Optoacoustic Metrology for Copper Interconnects Using Impulsive Stimulated Thermal Scattering (ISTS)

M. Gostein, M. Joffe, A.A. Maznev, M. Banet, C.J.L. Moore Philips Analytical, 12 Michigan Drive, Natick, MA 01760, (508) 647-1100

Outline

- Introduction
- Principles
 - Overview of ISTS
 - Single-Layer Measurement
 - Bi-Layer Measurement
 - Measurement on Patterns
- Applications
- Future Directions

Introduction

2000 International Conference on Characterization and Metrology for ULSI Technology, June 2000

Copper Interconnect Film Thickness Metrology Issues

2000 International Conference on Characterization and Metrology for ULSI Technology, June 2000

Metrology Trends

Non-contact measurement

Measurement on patterned structures

On-product metrology

2000 International Conference on Characterization and Metrology for ULSI Technology, June 2000

Photoacoustic Methods <u>PULSE</u> ISTS

- Observe echoes \perp to film plane
- Time resolution needed: ~0.1 ps
 - Time-domain

- •Observe velocity // to film plane
- Time resolution needed: ~250 ps
 - Frequency-domain

• Detect *AReflectivity*

•Detect diffraction from wave

2000 International Conference on Characterization and Metrology for ULSI Technology, June 2000

Overview of ISTS

2000 International Conference on Characterization and Metrology for ULSI Technology, June 2000

Schematic of ISTS Technique

Robust optical arrangement

Rapid (~1 second / site)

2000 International Conference on Characterization and Metrology for ULSI Technology, June 2000

Wave Motion

2000 International Conference on Characterization and Metrology for ULSI Technology, June 2000

Oscillation Modes

Each oscillation mode has a different pattern of motion, resulting in a different wave velocity.

FAQ: Does number of oscillation modes depend on number of film layers?

Answer: No.

2000 International Conference on Characterization and Metrology for ULSI Technology, June 2000

Waveform

$$F_1 = v_1 / \lambda$$
$$F_2 = v_2 / \lambda$$

(Approximate description)

2000 International Conference on Characterization and Metrology for ULSI Technology, June 2000

2000 International Conference on Characterization and Metrology for ULSI Technology, June 2000

Film Properties Determining Observed Signal

Mechanical:

- Thickness
- Density
- Young's Modulus
- Poisson's Ratio

Optical:

Optical absorption coefficient

Thermal:

- Thermal expansion coefficient
- Thermal diffusivity

Single-Layer Measurement

2000 International Conference on Characterization and Metrology for ULSI Technology, June 2000

Single-Layer Measurement

(Approximate description)

2000 International Conference on Characterization and Metrology for ULSI Technology, June 2000

Frequency Versus Thickness

Example:

Cu / Ta / SiO₂ / Si stack.

• Thicker Cu = lower frequency.

• Measured frequency yields Cu thickness (if other layers are known)

Frequency precision is ~0.05
 MHz ⇒ Cu precision ~1-2 Å

2000 International Conference on Characterization and Metrology for ULSI Technology, June 2000

Frequency vs Thickness and Material

Example:

Metal / SiO₂ / Si stack.

• Denser metal = faster decrease in frequency per angstrom of metal.

2000 International Conference on Characterization and Metrology for ULSI Technology, June 2000

Calibration

2000 International Conference on Characterization and Metrology for ULSI Technology, June 2000

Bi-Layer Measurement

2000 International Conference on Characterization and Metrology for ULSI Technology, June 2000

Bi-Layer Measurement - General

(Approximate description)

2000 International Conference on Characterization and Metrology for ULSI Technology, June 2000

Example - Cu seed and Barrier

(Approximate description)

2000 International Conference on Characterization and Metrology for ULSI Technology, June 2000

Cu/Ta Bilayer Principle

Thermal decay time correlates to Ta fraction (~Ta/(Ta+Cu)).

Frequency correlates to ~total metal mass (~0.5*Cu + Ta)

2000 International Conference on Characterization and Metrology for ULSI Technology, June 2000

Cu/Ta Bilayer - Sample Results

Wafer	Cu			Ta		
Number	XRR (Å)	ISTS (Å)	Difference (Å)	XRR (Å)	ISTS (Å)	Difference (Å)
1	1290	1284	-6	121	124	3
2	1588	1627	39	121	114	-7
3	1892	1868	-24	120	131	11
4	1278	1284	6	176	184	8
5	1576	1618	42	174	173	-1
6	1280	1301	21	228	232	4
7	1594	1608	14	226	224	-2
8	1899	1820	-79	227	244	17
9	1291	1326	35	289	282	-7
10	1593	1560	-33	289	296	7
11	1295	1301	6	337	333	-4

The Cu and Ta were deposited on 4000 Å of SiO₂ atop Si wafers.

2000 International Conference on Characterization and Metrology for ULSI Technology, June 2000

Measurement on Patterns

Types of Measurement Sites

e.g. Blanket

e.g. Bond Pad

e.g. Sub-micron lines

(Probe averages over multiple lines)

Compare feature size to probe spot (~ $25 \times 90 \ \mu m$) and fringe spacing (5-15 μm)

2000 International Conference on Characterization and Metrology for ULSI Technology, June 2000

Calibration on Patterns

2000 International Conference on Characterization and Metrology for ULSI Technology, June 2000

Applications

2000 International Conference on Characterization and Metrology for ULSI Technology, June 2000

Contours and Uniformity of Cu Seed Layer

2000 International Conference on Characterization and Metrology for ULSI Technology, June 2000

Ridges at Edges of ECD Cu Films

Full-Wafer Thickness Maps for CMP Performance Analysis

ECD Copper wafer before CMP 225 points ECD Copper wafer after CMP

Conformal polishing - CMP did not correct the incoming topography

2000 International Conference on Characterization and Metrology for ULSI Technology, June 2000

Post-CMP Copper Dishing Measurement: Line Scan Across Bond Pad

Line scans indicate dishing in bond pads

Visible indication of dishing

2000 International Conference on Characterization and Metrology for ULSI Technology, June 2000

Post-CMP On-Product Non-Uniformity Measurements

Within-Wafer Non-Uniformity is Feature-Dependent!

100x100 µm Pads *Center-Slow Polishing*

Sub-micron Lines Center-Fast Polishing

Philips Analytical

2000 International Conference on Characterization and Metrology for ULSI Technology, June 2000

Future Directions

2000 International Conference on Characterization and Metrology for ULSI Technology, June 2000

Future Directions

 Continue to refine optical apparatus and signal processing

• Extract more information from the same collected signal

- -- additional frequencies, frequency dispersion, mode amplitudes, thermal response, etc.
- Improve physical model
 - -- combine optical, thermal, and acoustic behavior of thin film stacks and patterned structures

- Increase amount of film stack information determined
 - -- More layer thicknesses, film properties, etc.
- Improve selectivity
- Reduce calibration requirements

Acknowledgements

- SEMATECH
- NIST
- Novellus
- Applied Materials
- Philips Analytical Tempe applications lab