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CBSA - a prime user of Iris biometri

Why iris ? — Easily accepted by public, touch-less / non-intrusive

Today: for collaborative user-engaged identification of pre-approved
travellers in structured/overt environment (NEXUS)

Tomorrow: for fully-automated stand-off (on-the-fly) identification of
Good and Bad people as they cross the border ?(3 persons crossing / sec)

Recent RFI examination (Feb 2009-Aug 2009) exposed the problems
even with Today’s systems/data

With Tomorrow’s stand-off systems, these problems will be even more
significant!
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Problems exposed through RFI

(With over 20.000.000 CBSA iris data, several state-of-art products,
and over 6 months of coding and collecting/analyzing results)

1. There exist many (>5) matching algorithms now

- All produce single scores output only (no confidence)!

- Binomial nature of Imposter distributions

- Binomial nature of Genuine distribution ? - with no noise
2. High FNMR (False Rejects, False Non-Match Rate)
3. High FTA (Failure To Acquire)

4. Despite many vendor/publications claims, systems often have :
1) more than one match below the threshold,
2) two or more close matching scores

There is a need therefore to assign Confidence value to output!




Anonymized score distributions
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Anonymized stats

Using Multi-order score analysis [Gor09,10], Order 3 have shown that:

Many systems may improve FTA, FNMR, DET (match/non-match tradeoff)
at the cost of allowing more than one score below a threshold

3000 3000
2745
25596
2500 2500
2000 2000
g g
% 1500 E 1500
2 E
1000 1000
500 s00 =2
147
49 0
0 : Rl ! : g 0 : :
0 1 2 3 4 D 1 2
f Scores Ahove Threshold # of Scores Above Thresheld

G3-500 Scores < Threshold1
2000 3000
1779 2766
1800 —
1600 2500
1400
2000
2 1200 Py
2 2
Z 1000 Z 1500
= 800 =
1000
B00
400 239 s00
200 ﬂ 191
23 & 1 2 0 E 1 1 1 0
] T T T T T T d o T T T T T T
0 1 2 3 4 5 B i} 1 2 3 4 5 g
# of Scores Below Threshold # of Scores Below Thresheld

(With 500 enrolled travelers, each having 6 passage images)



Trade-off Curves with FCR

DEFINITION [Gor10]: Failure of Confidence Rate (FCR) —
the rate of incidences in which there are more than one
match below threshold

0.00001

FMNMRE

FMR



Goal: assign confidences to decisic

Given: Person X arrives at the kiosk and produces n scores:
n-tuple S = (s1, s2, .. ., sn), si = HD(X, xi)

Find: Sequence of calibrated confidence scores:
the probability vector C = (c1,c2,...,cn), ci=P({X=xi}|9)

How: as in probabilistic weather forecasting [DeGroot1983]
1. Make use of (assume) binomial nature of Genuine and Imposter
score distributions [Daugman1993,2004]:

* G ~Binom(m’, u’), with u’=0.11, d’=0.065 (m’'=~115).
= | ~Binom(m, u), with u=0.5, m=249 (d=~0.03)
= P(HD=k/m) = (k,m) u”k (1-u)*(m-k)
2. Bayes’s Theorem forci=P({X =xi}| S) =
=P{X=xi} \S) =P{X=xi}AS)/P(S) = ...
3. P{X=xi}A\S) = ...



Simple example to illustrate

Enrolled: three individuals {x1, x2, x3}, six bits in iris string.

= Thus,n=3, m=m’=6.

» G =Binom(m’, u’), | = Binom(m, u) withu’=1/3andu=1/2.

= x1=[0,1,0,1,0,1],x2=[1,0,0,1,1,1],x8=[1,0,1,1,0, 1]
New person: X=[0,1,0, 1, 0, 1].

= Matching scores S = (0, 0.5, 0.5). Decision scores: (1, 0, 0).
Using the theorem (for =0 and P1=P2=P3), we obtain:

= confidence scores C = (0.8, 0.1, 0.1).

How to apply to real system?
» Vendor should provide: m’, u’m, u

» User knows: Pi, q (a-priory probabilities of each person / imposter)



Applied to real system

Proposed probabilistic score calibration can be added to any
system at little computation cost as post-processing filter:

» Provides more meaningful output - for risk mitigating
procedures

» Improves overall recognition
0.3

> Introdyices Order-3 biometric systems

EER = 540% > 2.84%
DETAUC (area under the DET) > 0.17
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u =0.11,d =0.065



Main theorem and proof:

Theorem 3.1 Let G be the set of genuine matching scores, and I be the set of impostor matching scores.
Suppose G ~ Binom(m,u) and I ~ Binom(m,u). Let p; = P(X = z;) and g = 1 — Z:;lpf. Let

S = (s1.52....,8,) be the n-tuple of matching scores produced by person X. Then for each 1 < i < n, we
have .
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To calculate r; = P({X = z;} A S), we multiply the probabilities of the following n + 1 independent
events: it 1s x; who comes to the kiosk; the genuine matching score HD(X, #;) is s;; and the impostor
matching score HD(X,z;) 18 s; for all 1 < 7 <n with j # 1.

Since GG ~ Binom(m,u), there are m degrees-of-freedom, and the probability that any of these m bits
differ 1s «. So it HD(X,z;) = s;, then ms; of the m bits differ. We derive the analogous result for the
impostor distribution I ~ Binom(m.u), for all 1 < 7 < n with j % i. Therefore, we have
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Details of our simple example

Because m=m’ =6, and u = 1-u=1/2, 2*u’=1-u’=2/3 many things
get cancelled out ...

Zi (Si) = (6, 6*Si) / (6, 6*Si) * ((1/3 726 *1/2/8) / (1/2 A6 * 2/3 A
6))ASi = (1/2/6)ASi = (1/2)N6*Si)

For S2 = S3 = 0.5, we have: Z2 = Z3 = (1/2)"3 = 1/8.
ForS1=0,71 =1

Then Ci=(Zi)/(SUMZi)=Zi/ (1/8 +1/8 + 1
and C2 = 4/5* (1/8) = 1/10, C1 =8/10



Multi-order performance evaluation
Order 0: Order 1:
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Multi-order score analysis

Order 1 (Traditional):

» Examine single-scores to report trade-off (FMR/FNMR) curves
Order 2:

» Examine all scores to report the best (smallest) score
Order 3:

» Examine all scores relationship to report Confidences

Five-score example: { 0.51, 0.32, 0.47, 0.34, 0.31 }. T =0.33
> Order1 -2 0.32
» Order 2 - 0.31

» But in reality it could have been 0.34 ! (if there was noise)
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