

Sustainable photovoltaics Increasing recyclability of PV modules

G. Oreski^{1*}, T. Dobra², S. Feldbacher¹, G.C. Eder³, L. Neumaier⁴, C. Hirschl⁴, M. Feichtner⁵, H. Figl⁶ and M. Aarnio-Winterhof⁷

(1) Polymer Competence Center Leoben (2) Montanuniversitaet Leoben(3) Austrian Research Institute for Chemistry and Technology (4) Silicon Austria Labs

(5) Kioto Solar (6) Austrian Institute for Building and Ecology (7) Borealis

PV module technology

PV module composition

Multi-material composite containing glass, polymers, semiconductors and metal

Front sheet

• Low iron glass

Solar cell encapsulant

Peroxide crosslinked
 Ethylene Vinyl Acetate (EVA)

Crystalline silicon solar cells

 Including silver grid and busbars on the front and metallization on the back

Cell interconnection

 Flat copper ribbons coated with SnPb solders

Backsheet

 Laminates consisting of PET and fluoropolymers (PVF, PVDF)

During PV module lamination the encapsulant melts and bonds all layers together

Recycling?

Junction box

How to make present day PV modules more environmentally friendly?

How to increase recyclability and reparability?

High Sb content of solar glass

 Not usable in float glass recycling or for the production of glass beads for retroreflective coatings

Standard PV backsheets are not recyclable

- Difficult separation of each layer
- No recycling processes for fluoropolymers available

Difficult separation of chemically crosslinked
 EVA encapsulant from other module materials

 EVA does not melt or dissolve, thermal and chemical separation methods do not have big impact

- Shredding of PV modules leads to contamination of certain materials by sawdust
 - Only downcycling of otherwise
 valuable components like solar glass
 due to metal contaminations

Junction box

 Removal of defunctive junction box often damages the backsheet

Actual composition of the module is not considered in recycling process

 Potential presence/release of environmentally harmful substances → Pb, F

Main objectives

- 1) "Conceptual design of sustainable PV modules through recycling-friendly architecture/composition (detachable joints, easily demountable setup of laminate) and replacement of environmentally hazardous materials by non-toxic and easy-to-recycle ones"
- 2) Assessment of recyclability

* Challenges

- High cost pressure: Sustainable materials and components for PV modules must have same or lower price than standard components
- Required lifetimes of 25+ years: Compatibility of module materials is essential for long term stability
- No mature recycling processes available

PV Re² Sustainable PV Module

PV Re² Module General criteria

No lead solders; No fluoropolymers; Reduced silver content; Recycling friendly materials

Hardened glass with low Sb content

<u>MATAKA</u>

 Thermoplastic PE based encapsulant RoHS certified mono crystalline solar cells (5BB) with lead free metallization

> Lead free interconnection

 Co-extruded PP backsheet

 Reversible adhesive for frame and junction box

High durability PV module (Aspired lifetime: 25+ years)

Framework of Life Cycle Assessment

Comparison of 3 different module compositions first focus on polymer packaging

- **Standard Module:** crosslinking EVA encapsulant, PVF/PET/PVF laminate as backsheet; 3.2mm front glass
- PV Re² Eco Module 1: thermoplastic PE based encapsulant; co-extruded PP backsheet; 3.2mm front glass
- **PV Re² Eco Module 2:** thermoplastic PE based front encapsulant; co-extruded back encapsulant / backsheet based on PE and PP; 2mm front glass

Functional unit: (production of) 1 Module (1.659 x 0.985 m)

Framework:

Lifetime: 25 years Yearly Degradation: 0.8 %

LCA (Lit.): 30 g CO₂ eq./kWh (southern European conditions) Energy Output: 38.250 kWh/kWp (1.700 kWh/(kWp*a))

- Silicon solar cell and frame production (including upstream processes) dominate the environmental impacts of a PV Module
- Share of module production or the remaining module components (glass, cell connectors, polymers) significantly lower
- → First assessment: PV Re² contents are difficult to represent in the classic LCA or, in the worst case, negligible

Life Cycle Assessment

GWP 100 years

CML2001-Jan. 2016, Global Warming Potential (GWP 100 years) [kg CO2 eq.]

- Relative improvement (in production phase) is rather small (2-3 %) due to no changes in the high impact areas
- Positive effects on use phase (prolonged lifetime) and end of life phase (better recyclability and repairability) are not included in the assessment yet

Results:

GWP: 10 kg CO₂ eq./Module saved (= 30 kg/kWp) Savings: 0.78 g CO₂ eq./kWh (= 2.6 %)

Applied changes show a positive impact in all considered impact categories (e.g. global warming potential (GWP), acidification potential, eutrophication potential)

Evaluation of recyclability

Approach for building materials

Deconstruction:

- ✓ Current practice (real) and future scenarios (potential) as basis for classification
- ✓ Can also be evaluated/rated as a separate factor

Classification:

- ✓ For each fraction according to available technologies and material characteristics
- ✓ Differentiation between real/current situation & potential/future situation

Aggregation:

✓ Based either on volume or mass

Evaluation of recyclability - separability

	Class	Separability		
Current situation for N.I.C.E modules	A++	No compound, very easy to separate non- destructively, suitable for re-use		
Future situation for standard modules	A+	Separable with minor damage (pure materials, largely non-destructive)	Classification of separabili	
	А	Pure materials, destructive separation	(inspired by building industry	
Current situation for standard modules	В	Not separable by material type / usually not separated by material type		

	Standard	PVRe ² Eco-1	PVRe ² Eco-2	Glass/Glass
В	yes	yes	yes	yes
A ¹	yes	yes	yes	no
A+ (therm.) ²	(yes)*	yes	yes	yes
A+ (chem.) ³	no	yes	yes	yes
A+ (new) ⁴	yes	?	?	?

Potential separation technologies

- Advanced mechanical (e.g. LuxChemTech, PVRe²)
- 2) Thermal delamination (incineration, pyrolysis)
- Chemical delamination (solvent)
- 4) New technologies, e.g. radiative

* Technically possible but questionable from an emission standpoint Table refers to the laminate only (not frame/cables)

Evaluation of recyclability - recovery potential

1	2	3	4	5	6
Reuse	no preparation methods for reuse available				
	Recy	cling	no rec	cycling	
	Recycling RC+ or CL with efforts	Recycling RC- or RC+ with efforts	Other utilisation or RC- with efforts	no recycling pro other ut with gre	cedure known or ilisation at efforts
	combustion				
c1 11				Thermal (EB) disposal +	Thermal disposal -
(CL)				lan	dfill
	Derived fuels	Energy recovery +	Energy recovery -	Landfill Class	Gypsum-Fibre-
		(EV+)	(EV-)	0+I+II	Organic

H. Figl et.al: A new Evaluation Method for the End-of-life Phase of Buildings. 2019 IOP Conf. Ser.: Earth Environ. Sci. **225** 012024; DOI: 10.1088/1755-1315/225/1/012024. Project funded by BMI/BBSR (Zukunft Bau)

Comparison of module types for recovery potential

Current	Standard	PVRe ² Eco-1	PVRe ² Eco-2	Glass/Glass
Frame	1 (CL)	1 (CL)	1 (CL)	1 (CL)
Cables	1 (CL)	1 (CL)	1 (CL)	1 (CL)
Glass	4 (AV)	4 (AV)	4 (AV)	4 (AV)
Ribbons	2 (RC+)	2 (RC+)	2 (RC+)	2 (RC+)
Cells*	5 (EB+)	4/5 (EV-/EB+)	4/5 (EV-/EB+)	4/5 (EV-/EB+)
Encapsulant*	5 (EB+)	4/5 (EV-/EB+)	4/5 (EV-/EB+)	4/5 (EV-/EB+)
Backsheet*	5 (EB+)	4/5 (EV-/EB+)	4/5 (EV-/EB+)	n.a.

Future	Standard	PVRe ² Eco-1	PVRe ² Eco-2	Glass/Glass
Frame	1 (CL)	1 (CL)	1 (CL)	1 (CL)
Cables	1 (CL)	1 (CL)	1 (CL)	1 (CL)
Glass ¹	1/4 (CL/AV)	1/2 (CL/RC+)	1/2 (CL/RC+)	1/2 (CL/RC+)
Ribbons	2 (RC+)	2 (RC+)	2 (RC+)	2 (RC+)
Cells	3 (RC-)	3 (RC-)	3 (RC-)	3 (RC-)
Encapsulant ²	3 (EV+)	2/3 (RC+/EV+)	2/3 (RC+/EV+)	2/3 (RC+/EV+)
Backsheet ³	5 (EB+)	2/3 (RC+/EV+)	2/3 (RC+/EV+)	n.a.

- * Thermal treatment of mixed fraction Assumptions
 - ✓ Lower heating value > 11 MJ/kg
 - ✓ Bulk density > 200 kg/m³
 - ✓ Halogens 1 10 % (for standard)
 - ✓ Mineral fraction > 15 % (for all)

With current recycling technologies only energy recovery or thermal disposal are feasible

¹ Closed loop (PV glass) is indifferent to Sb-content but use for float glass is influenced

² Recycling of PE/PP is SotA, although application to aged polymers is in question. EVA can't be recycled.

³ Recycling of PE/PP is SotA, although application to aged polymers is in question. No recycling for fluoropolymers.

Higher potential for material recovery with new recycling approaches

- Proposal for an Eco-designed PV module with increased recyclability and no hazardous materials used
- Applied changes show a positive impact in all considered impact categories, but relative improvement (in production phase) is rather small (2-3 %) due to no changes in the high impact areas (cell, frame)
- Positive effects on use phase (prolonged lifetime) and end of life phase (better recyclability and reparability) are not included in the assessment yet
- Recyclability can be evaluated using a qualitative approach from building materials using separability and recovery potential as main features
- High necessity for further research in PV module separation and recycling technologies

Recycling-friendly design of PV modules strongly dependent on available separation and recycling technologies

Thank you for your attention!

klima+ energie fonds

This research work was performed within the projects PV RE²

(Energieforschungsprogramm 2017, Leitprojekte, FFG No. 867267)

