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Preliminaries

Preliminaries

Havriliak-Negami (H-N)

A general (phenomenological) material model that arises from
considerations of the multi-scale nature of the spatial microstructure of a
broad class of materials (e.g., glassy, soils, biological tissues, and
amorphous polymers). a

aSee “A complex plane representation of dielectric and mechanical relaxation
processes in some polymers”, J. Polym. Sci, 1967.

Corresponds to a fractional psuedo-differential equation model in the time
domain, not suitable for efficient simulation.
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Maxwell-Debye Maxwell’s Equations

Maxwell’s Equations

∂B

∂t
+∇× E = 0, in (0,T )×D (Faraday)

∂D

∂t
+ J−∇×H = 0, in (0,T )×D (Ampere)

∇ ·D = ∇ · B = 0, in (0,T )×D (Poisson/Gauss)

E(0, x) = E0; H(0, x) = H0, in D (Initial)

E× n = 0, on (0,T )× ∂D (Boundary)

E = Electric field vector

H = Magnetic field vector

J = Current density

D = Electric flux density

B = Magnetic flux density

n = Unit outward normal to ∂Ω
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Maxwell-Debye Maxwell’s Equations

Constitutive Laws

Maxwell’s equations are completed by constitutive laws that describe the
response of the medium to the electromagnetic field.

D = εE + P

B = µH + M

J = σE + Js

P = Polarization

M = Magnetization

Js = Source Current

ε = Electric permittivity

µ = Magnetic permeability

σ = Electric Conductivity

where ε = ε0ε∞ and µ = µ0µr .
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Maxwell-Debye Dispersive Media

Complex permittivity

We can usually define P in terms of a convolution

P(t, x) = g ∗ E(t, x) =

∫ t

0
g(t − s, x; q)E(s, x)ds,

where g is the dielectric response function (DRF).

In the frequency domain D̂ = εÊ + ĝÊ = ε0ε(ω)Ê, where ε(ω) is
called the complex permittivity.

ε(ω) described by the polarization model
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Maxwell-Debye Dry skin data
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Figure : Real part of ε(ω), ε, or the permittivity [GLG96]. Note: up to 10%
spread in measurements was observed, but only averages were published.

(N.L. Gibson, OSU) Maxwell-PC Debye NIST-UQ4Mat 2016 9 / 35



Maxwell-Debye Dry skin data
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Figure : Imaginary part of ε(ω)/ω, σ, or the conductivity.
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Maxwell-Debye Dispersive Media

Polarization Models

P(t, x) = g ∗ E(t, x) =

∫ t

0
g(t − s, x; q)E(s, x)ds,

Debye model [1929] q = [ε∞, εd , τ ]

g(t, x) = ε0εd/τ e−t/τ

or τ Ṗ + P = ε0εdE

or ε(ω) = ε∞ +
εd

1 + iωτ

with εd := εs − ε∞ and τ a relaxation time.

Cole-Cole model [1936] (heuristic generalization)
q = [ε∞, εd , τ, α]

ε(ω) = ε∞ +
εd

1 + (iωτ)α
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Maxwell-Debye Dispersive Media

Polarization Models

P(t, x) = g ∗ E(t, x) =

∫ t

0
g(t − s, x; q)E(s, x)ds,

Debye model [1929] q = [ε∞, εd , τ ]

ε(ω) = ε∞ +
εd

1 + iωτ

Cole-Cole model [1941] q = [ε∞, εd , τ, α]

ε(ω) = ε∞ +
εd

1 + (iωτ)α

Havriliak-Negami model [1967] q = [ε∞, εd , τ, α, β]

ε(ω) = ε∞ +
εd

(1 + (iωτ)α)β
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Maxwell-Random Debye Distribution of Parameters

Distributions of Relaxation Times

The macroscopic Debye polarization model can be derived from
microscopic dipole formulations by passing to a limit over the
molecular population [see, Elliot1993].

In 1907, von Schweidler observed the need for multiple relaxation
times.

In 1913, Wagner proposed a (continuous) distribution of relaxation
times.

Empirical measurements suggest a log-normal or Beta distribution
[Bottcher-Bordewijk1978].

One can show that the S-N (and Cole-Cole) model corresponds to a
continuous distribution “... it is possible to calculate the necessary
distribution function by the method of Fuoss and Kirkwood.”
[Cole-Cole1941].

“Continuous spectrum relaxation functions” are also common in
viscoelastic models.
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Maxwell-Random Debye Fit to dry skin data with uniform distribution
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Figure : Real part of ε(ω), ε, or the permittivity [REU2008].
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Maxwell-Random Debye Fit to dry skin data with uniform distribution
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Figure : Imaginary part of ε(ω)/ω, σ, or the conductivity [REU2008].

(N.L. Gibson, OSU) Maxwell-PC Debye NIST-UQ4Mat 2016 15 / 35



Maxwell-Random Debye Distribution of Parameters

Distributions of Parameters

To account for the effect of possible multiple parameter sets q, consider
the following polydispersive DRF

h(t, x;F ) =

∫
Q
g(t, x; q)dF (q),

where Q is some admissible set and F ∈ P(Q).
Then the polarization becomes:

P(t, x;F ) =

∫ t

0
h(t − s, x;F )E(s, x)ds.
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Maxwell-Random Debye

Random Polarization

Alternatively we can define the random polarization P(t, x; τ) to be the
solution to

τ Ṗ + P = ε0εdE

where τ is a random variable with PDF f (τ), for example,

f (τ) =
1

τb − τa

for a uniform distribution.

The electric field depends on the macroscopic polarization, which we take
to be the expected value of the random polarization at each point (t, x)

P(t, x;F ) =

∫ τb

τa

P(t, x; τ)f (τ)dτ.
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Maxwell-Random Debye Polynomial Chaos

Polynomial Chaos

Apply Polynomial Chaos (PC) method to approximate each spatial
component of the random polarization

τ Ṗ + P = ε0εdE , τ = τ(ξ) = τrξ + τm, ξ ∼ F

resulting in
(τrM + τmI )~̇α + ~α = ε0εdEê1

or
A~̇α + ~α = ~f .

The electric field depends on the macroscopic polarization, the expected
value of the random polarization at each point (t, x), which is

P(t, x ;F ) = E[P] ≈ α0(t, x).
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Maxwell-Random Debye Polynomial Chaos
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Maxwell-Random Debye Inverse Problem Numerical Results
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Comparison of simulations to data [Armentrout-G., 2011].
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Maxwell-Random Debye Inverse Problem Numerical Results
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Maxwell-Random Debye

Maxwell-Random Debye system

In a polydispersive Debye material, we have

µ0
∂H

∂t
= −∇× E, (1a)

ε0ε∞
∂E

∂t
= ∇×H− ∂P

∂t
− J (1b)

τ
∂P
∂t

+ P = ε0εdE (1c)

with

P(t, x;F ) =

∫ τb

τa

P(t, x; τ)dF (τ).
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Maxwell-Random Debye Random Debye Dispersion Relation

Theorem (G., 2015)

The dispersion relation for the system (1) is given by

ω2

c2
ε(ω) = ‖k‖2

where the expected complex permittivity is given by

ε(ω) = ε∞ + εdE
[

1

1 + iωτ

]
.

Where k is the wave vector and c = 1/
√
µ0ε0 is the speed of light.

Note: for a uniform distribution on [τa, τb], this has an analytic form since

E
[

1

1 + iωτ

]
=

1

ω(τb − τa)

[
arctan(ωτ) + i

1

2
ln
(
1 + (ωτ)2

)]τ=τa

τ=τb

.

The exact dispersion relation can be compared with a discrete dispersion
relation to determine the amount of dispersion error.
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Maxwell-Random Debye FDTD

Finite Difference Time Domain (FDTD)

We now choose a discretization of the Maxwell-PC Debye model. Note
that any scheme can be used independent of the spectral approach in
random space employed here.

The Yee Scheme (FDTD)

This gives an explicit second order accurate scheme in time and space.

It is conditionally stable with the CFL condition

ν :=
c∆t

h
≤ 1√

d

where ν is called the Courant number and c∞ = 1/
√
µ0ε0ε∞ is the

fastest wave speed and d is the spatial dimension, and h is the
(uniform) spatial step.

The Yee scheme can exhibit numerical dispersion and dissipation.
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Maxwell-Random Debye FDTD

Yee Scheme for Maxwell-Debye System (in 1D)

µ0
∂H

∂t
= −∂E

∂z

ε0ε∞
∂E

∂t
= −∂H

∂z
− ∂P

∂t

τ
∂P

∂t
= ε0εdE − P

become

µ0

Hn+1
j+ 1

2

− Hn
j+ 1

2

∆t
= −

E
n+ 1

2
j+1 − E

n+ 1
2

j

∆z

ε0ε∞
E
n+ 1

2
j − E

n− 1
2

j

∆t
= −

Hn
j+ 1

2

− Hn
j− 1

2

∆z
−

P
n+ 1

2
j − P

n− 1
2

j

∆t

τ
P
n+ 1

2
j − P

n− 1
2

j

∆t
= ε0εd

E
n+ 1

2
j + E

n− 1
2

j

2
−

P
n+ 1

2
j + P

n− 1
2

j

2
.
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Maxwell-Random Debye FDTD

Discrete Debye Dispersion Relation

(Petropolous1994) showed that for the Yee scheme applied to the
Maxwell-Debye, the discrete dispersion relation can be written

ω2
∆

c2
ε∆(ω) = K 2

∆

where the discrete complex permittivity is given by

ε∆(ω) = ε∞ + εd

(
1

1 + iω∆τ∆

)
with discrete (mis-)representations of ω and τ given by

ω∆ =
sin (ω∆t/2)

∆t/2
, τ∆ = sec(ω∆t/2)τ.
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Maxwell-Random Debye FDTD

Discrete Debye Dispersion Relation (cont.)

The quantity K∆ is given by

K∆ =
sin (k∆z/2)

∆z/2

in 1D and is related to the symbol of the discrete first order spatial
difference operator by

iK∆ = F(D1,∆z).

In this way, we see that the left hand side of the discrete dispersion relation

ω2
∆

c2
ε∆(ω) = K 2

∆

is unchanged when one moves to higher order spatial derivative
approximations [Bokil-G,2012] or even higher spatial dimension
[Bokil-G,2013].
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Maxwell-Random Debye PC-Debye FDTD Dispersion Relation

Theorem (G., 2015)

The discrete dispersion relation for the Maxwell-PC Debye FDTD scheme
is given by

ω2
∆

c2
ε∆(ω) = K 2

∆

where the discrete expected complex permittivity is given by

ε∆(ω) := ε∞ + εd ê
T
1 (I + iω∆A∆)−1 ê1

and the discrete PC matrix is given by

A∆ := sec(ω∆t/2)A.

The definitions of the parameters ω∆ and K∆ are the same as before.
Recall the exact complex permittivity is given by

ε(ω) = ε∞ + εdE
[

1

1 + iωτ
.

]
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Maxwell-Random Debye PC-Debye FDTD Dispersion Analysis

Dispersion Error

We define the phase error Φ for a scheme applied to a model to be

Φ =

∣∣∣∣kEX − k∆

kEX

∣∣∣∣ , (2)

where the numerical wave number k∆ is implicitly determined by the
corresponding dispersion relation and kEX is the exact wave number for
the given model.

We wish to examine the phase error as a function of ω∆t in the
range [0, π]. ∆t is determined by hττm, while ∆x = ∆y determined
by CFL condition.
We note that ω∆t = 2π/Nppp, where Nppp is the number of points
per period, and is related to the number of points per wavelength as,
Nppw =

√
ε∞νNppp.

We assume a uniform distribution and the following parameters which
are appropriate constants for modeling aqueous Debye type materials:

ε∞ = 1, εs = 78.2, τm = 8.1× 10−12 sec, τr = 0.5τm.

(N.L. Gibson, OSU) Maxwell-PC Debye NIST-UQ4Mat 2016 30 / 35
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Figure : Plots of phase error at θ = 0 for (left column) τr = 0.5τm, (right
column) τr = 0.9τm, using hτ = 0.01.

(N.L. Gibson, OSU) Maxwell-PC Debye NIST-UQ4Mat 2016 31 / 35



Maxwell-Random Debye PC-Debye FDTD Dispersion Analysis

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

PC−Debye dispersion for FD with h
τ
=0.001, r=0.5τ, θ=0

ω ∆ t

Φ

 

 

M=0

M=1

M=2

M=3

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

PC−Debye dispersion for FD with h
τ
=0.001, r=0.9τ, θ=0

ω ∆ t

Φ

 

 

M=0

M=1

M=2

M=3

M=4

M=5

M=6

Figure : Plots of phase error at θ = 0 for (left column) τr = 0.5τm, (right
column) τr = 0.9τm, using hτ = 0.001.

(N.L. Gibson, OSU) Maxwell-PC Debye NIST-UQ4Mat 2016 32 / 35



Maxwell-Random Debye PC-Debye FDTD Dispersion Analysis

−5

−3

−1

23

210

60

240

90

270

120

300

150

330

180 0

PC−Debye dispersion for FD with h
τ
=0.01, r=0.5τ, ωτ

µ
=1

 

 
M=0

M=1

M=2

M=3

−5

−3

−1

23

210

60

240

90

270

120

300

150

330

180 0

PC−Debye dispersion for FD with h
τ
=0.01, r=0.9τ, ωτ

µ
=1

 

 
M=0

M=1

M=2

M=3

M=4

M=5

M=6

Figure : Log plots of phase error versus θ with fixed ω = 1/τm for (left column)
τr = 0.5τm, (right column) τr = 0.9τm, using hτ = 0.01. Legend indicates degree
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Conclusions

Conclusions

We have presented a random ODE model for polydispersive Debye
media

We described an efficient numerical method utilizing polynomial
chaos (PC) and finite difference time domain (FDTD)

Exponential convergence in the number of PC terms was
demonstrated

We have proven (conditional) stability of the scheme via energy decay
(not shown)1

We have derived a discrete dispersion relation and computed phase
errors

1Gibson, N. L., A Polynomial Chaos Method for Dispersive Electromagnetics,
Comm. in Comp. Phys., 2015
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Appendix Polynomial Chaos

Polynomial Chaos: Simple example

Consider the first order, constant coefficient, linear IVP

ẏ + ky = g , y(0) = y0

with
k = k(ξ) = ξ, ξ ∼ N (0, 1), g(t) = 0.

We can represent the solution y as a Polynomial Chaos (PC) expansion in
terms of (normalized) orthogonal Hermite polynomials Hj :

y(t, ξ) =
∞∑
j=0

αj(t)φj(ξ), φj(ξ) = Hj(ξ).

Substituting into the ODE we get

∞∑
j=0

α̇j(t)φj(ξ) +
∞∑
j=0

αj(t)ξφj(ξ) = 0.
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Appendix Polynomial Chaos

Triple recursion formula

∞∑
j=0

α̇j(t)φj(ξ) +
∞∑
j=0

αj(t)ξφj(ξ) = 0.

We can eliminate the explicit dependence on ξ by using the triple recursion
formula for Hermite polynomials

ξHj = jHj−1 + Hj+1.

Thus
∞∑
j=0

α̇j(t)φj(ξ) +
∞∑
j=0

αj(t)(jφj−1(ξ) + φj+1(ξ)) = 0.
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Appendix Polynomial Chaos

Galerkin Projection onto span({φi}pi=0)

In order to approximate y we wish to find a finite system for at least the
first few αi .
We take the weighted inner product with the ith basis, i = 0, . . . , p,

∞∑
j=0

α̇j(t)〈φj , φi 〉W + αj(t)(j〈φj−1, φi 〉W + 〈φj+1, φi 〉W ) = 0,

where

〈f (ξ), g(ξ)〉W :=

∫
f (ξ)g(ξ)W (ξ)dξ.

By orthogonality, 〈φj , φi 〉W = 〈φi , φi 〉W δij , we have

α̇i 〈φi , φi 〉W + (i + 1)αi+1〈φi , φi 〉W + αi−1〈φi , φi 〉W = 0, i = 0, . . . , p.
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Appendix Polynomial Chaos

Deterministic ODE system

Let ~α represent the vector containing α0(t), . . . , αp(t).
Assuming α−1(t), αp+1(t), etc., are identically zero, the system of ODEs
can be written

~̇α + M~α = ~0,

with

M =


0 1
1 0 2

. . .
. . .

. . .
. . .

. . . p
1 0


The degree p PC approximation is y(t, ξ) ≈ yp(t, ξ) =

∑p
j=0 αj(t)φj(ξ).

The mean value E[y(t, ξ)] ≈ E[yp(t, ξ)] = α0(t).
The variance Var(y(t, ξ)) ≈

∑p
j=1 αj(t)2.
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Appendix Polynomial Chaos

Figure : Convergence of error with Gaussian random variable by Hermitian-chaos.
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Appendix Polynomial Chaos

Generalizations

Consider the non-homogeneous IVP

ẏ + ky = g(t), y(0) = y0

with
k = k(ξ) = σξ + µ, ξ ∼ N (0, 1),

then

α̇i + σ [(i + 1)αi+1 + αi−1] + µαi = g(t)δ0i , i = 0, . . . , p,

or the deterministic ODE system is

~̇α + (σM + µI )~α = g(t)~e1.

Note that the initial condition for the PC system is ~α(0) = y0 ~e1.
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Appendix Polynomial Chaos

Generalizations

For any choice of family of orthogonal polynomials, there exists a triple
recursion formula. Given the arbitrary relation

ξφj = ajφj−1 + bjφj + cjφj+1

(with φ−1 = 0) then the matrix above becomes

M =


b0 a1

c0 b1 a2

. . .
. . .

. . .
. . .

. . . ap
cp−1 bp


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Appendix Polynomial Chaos

Generalized Polynomial Chaos

Table : Popular distributions and corresponding orthogonal polynomials.

Distribution Polynomial Support

Gaussian Hermite (−∞,∞)
gamma Laguerre [0,∞)

beta Jacobi [a, b]
uniform Legendre [a, b]

Note: lognormal random variables may be handled as a non-linear function
(e.g., Taylor expansion) of a normal random variable.
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