Gas Adsorption in Metal Organic Frameworks

Anthony Ayala NIST SURF 2016

Overview

- Challenges facing energy storage
- Applications of neutron scattering
 - Locations of molecules
 - interaction strengths
- Future directions
- Conclusion

Transportation fuels (away from gasoline)

Congress initiative

\$1.2 Billion to develop the technology for commercially viable hydrogen-powered fuel cells (2003)

Why hydrogen is special

H₂ has 3x energy content by mass c.f. gasoline

Gasoline has 4x energy content by volume c.f. H₂

Schlapbach and Zuttel (2001) Nature 414: 353-358

Challenges

- Weight and volume
- Efficiency
- Refueling time

DoE 2020 Storage Targets

Gravimetric capacity	5.5 mass% H ₂
Volumetric capacity	40 g H ₂ /L
Operating temperature	-40 to 60 °C
Maximum pressure	100 bar
Refueling rate	1.67 kg H ₂ /min
Cost	\$333 per kg H ₂

A Metal Organic Framework (MOF) with a high density of exposed M²⁺ sites

M₂ (dobdc), M-MOF74 M= Mg, Mn, Fe, Co, Ni, Cu, Zn

Co₂(*m*-dobdc)

How and Why

Comparison of Neutron and X-ray cross sections

Where are the deuteriums-Bare $Co_2(m-dobdc)$

Refinements in GSAS

Where are the deuteriums?

Where are the deuteriums?

Fourier difference to locate D₂ in Co₂ (*m*-dobdc)

Gas adsorption isotherms

Future directions-Hydrocarbon separations

20

Future directions-Hydrocarbon separations

NIST

Conclusions

- Neutrons used to validate storage capacity
 Reveal location of gas at angstrom scale
- Diffraction shows clear differences in affinities for small hydrocarbons

- Refinements coming soon

Acknowledgements

- Craig Brown and Jacob Tarver
- Jeff Long
- NIST and the SURF Program
- The NCNR CHRNS
- Julie Borchers and Joe Dura
- Dan Neumann

