Welcome

to the

Metallurgy Division

and the

NIST Workshop on Diffusion Challenges Associated with Sustainable Energy Applications

March 25-26, 2009

Frank W. Gayle Division Chief

- Agency within the Department of Commerce
- 2,800 employees (1,500 technical staff)
- 1,000 associates
- Core Program: NIST Laboratories
 \$440 M FY 2007 & 08
 → \$472 M FY 09 + \$220 M "stimulus"
- Manufacturing Extension Partnership
- Baldrige National Quality Award
- Technology Innovation Program

To promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology

in ways that enhance economic security and improve our quality of life.

NIST Products and Services Include

> Measurement Research

2,200 publications/year

> Standard Reference Data

100 types available

130 million datasets downloaded/year

Standard Reference Materials

1,300 products available

33,000 units sold/year

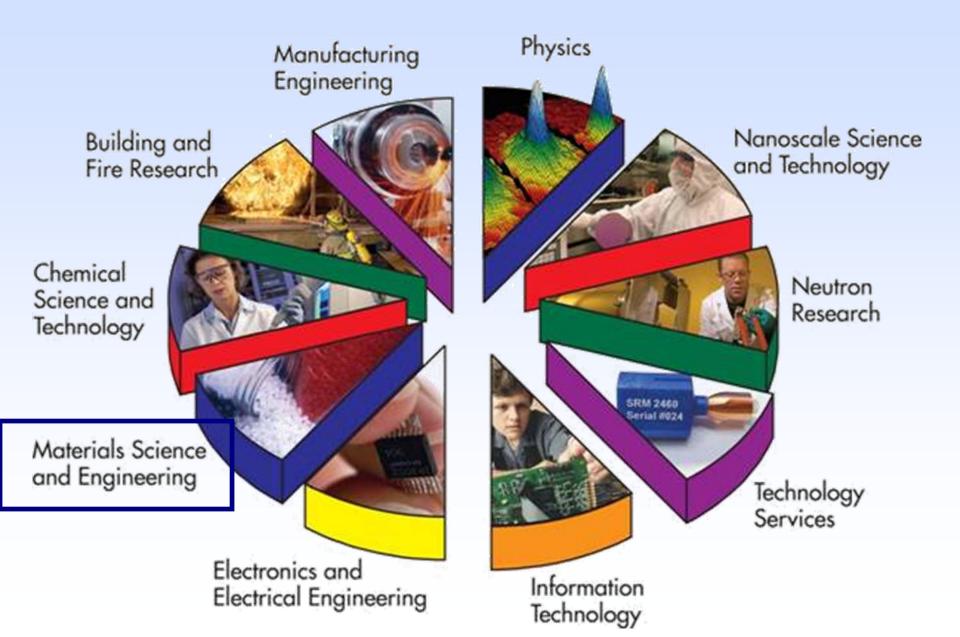
Calibrations and Tests

16,000 calibrations/year

> Laboratory Accreditation

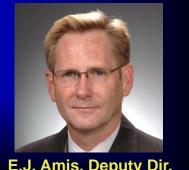
800 accreditations

> Technical Workshops


8,000 participants/year

Standards Committees

400 members, 1000 committees, 150 (co)chairs, 100 SDOs


Core Program - The NIST Laboratories

Materials Science and Engineering Laboratory (MSEL)

E.J. Amis, Deputy Dir.

111 technical staff 256 guest researchers \$41.5M STRS Budget \$50.6M Total Budget

Ceramics

D.L. Kaiser, Chief Electronic & Optoelectronic Materials Characterization Methods Data and Standards Technology

Nanomechanical Properties

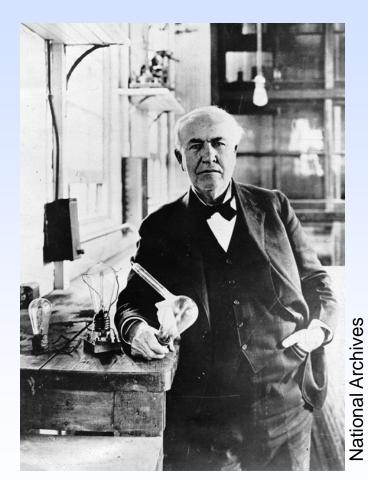
Materials Reliability

S. Hooker, Chief Nanoscale Reliability Structural Materials Cell and Tissue Mechanics

Metallurgy

F.W. Gayle, Chief Thin Film and Nanostructure Processing **Magnetic Materials** Materials Performance Thermodynamics and Kinetics

E.K. Lin, Chief Characterization and Measurement **Electronics Materials Biomaterials** Nanostructured Materials **Processing Characterization**


Polymers

Combinatorial Methods

Early NIST: Founded 1901

- Established by Congress in 1901
- Eight different "authoritative" values for the gallon
- Nascent electrical industry needed standards
- American instruments sent abroad for calibration
- Consumer products and construction materials uneven in quality and unreliable



Early drivers for standards and measurements

1904

Out-of-town fire companies arriving at a Baltimore fire cannot couple their hoses to the hydrants. 1526 buildings razed.

1912
41,578 train derailments in the previous decade lead to NBS measurement and test program.

Magnetic Materials

Nanomagnetics

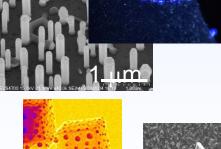
Sensors

Magnetic Applications

Materials Performance

Sheet Metal Forming

Pipeline Safety for the Hydrogen Economy


Mechanical Performance
– Extreme Conditions

Nanomechanics: Atomistics

Hardness Standardization – Rockwell, Vickers, Knoop

Thin Film & Nanostructure Processing

Nanostructure Fabrication Processes

Thermodynamics and Kinetics

Microstructural Modeling

Microscopy Methods

Hydrogen Storage

Surface & Growth Stress Measurement

Mass Fraction

Thermodynamic & Kinetic Data and Models

Lead-free Surface Finishes, Tin Whiskers