RISKS EMBEDDED IN THE CURRENT QUALITY ASSURANCE SCHEME IN THE PV INDUSTRY

Ralph Gottschalg, Bengt Jäckel

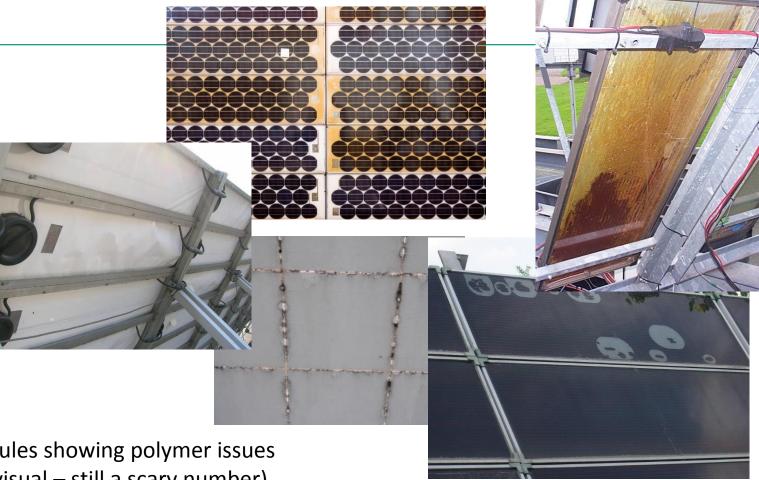
Fraunhofer Center for Silicon Photovoltaics CSP Halle (Saale), Germany

2019 NIST/UL Workshop on Photovoltaic Materials Durability; 13.12.2019

OUTLOOK

Motivation

- What do standards actually mean?
- Towards a quality control -> learning from PA problems
- Summary



MOTIVATION

REPORTS OF POLYMER FAILURES

- 'Snail Trails'
- Browning/ Yellowing
- Delamination
- Chalking
- Cracking
- There are reports of up to 30% of modules showing polymer issues (no key given, I would suspect mostly visual – still a scary number)

WHY DO WE SEE SO MANY POLYMER ISSUES?

- They are not semi-conductors, no active element, no p-n junction
- A fundamental misunderstanding of what standards mean
 - Type approval is seen as assurance that the 'the product is good'
 - No understanding that different mission profiles mean different failures
- Lack of life-time relevant testing (under development → Nancy Phillips, Michael Owen-Bellini talks)
- Lack of quality assurance.

WHAT DO STANDARDS ACTUALLY MEAN?

MEANING OF TYPE APPROVAL STANDARDS

- Before sounding overly negative: type approval (e.g. IEC 61215) has been hugely successful of eradicating major failure mechanisms
- It is a design verification test
- It verifies that the design has the potential to achieve a certain lifetime for a given mission profile (stress condition)

WHAT IS WRONG WITH USING TYPE APPROVAL FOR QA?

- It is not universal different locations show different behaviour
- It is not particularly harsh so it is NOT a worst case
- It does not even stress-test UV but that is a known failure mode
- It is NOT a lifetime test, it has NOTHING to say about a failure statistic or durability
 - It certainly does NOT warranty 100% failure-free
 - A 30% failure rate is deemed acceptable
- Certification tests for the possibility of 2/3 of PV modules surviving for 25 years in a moderate climate (as long as no unknown failure mechanisms come into play)

Maybe most problematic: The aim of the test is not to proof that a product is reliable???

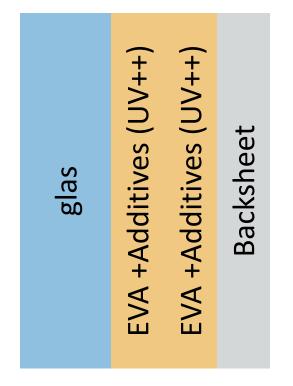
WHY ARE WE TESTING? THE ZYNIC'S POINT OF VIEW

Thesis

We do not test for reliability. We test to make products bankable and bring them to the market quickly.

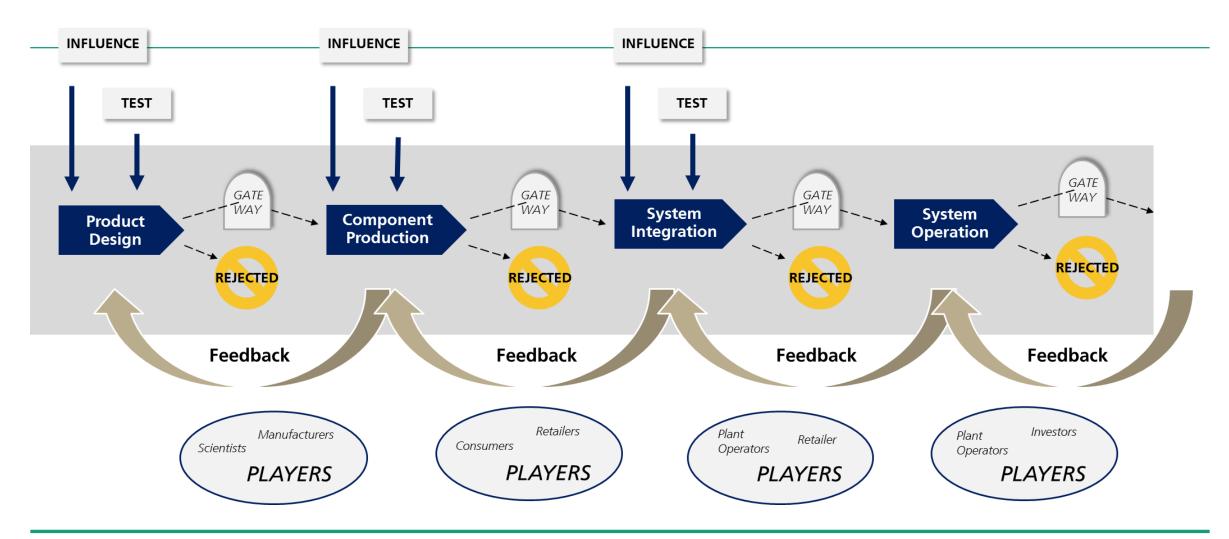
Justification

- Each time there is a massive outcry (on the committee) when we talk about extended test times
 - PV industry tests 1000h to proof 20 years lifetime (acceleration factor ~175)
 - Car industry accepts acceleration factors for paint systems of 10 (to avoid embarrassments)
- The cost of a test is more important than the robustness of the result. Examples:
 - PID testing
 - The AAA-disaster (lacking UV test)



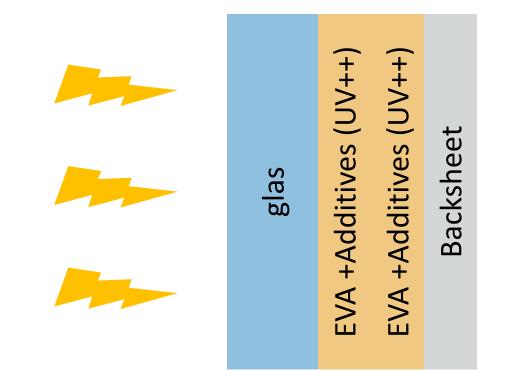
TOWARDS A QUALITY CONTROL -> LEARNING FROM PA PROBLEMS

WHAT IS THE PA DISASTER?


- There is a 100% failure rate of the back-sheet \rightarrow inside-out cracking \rightarrow outside-in cracking
- To everybodies 'surprise' UV eventually reaches the interface EVA-Backsheet and starts 'eating' the backsheet
- Failure of the design qualification (i.e. certification) \rightarrow
- Failure happens at different time scales for different BOMs (again not really a surprise)
- Lack of meaningful quality control \rightarrow

Leaving out active circuit

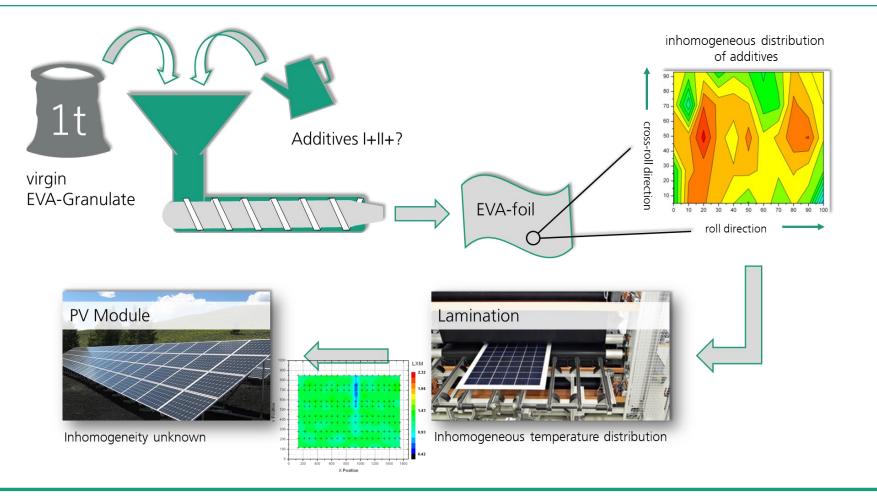
WHAT WOULD BE A NORMAL QUALITY CONTROL?



2019 NIST/UL Workshop on Photovoltaic Materials Durability; 13.12.2019

WHAT ROLE DID STANDARDS PLAY IN THE PA DISASTER?

- Modules passed certification, even multiple times
- It was not picked up because there is no UV-stress test
- UV absorption is sacrificial (additive works once)
- Eventually UV will reach inner BS
- There is no UV test because it costs €€€
- Impact in Germany 2-4 GWp of PV will not make it
- Module manufacturer saved <1M€ \rightarrow
- End customer has damages >1bn€ \rightarrow


POSSIBLE EXPLANATION OF WHY IS THERE A DIFFERENCE IN TIME-SCALE IN CRACKS SHOWING IN PA FOILS?

- Best case: module is being built with 'normal' configuration
- Not having UV absorber in the front EVA improves power (but increasing UV absorber in other sheet costs money)
- Not having UV absorber in the front foil made life cheaper \rightarrow why not leave it out altogether?
- Manufacturer saves, costumer pays

glas	E & X/A-A & didiviese \$ ((Y++)+)	Backsheet
------	-----------------------------------	-----------

WHY WE NEED QUALITY CONTROL

2019 NIST/UL Workshop on Photovoltaic Materials Durability; 13.12.2019

SUMMARY

SUMMARY

- Standards have been a most successful certification test
- Certification has nothing to do with reliability
- Root cause of certification not picking up PA problems was inappropriate cost savings
- Timing variability may be down to cost savings.
- If we want to increase reliability
- → the biggest bang for the buck would be verifying manufacturing consistency
- \rightarrow Combined cycles are really not that expensive in comparison to the damage they may cause.

