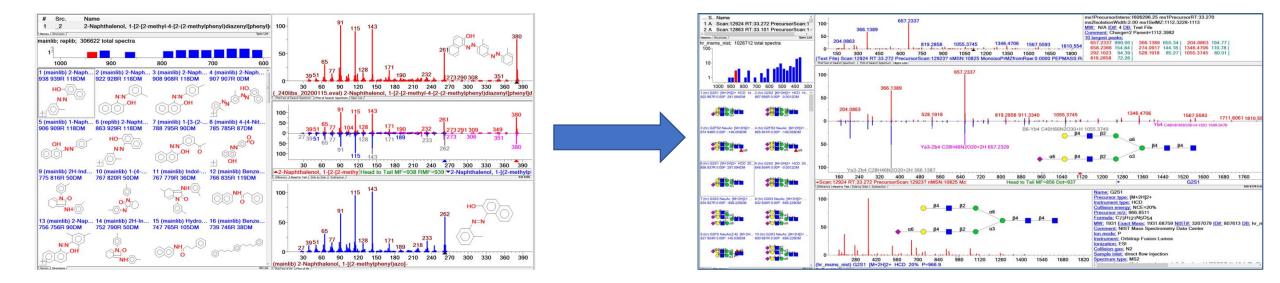
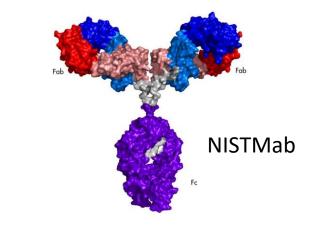

Variation of Site-Specific Glycosylation Profiles for Influenza Glycoproteins from Different Sources

Zachary Goecker, Meghan Burke, Concepcion Remoroza, Yi Liu, Yuri Mirokhin, Sergey Sheetlin, Dmitrii Tchekhovskoi, Xiaoyu Yang, and Stephen Stein

BMD Staff Seminar

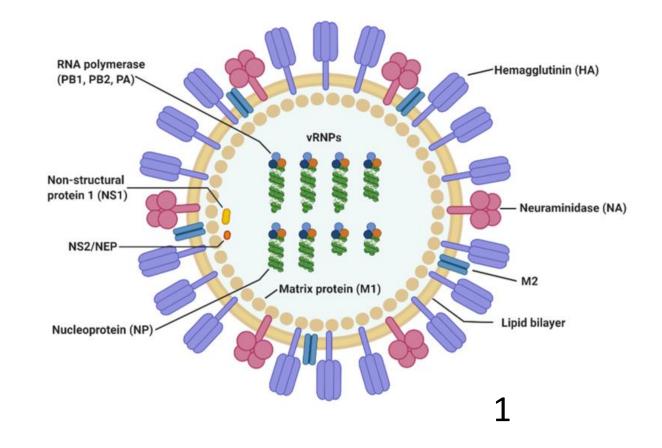
May 17, 2022





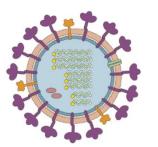
Why Glycopeptides at NIST?

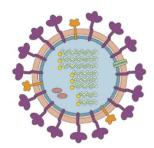
- Tandem libraries are growing.
- Glycopeptides prominent in biologics.
- Measurement of glycosylation is difficult and hard to reproduce.
- Variation in glycosylation pattern unknown. How reproducible?



Influenza Virus

- 10 proteins
- Hemagglutinin (HA) and neuraminidase (NA) transmembrane proteins.
- Diversity of strains arise through two mechanisms: point mutations in the viral genome or reassortment between two co-circulating strains.

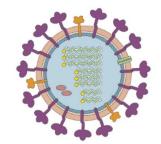


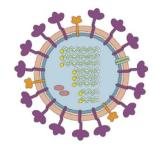


Influenza Vaccine

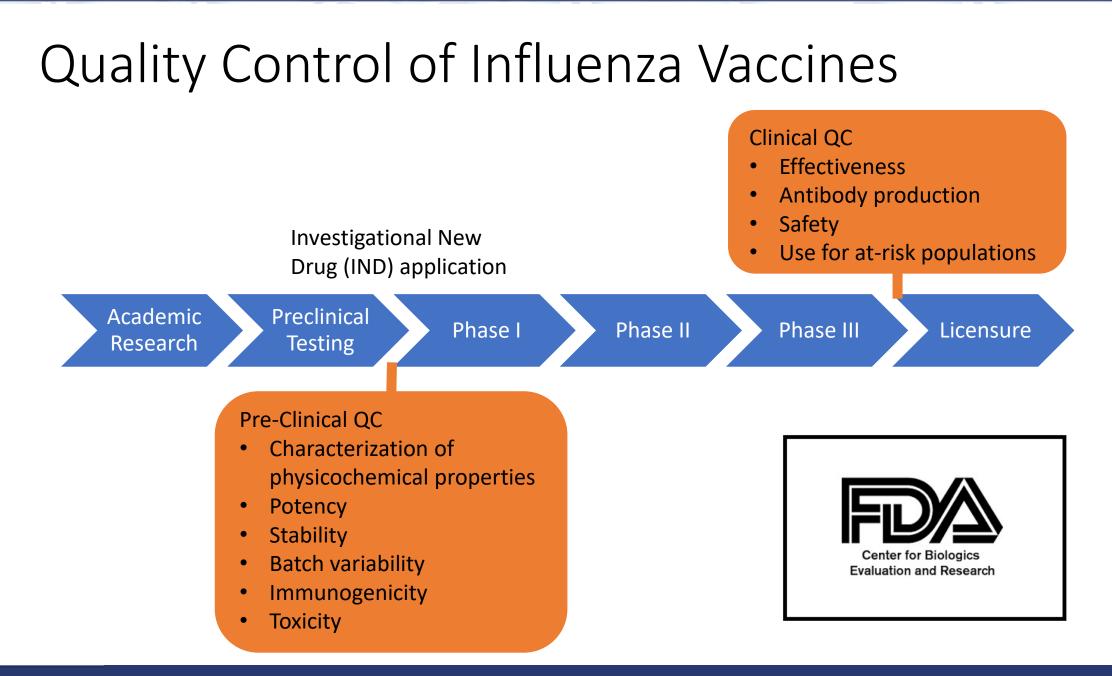
- Quadrivalent: 4 strains
 - 2 Influenza A strains
 - 2 Influenza B strains
- Embryonated chicken eggs
- Inactivated by rupturing membrane
- Adjuvants

Influenza A (H3N2)

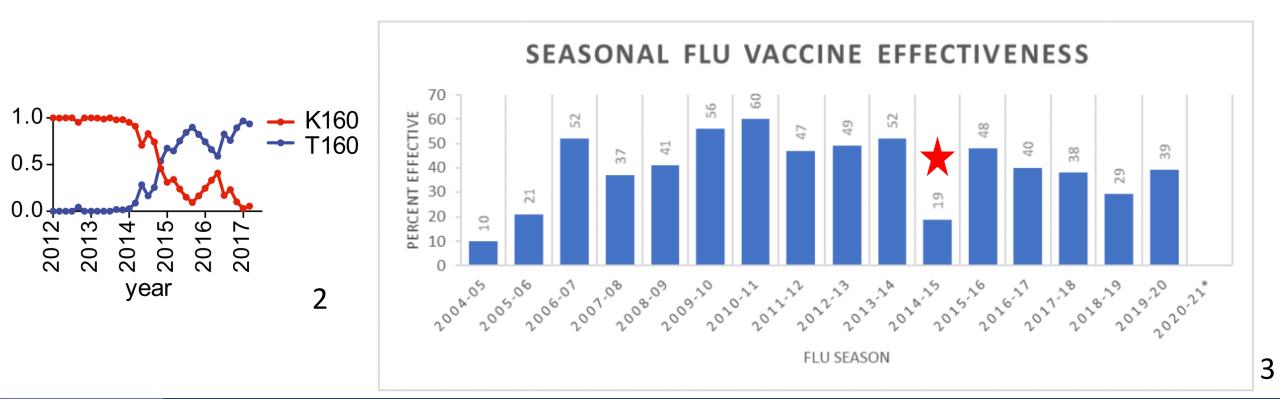




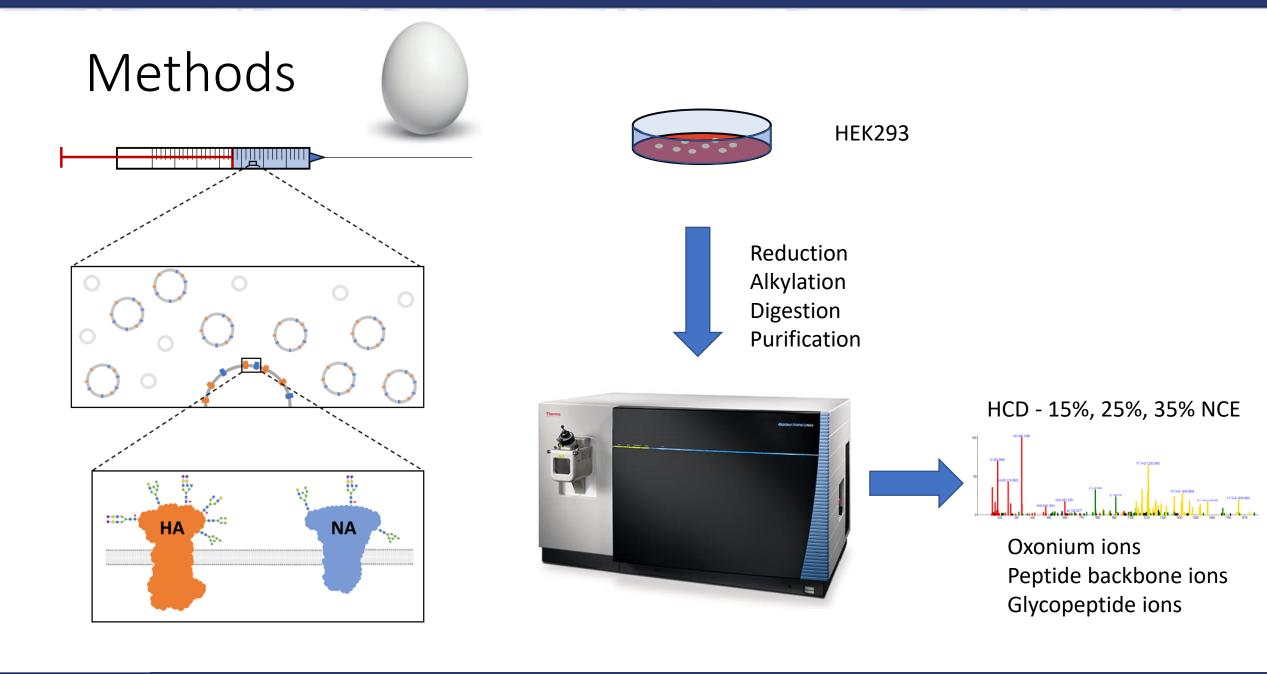
Influenza A (H1N1)


Influenza B (Victoria)

Influenza B (Yamagata)



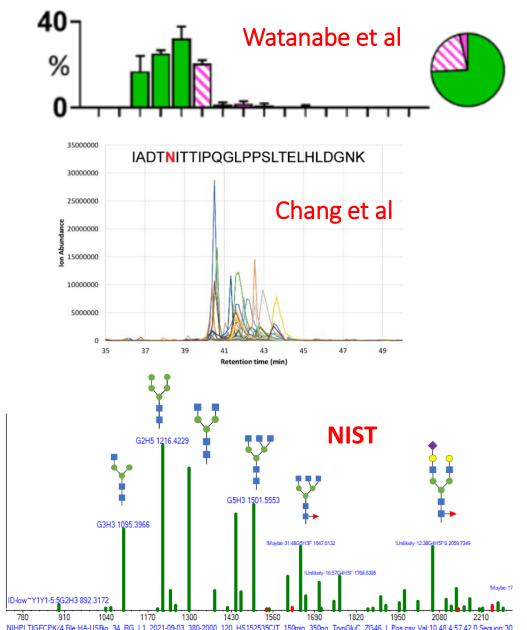
NIST


Material Measurement Laboratory

Why Glycosylation Matters For Vaccines

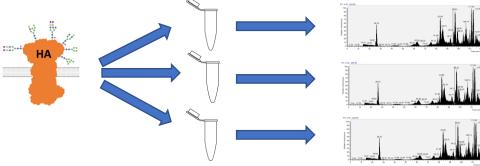
...THLNF<mark>K</mark>YPAL... ...THLNF<mark>T</mark>YPAL... Sequon motif NXT/S X≠P

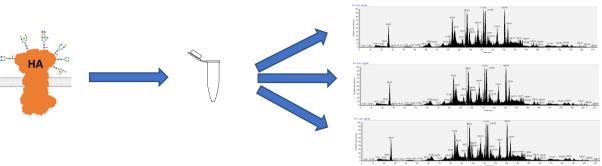
NIST


NIST

Methods – Data Processing

- 1. Glycopeptide search using Byonic software
- Tandem library creation and spectral validation via create_glycopeptide_lib.exe and MS_Piano.exe.
- 3. GADS creation using makegads.exe

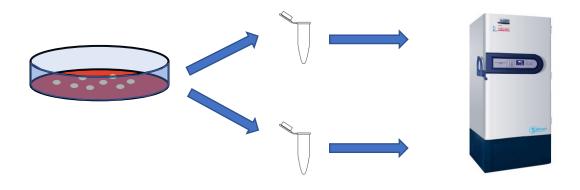

<u>G</u>lycopeptide <u>A</u>bundance <u>D</u>istribution <u>Spectrum</u>


Variation in glycosylation profile - Replicate

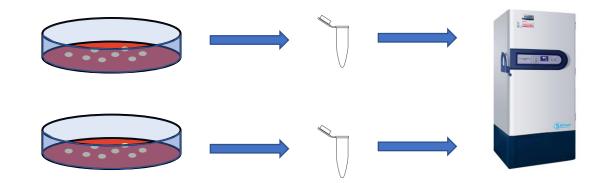
Biological Replicate

Protein	Sequon	Average match score
Hemagglutinin	39	980 ± 2
	170	913 ± 60
	181	968 ± 16
	302	884 ± 92
	500	884 ± 27
Neuraminidase	68	973 ± 6
	126	945 ± 21
	215	959 ± 11
Total		939 ± 62

Technical Replicate



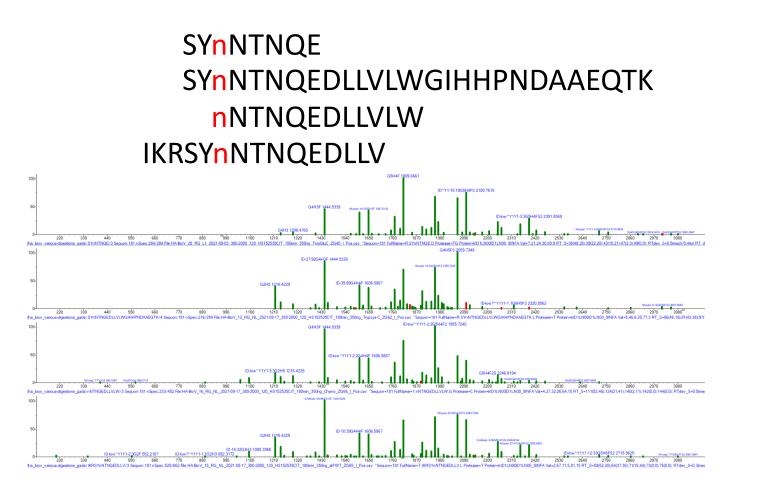
Protein	Sequon	Average match score
Hemagglutinin	39	963
	170	967
	181	939 ± 40
	302	946 ± 44
	500	926 ± 27
	68	939 ± 14
Neuraminidase	126	961 ± 24
	215	927 ± 68
Total		946 ± 38


Variation in glycosylation profile - Lot

Batch Variation

Protein	Sequon	Average match score
Hemagglutinin	39	889 ± 75
	170	843 ± 38
	181	942 ± 19
	302	909 ± 45
	500	872 ± 69
Total		897 ± 57

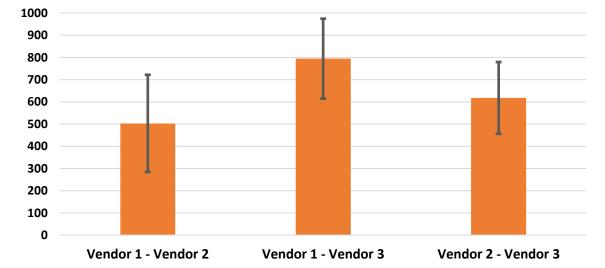
Lot Variation


Protein	Sequon	Average match score
	68	903 ± 39
Neuraminidase	126	852 ± 72
	215	910 ± 48
Total		891 ± 57

Variation in glycosylation profile - Proteases

- Trypsin + Lys-C
- Trypsin + Glu-C
- Trypsin + Chymotrypsin
- Chymotrypsin + Glu-C
- Chymotrypsin
- Alphalytic protease

Average match: 819 ± 106

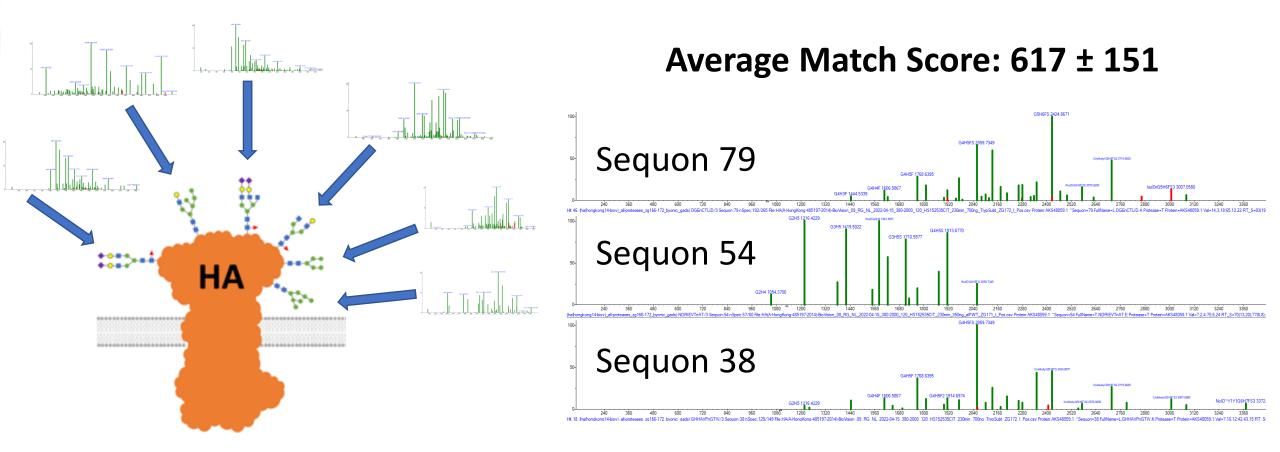


Variation in glycosylation profile - Vendor

<u>Vendors</u>

- BioVision
- Sino Biological
- US Biological

Cumulative Glycopeptide Match Scores

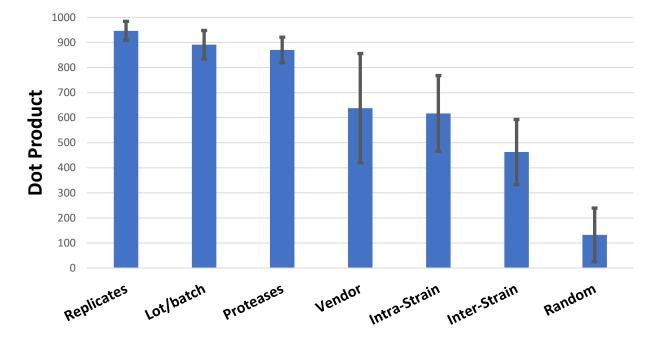

<u>Strains</u>

- HA (A/Hong Kong/483/1997) H5N1
- NA (A/Thailand/1(KAN-1)/2004) H5N1

Average match score: 638 ± 218

Variation in glycosylation profile – Same Strain

Variation in glycosylation profile – Different Strains


Protein	Strain	Subtype	Number of sequons	Protein mass* (kDa)
HA	A/California/04/2009	H1N1	8	63
NA	A/California/04/2009	H1N1	8	52
HA	A/Hong Kong/483/1997	H5N1	8	64
HA	A/Hong Kong/485197/2014	H3N2	13	64
HA	A/Japan/305/1957	H2N2	8	63
HA	A/New Caledonia/20/1999	H1N1	10	63
NA	A/Arizona/13/2008	H1N1	9	52
NA	A/Netherlands/219/2003	H7N7	11	52
NA	A/Thailand/1(KAN-1)/2004	H5N1	3	49
				*Unglycosylated

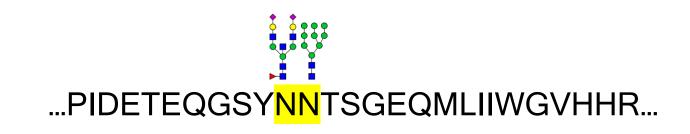
Average Match Score: 463 ± 130

B/Victoria/705/2018 B/Phuket/3073/2013

A/Philippines/2/1982(H3N2) A/Cambodia/e0826360/2020(H3N2) A/Switzerland/NIB88/2013(H3N2) A/HongKong/485197/2014(H3N2) A/NewCaledonia/20/1999(H1N1) A/Victoria/2570/2019(H1N1) A/California/04/2009(H1N1) A/HongKong/483/1997(H5N1) A/Japan/305-/1957(H2N2)

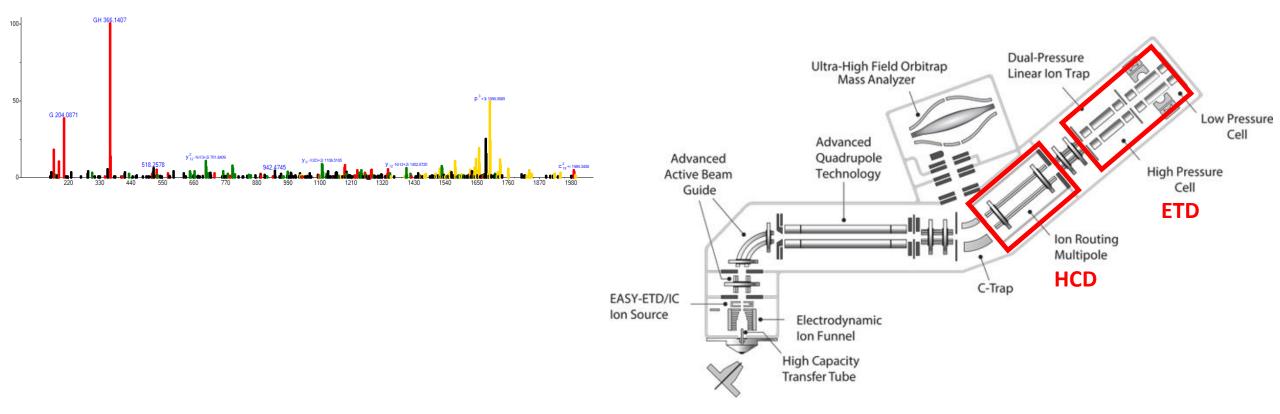
Summary of Variation

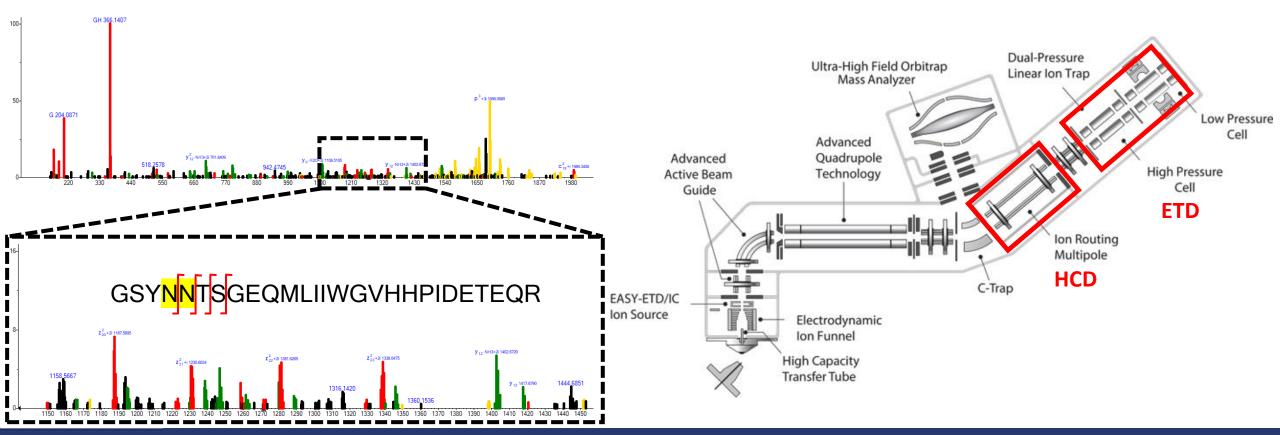
Sources of Variation in GADS


- Glycosylation of replicates is most similar and between strains is least similar.
- More deviation associated with lower match scores.
- "Random" is measured between different proteins from different vendors. (A1AG vs HA)

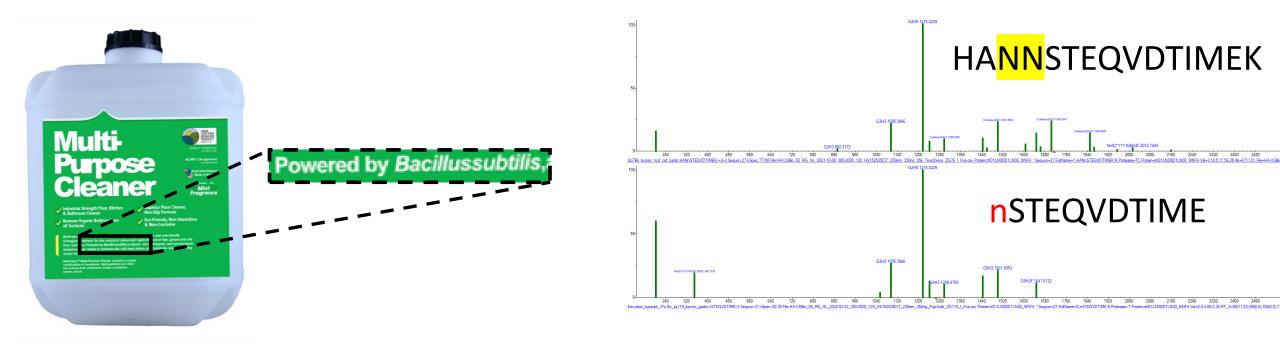
Isolation of Adjacent Sequons

- Site-specific glycosylation methods require a single sequon per peptide. Different proteases are used to maximize isolation.
- Influenza, HIV, Ebola, Herpesvirus, and MERS have adjacent sequons


NXT/S X≠P NNSS, NNTT, NNST, NNTS


Isolation of Adjacent Sequons - EThcD

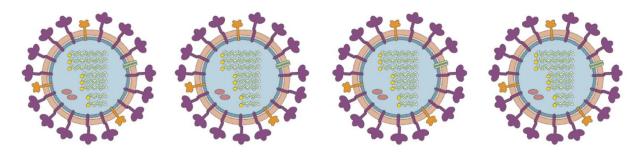
- ETD (Electron Transfer Dissociation)
- HCD (High-Energy Collisional Dissociation)

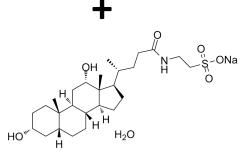

Isolation of Adjacent Sequons - EThcD

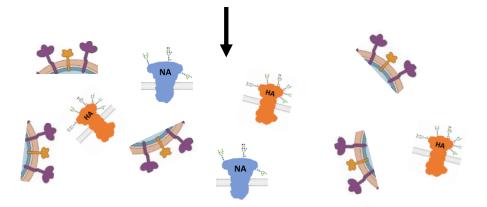
- ETD (Electron Transfer Dissociation)
- HCD (High-Energy Collisional Dissociation)

Isolation of Adjacent Sequons - Subtilisin

• Bacillus subtilis – extracellular serine endopeptidases

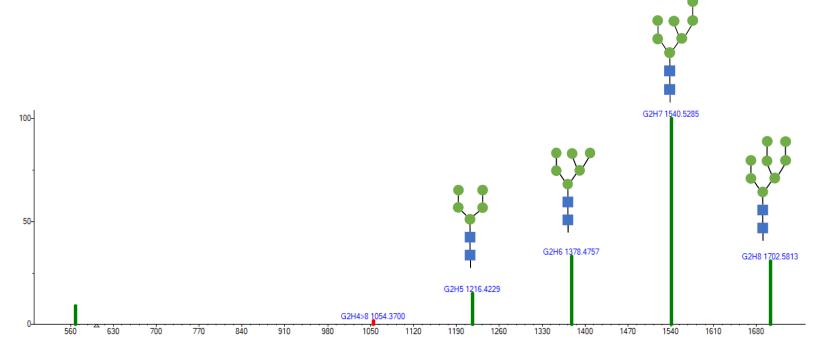



DQICIGYHAn ???



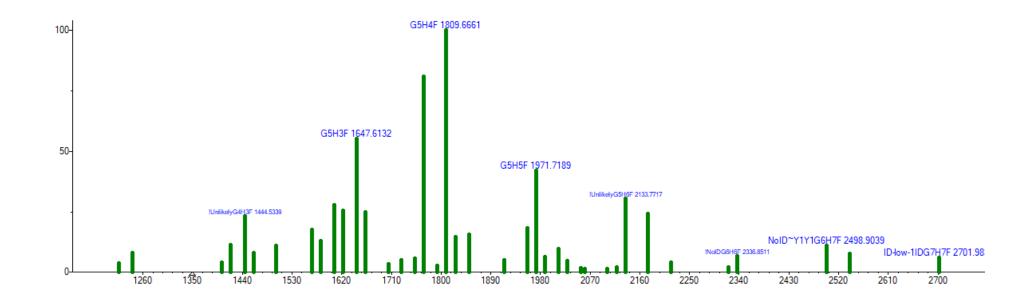
Next Steps: Influenza Vaccines

- Afluria Quadrivalent
 - Split virion
 - 60 mg HA per dose (15 mg per strain)
 - Thimerosal
 - Mercury
 - Sodium Chloride
 - Sodium Phosphate
 - Potassium Phosphate
 - Potassium Chloride
 - Calcium Chloride
 - Sodium Taurodeoxycholate
 - Ovalbumin
 - Sucrose.....
- 67 sequons within all HA and NA proteins


Influenza Vaccines – Challenges and Solutions

MKAIIVLLMVVTSNADRICTGITSSNSPHVVKTATQGEVNVTGVIPLTT	VWCASGRSKVIKGSLPLIGEADCLHEKYGGINKSKPYYTGEHAKAIGNCPIWVKT-PL
MKAIIVLLMVVTSNADRICTGITSSNSPHVVKTATQGEVNVTGVIPLTT	VWCASGRSKVIKGSLPLIGEADCLHEEYGGINKSKPYYTGKHAKAIGNCPIWVKT-PL
MKAILVVMLYTFTTANADTLCIGYHANNSTDTVDTVLEKNVT/THSVNLLE	AFTMERDAGSGIIISDTPVHDCNTTCQTPEGAINTSLPF-QNVHPITIGKCPKYVKSTKL
MKTIIALSYILCLVFAQKIPGNDNSTATLCLGHHAVPNGTIVKTITNDRIEVTNATELVQ	YFKIR-SGKSSIMRSDAPIGKCKSECITFNGSIPNDKPF-QNVNRITYGACPRYVKQSTL
**:*:.: .: ** * : . *.* * : . *.* *	:*::*: *: *: *: *: *: *: *: ** **
TPTKSHFANLKGTETRGKLCPKCLNCTDLDVALSRPKCTGKIPSARVSILH-EVRPVTSG	KLANGTKYRPPAKLLKERGFFGAIAGFLEGGWEGMIAGWHGYTSHGAHGVAVAADLKSTQ
TPTKSYFANLKGTRTRGKLCPDCLNCTDLDVALGRPMCVGTTPSAKASILH-EVRPVTSG	KLANGTKYRPPAKLLKERGFFGAIAGFLEGGWEGMIAGWHGYTSHGAHGVAVAADLKSTQ
DKHNGKLCKLRGVAPLHLGKCNIAGWILGNPECESLSTARSWSYIVETSNSDNGT	RLATGLRNVPSIQSRGLFGAIAGFIEGGWTGMVDGWYGYHHQNEQGSGYAADLKSTQ
NSSIGEICDSPH-QILDGGNCTLIDALLGDPQCDGFQN-KEWDLFVERSR-ANSN	KLATGMRNVPEKQTRGIFGAIAGFIENGWEGMVDGWYGFRHQNSEGRGQAADLKSTQ
	:**.* : * : * : **:******
CFPIMHD-RTKIRQLPNLLRGYEHVRLSTHNVINAEDAPGGPYEIGTSGSCPNITNGNGF	EAINKITKNLNSLSELEVKNLQRLSGAMDELHNEILELDEKVDDLRADTISSQIELAVLL
CFPIMHD-RTKIRQLPNLLRGYEKIRLSTQNVIDAEKAPGGPYRLGTSGSCPNATSKIGF	EAINKITKNLNSLSELEVKNLQRLSGAMDELHNEILELDEKVDDLRADTISSQIELAVLL
CYPGDFINYEELREQLSSVSSFERFEIFPKTSSWPNHDSDNGVTAACPHAG-AKSF	NAIDKITNKVNSVIEKMNTQFTAVGKEFNHLEKRIENLNKKVDDGFLDIWTYNAELLVLL
CYPYDVPDYASLRSLVASSGTLEFKNESFNWTGV-KQNGTSSACIRGS-SSSF	AAIDQINGKLNRLIGKTNEKFHQIEKEFSEVEGRVQDLEKYVEDTKIDLWSYNAELLVAL
: .:*: .: .: .: .: .: .: .: .:	**::*. ::* : :: :: ::::: *:* * * :: ** * *
FATMAWAVPKNKTATNPLTIEVPYICTEGEDQITVWGFHSDNEIQ-MAKLYGDSKPQK	SNEGIINSEDEHLLALERKLKKMLGPSAVEIGNGCFETKHKONOTCLDRIAAGTFDAGEF
FATMAWAVPKDNYKNATNPLTVEVPYICTEGEDQITVWGFHSDNKTQ-MKSLYGDSNPQK	SNEGIINSEDEHLLALERKLKKMLGPSAVDIGNGCFETKHKONOTCLDRIAAGTFNAGEF
YKNLIWLVKKGKSYPKINQTYINDKGKEVLVLWGIHHPPTIADQQSLYQNADAYV	ENERTLDYHDSNVKNLYEKVRNQLKNNAKEIGNGCFEFYHKCDNTCMESVKNGTYDYPKY
FSRLNWLTHLNYTYPALNVTMPNNEQFDKLYIWGVHHPSTDKDQISLFAQPSGRI	ENQHTIDLTDSEMNKLFEKTKKQLRENAEDMGNGCFKIYHKCDNACIGSIFNETYDHNVY
: : *	.*: :: *: * .* :: * .* ::*****
FTSSANGVTTHYVSQIGGFF <mark>NQT</mark> EDGGLPQSGRIVVDYMVQKSGKTGTITYQRGILLPQK	SLPTFDS-INITAASLNDDGLDNHTILLYYSTAASSLAVTLMIAIFVVYMVSRDSVSCSI
FTSSANGVTTHYVSQIGDFPDQTEDGGLPQSGRIVVDYMMQKPGKTGTIVYQRGVLLPQK	SLPTFDS-INITAASLNDDGLDNHTILLYYSTAASSLAVTLMLAIFIVYMVSRDNVSCSI
FVG-TSRYSKKFKPEIATRPKVRDQEGRMNYYWTLVEPGDKITFEATGNLVAPRY	SEEAKLNREKIDGVKLDSTRIYQILAIYSTVASSLVLVVSLGAISFWMCSNGSLQCRI
TVS-TKRSQQAVIPNIGSRPRIRDIPSRISIYWTIVKPGDILLINSTGNLIAPRG	RDEALNNRFQIKGVELKSGYKDWILWI-SFAMSCFLLCIALLGFIMWACQKGNIRCNI
:. :*. **: ::: *. : .:: *:	: . :** ** * . *.::::::::::::::

Afluria GADS


- ~8 of the 40 sequons for the four hemagglutinin proteins identified.
- The GADS are majority high-mannose.
- No GADS were identified for NA proteins, probably due to a lower abundance of NA on the virus.

Afluria GADS

- ~8 of the 40 sequons for the four hemagglutinin proteins identified.
- The GADS are majority high-mannose.
- No GADS were identified for NA proteins, probably due to a lower abundance of NA on the virus.

Conclusions

- Glycosylation of replicates is most similar and between strains is least similar.
- Adjacent sequons may be isolated using EThcD fragmentation or nonspecific cleavage using the protease subtilisin.
- Most glycans are high-mannose in egg-based quadrivalent vaccines.
- Next steps:
 - Optimize methods for influenza vaccine digestion.
 - Build reference MS2 and GADS libraries
 - Apply methods to other viral glycoproteins (HIV, Herpesvirus, Ebola...)

Acknowledgments

<u>Software</u>

- Yuri Mirokhin
- Sergey Sheetlin
- Dmitrii Tchekhovskoi
- Xiaoyu Yang
- Guanghui Wang
- Stephen Stein

Lab mentoring

- Yi Liu
- Jane Zhang

Data acquisition/analysis

- Meghan Burke Harris
- Connie Remoroza

References

¹Jung, H. E., & Lee, H. K. (2020). Host protective immune responses against influenza A virus infection. *Viruses*, *12*(5), 504.

²Remoroza, C. A., Burke, M. C., Liu, Y., Mirokhin, Y. A., Tchekhovskoi, D. V., Yang, X., & Stein, S. E. (2021). Representing and Comparing Site-Specific Glycan Abundance Distributions of Glycoproteins. Journal of Proteome Research, 20(9), 4475-4486.

³https://www.cdc.gov/flu/vaccines-work/effectiveness-studies.htm

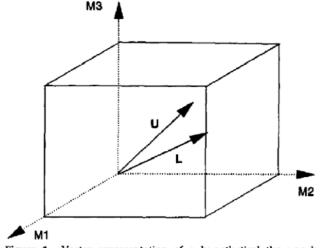
⁴Zost, S. J., Parkhouse, K., Gumina, M. E., Kim, K., Perez, S. D., Wilson, P. C., ... & Hensley, S. E. (2017). Contemporary H3N2 influenza viruses have a glycosylation site that alters binding of antibodies elicited by eggadapted vaccine strains. *Proceedings of the National Academy of Sciences*, *114*(47), 12578-12583.

Watanabe, Y., Allen, J. D., Wrapp, D., McLellan, J. S., & Crispin, M. (2020). Site-specific glycan analysis of the SARS-CoV-2 spike. Science, 369(6501), 330-333.

Chang, D., & Zaia, J. (2019). Why glycosylation matters in building a better flu vaccine. Molecular & Cellular Proteomics, 18(12), 2348-2358.

zachary.goecker@nist.gov

Supplemental Slides


Dot Product

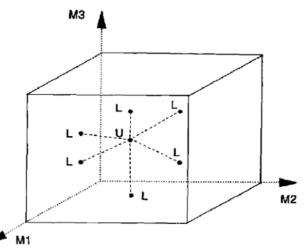
Cosine of the angle between spectra represented as vectors

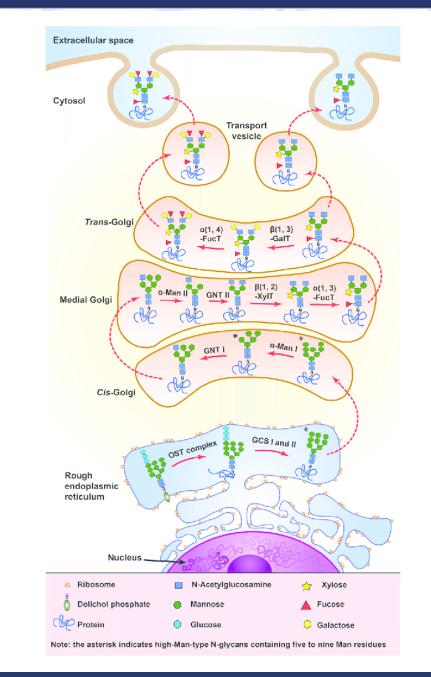
 $\frac{(\Sigma W_L W_U)^2}{\Sigma W_L^2 \Sigma W_U^2}$

 W_L = Weighted intensity of library

 W_{II} = Weighted intensity of unknown

Figure 1. Vector representation of a hypothetical three-peak unknown (U) and library (L) mass spectrum in three-dimensional space (peaks have mass M1, M2, and M3).

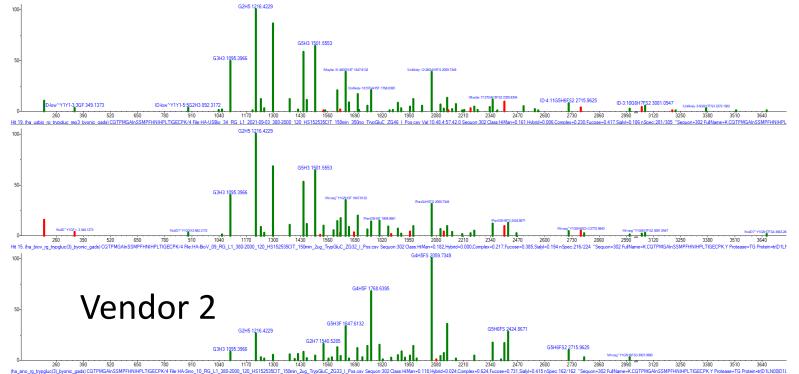



Figure 2. Point representation of library search results (L) for a hypothetical three-peak unknown (U) spectrum (masses M1, M2, and M3)

Supplemental Slides

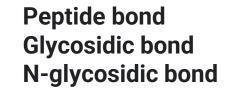
Glycobiology

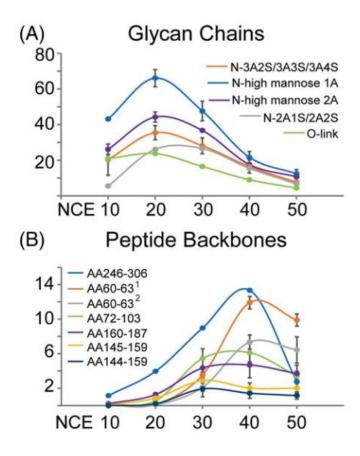
- In viruses
 - Immune evasion
 - Host cell attachment
- In mammalian cells
 - Protein folding
 - Protein stabilization
 - Communication
 - Function

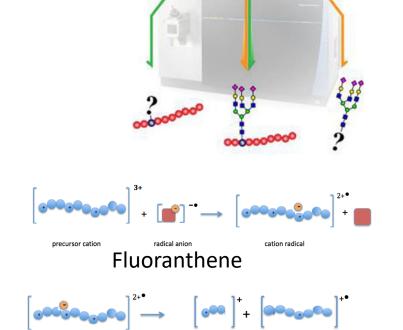


Supplemental Slides

Vendor Comparison


Glycan distribution was skewed toward higher mass (sialylated complex) glycans for vendor 2 and toward lower mass glycans (oligomannose and hybrid) for vendor 1 and vendor 3.




Material Measurement Laboratory

Stepped HCD

ETD

EThcD

EThcD

Supplemental Slides

CID/HCD