A Genetic Programming System with a Procedural Program
Representation

John G. Hagedorn
National Institute of
Standards and Technology
100 Bureau Drive, Stop 8911
Gaithersburg, MD 20899-8911

Abstract

We describe the status of a genetic program-
ming (GP) system that is based on a pro-
cedural program representation. The pro-
cedural representation is closely related to
the high level programming languages used
by human programmers; it includes features
such as hierarchies of procedure calls, with
arguments lists that allow multiple output
values from each procedure. This represen-
tation is structurally different than previous
representations used in GP and is expected to
have different evolutionary properties. The
system architecture is presented and specific
benefits as well as problems and solutions
arising from this program representation are
described. Two mutation-like operations, re-
pair and pruning, are introduced. A popula-
tion visualization technique is described that
includes the graphical presentation of pro-
gram structure, ancestry, and fitness. This
visualization tool and other instrumentation
are used to investigate population diversity
and fitness evolution. An unexpected benefit
of the pruning operation is described.

1 INTRODUCTION

Scientists at the National Institute of Standards and
Technology (NIST) do research in a wide variety of sci-
entific disciplines that pertain to measurement science
and standards. This diverse environment encompasses
very discipline specific problems whose solutions often
involve sophisticated computer models. Ongoing re-
search includes the development of algorithms, opti-
mization of models and their parameters, and pattern
recognition and characterization in scientific datasets.
The capability of Genetic Programming (GP) to treat

Judith E. Devaney
National Institute of
Standards and Technology
100 Bureau Drive, Stop 8911
Gaithersburg, MD 20899-8911

whole computer codes as single functions allows us to
incorporate discipline specific codes, thus enabling us
to use genetic programming to ask questions relevant
to these research areas. Having our own genetic pro-
gramming system, functionality tailored to problems
of interest to NIST scientists, will greatly assist our
efforts in these areas.

In this project we are implementing a genetic program-
ming system which uses a program representation that
is modelled on the higher level programming languages
typically used by human programmers, such as C or
Fortran. This is in contrast to the LISP-like represen-
tation that is often used in genetic programming sys-
tems [Koza, 1992, Koza, 1994, Koza et al., 1999]. We
describe our program representation as a ” procedural”
representation in order to highlight the structuring of
the program into a hierarchy of routines, each com-
posed of a sequence of calls to other routines.

The decision to use this program representation is mo-
tivated by two factors. First, we expect that the pro-
gram structures that are useful to human programmers
may prove to be useful in evolved programs. Second,
the different program representation results in differ-
ent characteristics of the program search space. Al-
though the same programs can be expressed in either
the LISP-like syntax or in our procedural structures,
the search landscape will certainly be different. Hence
the procedural representation could yield better re-
sults for some problems. Of course, by the same to-
ken, the procedural representation could yield worse
results in other cases [Wolpert and Macready, 1997].
This suggests that these two representations (and per-
haps others) might be used together in a single sys-
tem. This idea is being explored in independent
project [Devaney et al., 2001].

We have many problems to which we intend to apply
this system. For example, one issue of importance for
NIST is the identification and characterization of sys-

tematic or experimental measurement errors. As High
Throughput Methods (combinatorial experiments) be-
come more commonplace, the datasets become larger
and automated methods become more important. We
plan to use genetic programming on these datasets to
extract and find functional forms for the measurement
errors. Another possible problem to which we will ap-
ply this system is in the design of concrete. Algorithms
exist for modeling the properties of concrete based on
its composition and processing. These algorithms can
be incorporated into the system, enabling us to opti-
mize for desired physical properties.

2 RELATED WORK

Most program representations in GP can be classified
into one of three categories: tree, linear, and graph
representations [Banzhaf et al., 1998]: Our procedural
representation does not quite fit into any of these.

The tree representation is probably the most com-
mon and easily handled program representation used
in GP. Typically a program is represented as essen-
tially a LISP S-expression [Koza, 1992]. Branching
nodes on the tree are operators, with each branch be-
ing an operand. Leaves are values such as input vari-
ables or constants. In our representation, the proce-
dures certainly form a tree based on the calling hier-
archy of the procedures, but sequences of calls that
occur at each node is quite different in meaning from
the single operations that occur in a function in an
S-expression. Furthermore, the capability of produc-
ing multiple independent outputs also distinguishs the
procedure representation from the S-expression.

The linear category includes program representations
in the form of sequences of tokens. There are many
forms of linear representations such as bit-strings
describing operations and operands [Banzhaf, 1993],
Java byte code [Lukschandl et al., 2000], or even ma-
chine code [Nordin, 1994]. In our representation, the
sequences of calls within a single procedure resembles
a linear representation, but the hierarchical nature of
procedure calls places it outside of this category.

Graph-based GP systems represent programs as collec-
tions of nodes and connecting arcs. One such system
is PADO [Teller and Veloso, 1996]. The PADO pro-
gram representation is based on a directed graph; each
node specifies an action and a branch-decision and is
equipped with a stack and memory. After a node per-
forms its action, the branch-decision determines which
arc is taken, thus determining the next node. Another
example of a GP system that uses a graph-based rep-
resentation is Poli’s Parallel Distributed Genetic Pro-

gramming [Poli, 1997] (PDGP). As in the tree repre-
senation, nodes are operators or values, but PDGP
allows the nodes to be connected in a directed graph
with fewer constraints.

In addition to these three categories, various other
program representations have been used in GP.
For example, much work has been done with rep-
resentations that use grammars to structure pro-
grams and evolutionary operations [Whigham, 1995,
Wong and Leung, 1996, Freeman, 1998]. Another in-
teresting program representation is Yu’s based on func-
tional programming GP system, which generates pro-
grams based on the syntax of the A calculus [Yu, 1999].

But the procedural representation described here is, in
a sense, a hybrid of the tree and the linear represen-
tations. It has a tree structure based on the hierarchy
of procedure calls, and each procedure is a linear se-
quence of operations. Each operation in this sequence
is a call to another procedure. The tree of procedure
calls ends in leaves that are built-in procedures that
represent the basic operations of code, such as addi-
tion or subtraction. Our procedural representation is
described in more detail below.

3 DESCRIPTION OF THE SYSTEM

3.1 ARCHITECTURE

The software is provided as a library of C routines.
The user calls these routines to specify the problem to
be solved, to create the initial population, and to spec-
ify aspects of the evolution. Execution of individuals,
the genetic operations such as mutation and crossover,
and evolution are all handled with the library routines.

The user creates a GP system for a particular problem
by calling library functions for these operations:

e Define characteristics that apply to all individual
programs. This includes specification of inputs
and outputs of the top-level procedure, and char-
acteristics such as allowable branching and depth.

e Provide the fitness evaluation procedure. This is
done by passing a function pointer.

o Specify problem-specific operators. This is done
by providing a function pointer and an argument
list descriptor for each operator.

e Specify various operating parameters. These pa-
rameters include items such as population size,
mutation rates, and others.

e Initiate population creation and evolution.

It is important to note that a problem-specific operator
can encapsulate any algorithm, no matter how com-
plex, that may be related to the problem at hand. This
is one of the reasons that GP is an attractive technique
for the problems we address at NIST. Domain-specific
knowledge can easily be included into our GP system
by turning it into one of these customized operators.
The GP system can then make use of the algorithm
by including the operator in the evolved programs.

3.2 PROGRAM REPRESENTATION

Each individual program within the evolving popula-
tion is described as a hierarchy of procedures, which we
also refer to as routines. We do not call these functions
because they do not have return values. All data, both
input and output, are passed through items in an ar-
gument list. Here are some important features of this
representation:

e There are two types of routines:

— Composite routines call other routines

— Atomic routines do not call other routines;
these provide the basic operations of the GP
system (such as addition, subtraction, etc.).

e FEach routine has a formal argument list with
arguments identified as input, output, or in-
put/output. Use of these formal arguments within
a calling routine must honor these I/O attributes.

e Each formal argument may have a specified data
type or the data type may be left unspecified. If
it is left unspecified, the data type is determined
at run time from the data type of the actual argu-
ment that is passed to the routine for that formal
argument.

e FEach routine may have local transient variables
that are scoped only within a single invocation of
that routine. Local variables acquire a data type
only at run-time, when the variable is created with
the same type as an incoming argument.

e Data items such as arguments or local variables
may be either scalars or arrays.

e There are no global data.

e Each composite routine calls a sequence of other
routines. Each call must specify an actual argu-
ment list that corresponds to the formal argument
list of the called routine. Each actual argument is
either a formal argument in the calling routine, a
local variable of the calling routine, or a constant.

e There are composite routines that can be reused
multiple times within a program structure. These
are intended to serve the same purpose as auto-
matically defined functions (ADFs) as described
by Koza [Koza, 1994].

Note that this program representation enables the
modeling of programs that have multiple outputs.

Here is a text representation of a simple program. It
is presented in a C-like syntax, but it is important to
remember that this is not intended to be compilable
C code. Note that, in this example, formal arguments
and local variables are declared void+. This indicates
that the actual data types of these items are deter-
mined only at run-time. Some comments have been
added to clarify the program.

void PNO1 (void * arg00, /% IN */
void * arg0i, /* IN */
void * arg02, /* IN */
void * arg03 /* ouT */)
{
void * 1v00 ; /* Like arg 2 */

/* end of local variable list */

add (arg00, arg0l, arg03);

mult (arg00, arg03, argOl);

PNO2 (argOl, arg03, arg02, arg03, 1v00);
} /* end of PNO1 %/

void PNO2 (void * argQ0, /* IN */
void * arg0l, /% IN */
void * arg02, /* IN */
void * arg03, /* OUT */
void * arg04 /* QuT */)

{

/* end of local variable list */
sub (arg00, arg0l, arg04);

div (arg01, arg02, argO3);

add (arg03, 3.900, arg04);

} /* end of PNO2 */

3.3 ISSUES ARISING FROM PROGRAM
REPRESENTATION

Various problems are posed by this representation that
are not present when using a S-expression representa-
tion. Many of these problems result from the use of
argument lists and typed variables.

For example, in this procedural program representa-
tion, calculations may be performed and the results
placed in a variable. But before this result is used, the
value of the variable may be over-written by the result
of another calculation. Here is a list of this and related
problems:

e Querwritten result: The value of a variable is over-
written before it is used.

e Unused result: A procedure ends with a value in
a local variable that has not been used.

o Unset output argument: A procedure ends with-
out setting the value of an output argument.

e Uninitialized variables: The value of a local vari-
able is used before it is set. (Note that all local
variables are initialized to zero at the start of a
routine.)

These problems are not necessarily damaging to the
operation of a routine. But we discovered that they
occur frequently enough that the presence of these sit-
uations seemed to have a negative impact on success-
ful evolution. To address these issues we developed a
program repair operation. This operation scans a pro-
gram and looks for these situations and makes changes
in the use of the variables in order to eliminate the sit-
uation. Clearly the repaired program functions differ-
ently from the original program. We apply the repair
operation in somewhat the same way that we apply
the mutation operation. At each generation a certain
percentage of the individuals are selected for repair;
the resulting individuals are placed in the population
for the next generation.

Another source of difficulty that is caused by this
procedural representation is the valid operation of
crossover. Given the tree structure of procedure calls,
it seems reasonable to perform crossover by exchang-
ing procedural sub-trees between two parents. The
problem arises from the fact that the argument lists
of the procedures at the root of the two sub-trees may
not be the same. So when we try to replace a call to
a procedure with a call to a different procedure, the
actual argument list for the call to the old procedure
may not be compatible with the formal argument list
of the new procedure. We address this problem with
an algorithm that reconciles the old actual argument
list with the new formal argument list. This is done
by trying to preserve entries in the actual argument
list, using them as input, output, or input/output, ar-
guments as they were in the old call. Arguments are
eliminated or added as needed.

Problems also arise from the use of typed data. Data
type clashs can occur when, for example, an integer
is passed as an actual argument when the formal ar-
gument is a floating point variable. Another kind of
type clash occurs when scalar and array variables are
mixed. We are currently addressing this problem by
providing for automatic type conversion for all cases.
We are also looking at the possibility of implementing
strong typing.

Another problem that is not unique to our represen-
tation is program bloat. Program bloat is a common
problem and techniques for reducing bloat have been
studied [Langdon et al., 1999]. Program size can grow
to the point of causing extreme slow-down of evolu-
tion. We address this problem by introducing a prune
operation. This procedure goes through a program
and attempts to cut off as many program branches as
possible without hurting the fitness of the program.
As with the repair operation, the prune operation is
applied in a fashion similar to mutation.

This explicit form of pruning seems to be unlike many
previous attempts to control program bloat. The typ-
ical direct approach to this problem involves apply-
ing a fitness penalty so that larger programs are re-
garded as less fit than smaller programs. Our form
of pruning attempts to modify existing programs to
make them smaller without degrading their fitness.
Operations similar to this are sometimes used as a
type of mutation, such as the trunc operation of
Chellapilla, the shrink operation described by Lang-
don [Langdon, 1998], or the delete subtree operation
of Angeline [Angeline, 1998]. Our form of pruning is
also very similar to the reduced error pruning tech-
nique applied to decision trees [Mitchell, 1997].

4 OBSERVATIONS OF
POPULATION EVOLUTION

4.1 EFFICACY OF VARIOUS
OPERATING PARAMETERS

We have run a series of tests on several of the stan-
dard problems that appear in the GP literature, in-
cluding the two box problem [Koza, 1994] and a sym-
bolic regression problem. While these problems are
quite simple, currently they are the examples for which
we have the most data. We have run these problems
many times with various combinations of operating pa-
rameters (population size, mutation rate, etc.). Each
run was initialized with different seeds to the random
number generator, ensuring that all runs were unique.
These runs, while not exhaustive, have produced fairly
consistent results. Of course, these results might not
be applicable to all types of problems.

Much of what we found from these tests was expected.
For example, we found that larger populations were
more successful on average than smaller populations.
But other results were not entirely expected. We found
that a tournament size of 3 is better than a tourna-
ment size of 7; however completely random selection
(tournament size of 1) works surprisingly well. We
found that crossover is not only unnecessary, but that

it tends to hurt the system’s ability to find solutions.
It appears that mutation and repair (Section 3.3) are
the two main agents that generate movement toward
a solution. Both are essential and neither is effective
without the other.

80

—— Crossover, Mutation, & Repair
! . ----==- No Crossover
707 R No Mutation

L No Repair

60 4 |\
50

40 7

Fitness

30 7

20 |

10 7|

0 10 20 30 40 50 60 70 80 90 100

Generation

Figure 1: Average fitness for four different combina-
tions of operating parameters. Fitness is averaged over
120 runs for each set of parameters.

Figure 4.1 shows how different combinations of operat-
ing parameters can affect fitness. Each curve is the av-
erage of 120 runs of the two box problem [Koza, 1994].
One set of runs was done with an equal proportion of
crossover, mutation, and repair. Another set of runs
was done with mutation and repair but no crossover,
another with crossover and repair but no mutation,
and another with crossover and mutation but no re-
pair. The plot indicates that crossover has no ben-
eficial effect and the runs without crossover actually
have a somewhat better fitness on average than the
runs with crossover. The runs with no mutation or no
repair are clearly seen to be substantially worse that
the runs in which both mutation and repair are used.

4.2 PRUNING

An important result was that we found that our prun-
ing operation not only acts to control program bloat
without damaging fitness, but sometimes acts to im-
prove the fitness of programs on which it is applied.
We have observed cases in which the pruning opera-
tion has acted as a type of mutation that produces a
program that is substantially more fit that the pro-
gram that it started with. At times, pruning has been
observed to produce the most fit individual of the gen-
eration. This is an unexpected and intriguing result
and we will be investigating this effect in more detail.

4.3 INSTRUMENTATION OF THE CODE

We have instrumented our GP system to collect in-
formation about each generated program during the
evolution of the population. This information includes
number and type of procedures called, usage of vari-
ables and arguments, history of genetic operations
(mutation, crossover, etc.), generation of creation, and
ancestry.

These data have proven useful in guiding the develop-
ment of the GP system. For example, the statistics
on the use of local variables and arguments motivated
the implementation of the repair function described in
Section 3.3.

4.4 VISUALIZATION

The data provided by the instrumentation described
in Section 4.3 proved to be difficult to interpret in
many situations. This motivated the implementation
of a visual representation of populations and individ-
ual programs. These visualizations do not capture all
aspects of the programs but we have found that they
have provided interesting insights into the evolution
of populations. For each individual in the population,
the visualizations provide information about the fit-
ness, ancestry, program structure, and composition.

(Note: Figures 2 and 3 can be found on-line at
http://math.nist.gov/mcsd/savg/papers/g2001.html.)

compositio
and size

genetic
history

relative
fitness

Figure 2: Visualization of a population.

Figure 2 shows a visualization of a population of 128
individuals. Although reproduced here in grey levels,
the image contains colors that convey important infor-
mation. Each program is represented by one vertical
column. As indicated in the figure, three aspects of
each program are represented. The upper part is a

visual representation of the of the content of the pro-
gram. Each block of color in this section corresponds
to a procedure in the program. Atomic routines are
each given a different grey level and composite pro-
cedures are assigned a color that indicates ancestry.
In the middle section, the sequence of genetic opera-
tions that brought each individual into existence is pre-
sented. Each operation such as crossover, mutation,
repair, and pruning is given a unique color. Finally,
the lower portion of the image presents a normalized
view of the fitness of each individual. In Figure 2, the
individuals have beens sorted by fitness with the most
fit individuals on the left.

These visualizations have been particularly useful in
gaining insights into the preservation and loss of di-
versity in populations. In Figure 2 we can see groups
of programs that are clearly related by structure and
ancestry. Figure 3 shows the same population at a
later stage of evolution. The loss of diversity is evi-
dent. Almost all members of the population are de-
rived from only two ancestors. Furthermore, it is clear
that many individuals share identical genetic histories
through approximately half of the duration of the evo-
lution, suggesting a common ancestor from that gen-
eration. Looking at the composition of the programs,
it is also easy to see large segments of the population
within which all members have very similar structures.

As a result of these visualizations, we feel that loss of
diversity, as illustrated so dramatically in Figure 3, can
be a substantial problem. The qualitative assessments
of the population via visualization has motivated and
is guiding our efforts in this area.

Figure 3: A population showing a substantial loss of
diversity.

5 FUTURE WORK

Our GP system, based on a procedural program repre-
sentation, provides a foundation on which we are con-
tinuing to build. There are many directions in which
we would like to extend the system. We intend, for
example, to provide greater flexibility in the the pro-
gram structures allowed. One possibility in this area is
to allow an individual within the population to consist
of a group of program branches. The programs within
a group would co-evolve and it would be the respon-
sibility of the fitness evaluator to apply the multiple
branches in concert to the desired problem.

Another area that we would like to enhance and inves-
tigate is the use of data types. Our program structures
enable us to give data type and scalar/array attributes
to data items in the programs. But this is a feature
of the system that remains largely unexploited and
unexplored. Finally, we intend to do substantial de-
velopment in the areas of diversity and parallelization
as described in the following sections.

5.1 MEASURES OF DIVERSITY

Diversity is considered to be an important factor
in the success of program evolution [Koza, 1992,
Banzhaf et al., 1998]. Langdon in particular has done
an extensive investigation into the underlying mecha-
nisms that affect diversity and has performed statisti-
cal analyses of actual evolutions [Langdon, 1998].

The visualizations described in Section 4.4 have pro-
vided important qualitative information on the preser-
vation and loss of diversity in evolving populations.
On the basis of these visualizations, we have become
convinced that loss of diversity is a critical issue in the
failure of GP runs. But without a more quantitative
measure of diversity, we will have difficulty assessing
the success of any effort to preserve diversity.

We have begun implementing a diversity measure
based on a the measurement of similarity between
pairs of programs in the population. We are using Lev-
enshtein or edit distance [Sankoff and Kruskal, 1983]
as this measure of similarity. This measure was used
by O’Reilly [O’Reilly, 1997] as a tool for understanding
the effect of crossover on population diversity. O’Reilly
describes two diversity measures based on edit distance
(BI-POP distance, and BI-POOL distance) that are
based on the selection of a small number of individuals
from the collection of best individuals and calculating
distances from these individuals to other members of
the population. We are implementing these metrics as
well as another of our own design.

We should note that our procedural program represen-
tation presents a few problems in the implementation
of the algorithm for calculating edit distance. Our
composite nodes and the information contained in ar-
gument lists do not easily fit the schemes described by
Sankoff and Kruskal [Sankoff and Kruskal, 1983]. We
are addressing this problem by simplifying the rep-
resentation before calculating the edit distance. We
simply regard each program as a string of tokens; each
token corresponds to a procedure in the program. All
composite procedures are represented by the same to-
ken, and each atomic function is represented by a
unique token. They are arranged in execution order.
Edit distance between two programs is then computed
by the conventional algorithm for calculating edit dis-
tance between two strings. Although this approach,
of course, discards lots of information, it also retains
a great deal of information about the structure and
content of each program. We believe that the simpli-
fication of the data and the resulting simplification of
the algorithm will give us a diversity measure that is
both useful and reasonably easy to compute.

We are also pursuing another approach to gauging di-
versity that is based on tracking the ancestry of in-
dividuals. Our instrumentation enables us easily to
determine how many ancestors from a given previous
generation are represented in the current population.
We believe that diversity is likely to be better when
more individuals have descendants in subsequent gen-
erations. If this is so, then this measurement of ances-
try could prove a powerful indicator of diversity.

5.2 PARALLELIZATION

We are planning to parallelize our GP system using the
asynchronous island model [Bennett III et al., 1999,
Andre and Koza, 1996]. For portability among the
various computing platforms at NIST, we are bas-
ing our parallelization on the Message Passing Inter-
face (MPI) [MPI Forum, 1998]. MPI is an industry-
standard library of message passing routines available
on a wide variety of platforms. With the definition of
the Interoperable MPI standard [George et al., 2000],
we anticipate that it will be increasingly feasible to dis-
tribute our GP runs across heterogeneous collections
of machines.

The relatively complex data structures used in our pro-
cedural representation could make passing individual
programs via MPI difficult. This problem is addressed
by AutoMap and AutoLink [Goujon et al., 1998,
Michel and Devaney, 2000]. These MPI-based tools
were developed at NIST to facilitate the passing of
complex C data structures.

AutoMap is a tool that automates the process of cre-
ating data-types for use with MPI, and AutoLink en-
ables the sending of these composed data-types con-
taining pointers using MPI via simple library calls.
All MPI data type creation, data packing, unpacking,
and pointer referencing and dereferencing is handled
automatically. One of the large benefits of AutoMap
and AutoLink is that changes to data structures that
might occur from problem to problem do not require
recoding. These tools greatly simplify the passing of
our procedurally defined programs among processes in
a parallel processing environment.

Acknowledgments

We would like to acknowledge valuable input and sup-
port from Barbara Cuthill and John Hewes, and fi-
nancial support from the NIST Advanced Technology
program. We would also like to thank Bill Langdon for
his important suggestions for improving this paper.

References

[Andre and Koza, 1996] Andre, D. and Koza, J. R.
(1996). A parallel implementation of genetic pro-
gramming that achieves super-linear performance.
In Proc. International Conf. on Parallel and Dis-

tributed Processing Techniques and Applications,
volume III, pages 1163-1174. CSREA.

[Angeline, 1998] Angeline, P. J. (1998). Multiple in-
teracting programs: A representation for evolv-
ing complex behaviors. Cybernetics and Systems,
29(8):779-806.

[Banzhaf, 1993] Banzhaf, W. (1993). Genetic pro-
gramming for pedestrians. In Forrest, S., edi-
tor, Proc. 5th International Conf. on Genetic Al-
gorithms, page 628. Morgan Kaufmann.

[Banzhaf et al., 1998] Banzhaf, W., Nordin, P,
Keller, R. E., and Francone, F. D. (1998). Genetic
Programming — An Introduction; On the Auto-
matic FEvolution of Computer Programs and its
Applications. Morgan Kaufmann.

[Bennett IIT et al., 1999] Bennett III, F. H., Koza,
J.R., Shipman, J., and Stiffelman, O. (1999). Build-
ing a parallel computer system for $18,000 that per-
forms a half peta-flop per day. In Proc. of the
Genetic and Evolutionary Computation Conf., vol-
ume 2, pages 1484-1490. Morgan Kaufmann.

[Devaney et al., 2001] Devaney, J., Hagedorn, J.,
Nicolas, O., Garg, G., Samson, A., and Michel,
M. (2001). A genetic programming ecosys-
tem. In Proceedings 15th International Parallel

and Distributed Processing Symposium, page
131. IEEE Computer Society. Available online:
<http://math.nist.gov/mcsd/savg/papers/bio.ps>.
Accessed 16 May 2001.

[Freeman, 1998] Freeman, J. J. (1998). A linear rep-
resentation for GP using context free grammars.
In Genetic Programming 1998: Proc. Third Annual
Conference., pages 72-77. Morgan Kaufmann.

[George et al., 2000] George, W. L., Hagedorn, J. G.,
and Devaney, J. E. (2000). IMPI: Making MPI
interoperable. J. Res. Natl. Inst. Stand. Technol.,
105(3):343-428.

[Goujon et al., 1998] Goujon, D., Michel, M., Peeters,
J., and Devaney, J. E. (1998). AutoMap and Au-
toLink: Tools for communicating complex and dy-
namic data-structures using MPI. In Lecture Notes
in Computer Science, volume 1362, pages 98-109.
Springer-Verlag.

[Koza, 1992] Koza, J. R. (1992). Genetic Program-
ming: On the Programming of Computers by Means
of Natural Selection. MIT Press.

[Koza, 1994] Koza, J. R. (1994). Genetic Program-
ming II: Automatic Discovery of Reusable Pro-
grams. MIT Press.

[Koza et al., 1999] Koza, J. R., Andre, D., Bennett
ITI, F. H., and Keane, M. (1999). Genetic Program-
ming 8: Darwinian Invention and Problem Solving.
Morgan Kaufman.

[Langdon, 1998] Langdon, W. B. (1998). Data Struc-
tures and Genetic Programming: Genetic Program-
ming + Data Structures = Automatic Program-
ming!, volume 1 of Genetic Programming. Kluwer.

[Langdon et al., 1999] Langdon, W. B., Soule, T,
Poli, R., and Foster, J. A. (1999). The evolution
of size and shape. In Advances in Genetic Program-
ming 3, chapter 8, pages 163—-190. MIT Press.

[Lukschandl et al., 2000] Lukschandl, E., Borgvall,
H., Nohle, L., Nordahl, M., and Nordin, P.
(2000). Distributed java bytecode genetic program-
ming. In Genetic Programming, Proceedings of Fu-
roGP’2000, volume 1802 of LNCS, pages 316-325.
Springer-Verlag.

[Michel and Devaney, 2000] Michel, M. and Devaney,
J. E. (2000). A generalized approach for transferring
data-types with arbitrary communication libraries.
In Proc. Workshop on Multimedia Network Systems,
7th International Conf. on Parallel and Distributed
Systems, Iwate, Japan.

[Mitchell, 1997] Mitchell, T. M. (1997). Machine
Learning. McGraw-Hill.
[MPI Forum, 1998] MPI Forum (1998). MPI-2: A

message-passing interface standard. The Interna-
tional Journal of Supercomputer Applications and
High Performance Computing, 12(1-2).

[Nordin, 1994] Nordin, P. (1994). A compiling genetic
programming system that directly manipulates the
machine code. In Advances in Genetic Program-
ming, chapter 14, pages 311-331. MIT Press.

[O’Reilly, 1997] O’Reilly, U.-M. (1997). Using a dis-
tance metric on genetic programs to understand
genetic operators. In Late Breaking Papers, 1997
Genetic Programming Conference, pages 199-206.
Stanford University.

[Poli, 1997] Poli, R. (1997). Evolution of graph-like
programs with parallel distributed genetic program-
ming. In Back, T., editor, Genetic Algorithms: Pro-
ceedings of the Seventh International Conference,
pages 346-353. Morgan Kaufmann.

[Sankoff and Kruskal, 1983] Sankoff, D. and Kruskal,
J. B., editors (1983). Time Warps, String Edits,
and Macromolecules: The Theory and Practice of
Sequence Comparison. Addison-Wesley.

[Teller and Veloso, 1996] Teller, A. and Veloso, M.
(1996). PADO: A new learning architecture for ob-
ject recognition. In Symbolic Visual Learning, pages
81-116. Oxford Univ. Press.

[Whigham, 1995] Whigham, P. A. (1995).
Grammatically-based genetic programming. In
Rosca, J. P., editor, Proceedings of the Workshop on
Genetic Programming: From Theory to Real-World
Applications, pages 33—41.

[Wolpert and Macready, 1997] Wolpert, D. H. and
Macready, W. G. (1997). No free lunch theorems
for optimization. IEEE Transactions on Evolution-
ary Computation, 1(1):67-82.

[Wong and Leung, 1996] Wong, M. L. and Leung,
K. S. (1996). Evolving recursive functions for the
even-parity problem using genetic programming. In
Angeline, P. J. and Kinnear, Jr., K. E., editors, Ad-
vances in Genetic Programming 2, chapter 11, pages
221-240. MIT Press.

[Yu, 1999] Yu, G. T. (1999). An Analysis of the Im-
pact of Functional Programming Techniques on Ge-
netic Programming. PhD thesis, University College,
London.

