Ta (SiN) Film on Si

LEIS depth profiling in static mode combined with sputtering

- Sample after 10 cycles
- Analysis with 3 keV He scattering after each 500 eV Ar sputter cycle

As Implant Profiling by TOF-SIMS

Implant technology trend

- significant reduction of implant energy
- peak concentrations close to the surface
- concentrations above dilute limit
- → quantification near the surface becomes very important

As Implant Profiling by TOF-SIMS

slide 25

IONTOF

As Implant Profiling by TOF-SIMS

Schematic

Ultra-shallow implant with thin oxide

Problems in SIMS quantification

- matrix transition at SiO₂/Si interface (influence of O concentration)
- strong changes of ion yields by Cs (surface transient, interface)
- changes of sputter rate in transient and at interface (surface shift)
- change of concentration of Si (reference for p-to-p normalization)

Transient width $z_{tr} \approx 2 x$ projected range

Fundamental Studies by LEIS - Cs sputter depth profiling

LEIS depth profiling in dual beam mode

- analysis: 3 keV He
- sputtering: 500 eV Cs, 60°

Cs sputtering of thin oxides

- strong variation of Cs concentration in the oxide layer (implantation of Cs)
- significant reduction of the Cs concentration at the interface
- interface width significantly different for As implant sample

As Implant Profiling by LEIS - sputter depth profiling

LEIS depth profiling in dual beam mode

- analysis: 3 keV He
- sputtering: 1 keV Ar, 60°
- sample: 2 keV As implant, 1E15 /cm²

Results:

- oxide thickness approx. 1.9 nm
- As concentration at the surface is very low
 → confirmed by LEIS spectra
- simplified quantification:
 As + Si = 100 %

As Implant Profiling by LEIS - sputter depth profiling

LEIS depth profiling in dual beam mode

- analysis: 3 keV He
- sputtering: 1 keV Ar, 60°
- sample: 2 keV As implant, 1E15 /cm²

Results:

- oxide thickness approx. 1.9 nm
- As concentration at the surface is very low
 → confirmed by LEIS spectra
- simplified quantification:
 As + Si = 100 %
- implant maximum approx. 1.3 nm deeper compared to SIMS

Conclusion

IONTOF

Complementarity of TOF-SIMS and LEIS

	LEIS	TOF-SIMS
Information Depth	1 monolayer	1 – 3 monolayers (even larger for organics)
Detection Limit	10 – 1,000 ppm	0.1 – 100 ppm
Mass Resolution	< 100	10,000
Type of Information	elemental	elemental, molecular
Quantification	simple (including major constituents)	difficult (matrix effects, trace constituents only)
Depth Profiling	static, noble gas sputtering	by sputtering with reactive ions

- > TOF-SIMS and LEIS are **complementary** techniques
- Thank you very much thank your attention! for your attention! > **Combination** of the two techniques is very powerful for the analysis of ultra-thin layers (< 5 nm)