

Introduction

Influenza is a viral disease responsible for the death of ~500,000 people annually worldwide. Perhaps the most complex component of this virus is the N-linked glycan shield on its external proteins, hemagglutinin and neuraminidase. These proteins attach to host cells leading to infection and are the main antigens of interest for vaccine development and antiviral treatments. Their distributions of N-linked glycans at multiple sites are highly complex and serve to evade antibodies and perhaps serve other purposes. However, the accurate measurement of these site-specific glycan distributions and determination of their variability. However, the accurate measurement of these site-specific glycan distributions and determination of their variability

presents a significant analytical challenge. In 2020, Chang et al successfully compared glycans from hemagglutinin variants.² This work attempts to develop methods for accurate and reproducible measurement of these distributions as well as for their detailed representation.

Methodology

Recombinant proteins:

Hemagglutinin strain A/Hong Kong/483/1997(H5N1) and neuraminidase strain A/Thailand/1(KAN-1)/2004(H5N1) were obtained from Sino Biological, BioVision, and US Biological. All proteins are from recombinant expression in HEK293 cell line. Multiple lots were ordered from these vendors.

Sample processing:

Purified recombinant protein was digested using 0.1% RapiGest surfactant in 50 mM ABC, 20 mM DTT, and 55 mM IAA. Protein was digested using the following protease combinations: Trypsin+Glu-C, Trypsin+Lys-C, Trypsin+Asp-N, Trypsin+Chymotrypsin, Chymotrypsin, alpha-Lytic protease, and Glu-C+Chymotrypsin. Digests were purified and desalted using a MonoSpin column procedure.

Instrumental analysis:

Digital reprint

Digests were analyzed on a Thermo Scientific Fusion Lumos mass spectrometer using an optimized stepped HCD energy-ion trap fragmentation sequence.

Software:

MS_Piano and NIST MS Search were used for data annotation and visualization. NIST developed software was used for glycopeptide and GADS library creation.

Site-Specific Glycosylation Profiles for Recombinant Hemagglutinin and Neuraminidase from Different Sources

Zachary C. Goecker, Meghan C. Burke, Yi Liu, Yuri A. Mirokhin, Dmitrii V. Tchekhovskoi, Stephen E. Stein Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA

Overview

Glycopeptide abundance distribution spectra (GADS)¹ were created for influenza A recombinant glycoproteins hemagglutinin and neuraminidase (H5N1) to evaluate glycan variation. Variation in glycan abundances and distribution was most pronounced between biological replicates of the same protein and same vendor. Glycan distribution was skewed toward higher mass (sialylated complex) glycans for Sino Biological and toward lower mass glycans (oligomannose and hybrid) for US Biological and BioVision.

- \pm 101, and 870 \pm 51 respectively).

¹Remoroza, C. A., Burke, M. C., Liu, Y., Mirokhin, Y. A., Tchekhovskoi, D. V., Yang, X., & Stein, S. E. (2021). Representing and Comparing Site-Specific Glycan Abundance Distributions of Glycoproteins. Journal of Proteome Research, 20(9), 4475-4486. ²Chang, D., Hackett, W. E., Zhong, L., Wan, X. F., & Zaia, J. (2020). Measuring site-specific glycosylation similarity between influenza A virus variants with statistical certainty. Molecular & Cellular Proteomics, 19(9), 1533-1545. ³Jung, H. E., & Lee, H. K. (2020). Host protective immune responses against influenza A virus infection. Viruses, 12(5), 504. Disclaimer: Certain commercial equipment, instruments, or materials are identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.

Conclusions

Variation due to vendor differences resulted in the lowest levels of library match (as low as 502 ± 218), whereas replicate, lot, and peptide variation resulted in high match scores (898 ± 73, 867

The most abundant glycans for BioVision and US Biological HA are G2H5, G5H3, and G4H3, whereas the most abundant glycans for Sino Biological are G2H5, G4H5FS, and G4H5F. Glycans that were present in hemagglutinin but not neuraminidase include G6H7FS3, G5H6FS3. No glycans were identified in neuraminidase that were not also in hemagglutinin.

References and Disclaimers

