

Boron Nanowires for Flexible Electronics and Field Emission

Hongjun Gao and Jifa Tian

Institute of Physics, CAS, Beijing, China

OUTLINE

Introduction

- Four Probe STM Setup: Imaging and I-V Measurements
- Boron Nanostructures: synthesis and characterization
- Properties of Boron Structures: electrical, mechanical and field emission

Conclusions

OUTLINE

Introduction

- Four Probe STM Setup: Imaging and I-V Measurements
- Boron Nanostructures: synthesis and characterization
- Properties of Boron Structures: electrical, mechanical and field emission

Conclusions

1D Semiconductor Nanostructures

- Nanotechnolgy: Work at the atomic, molecular and supramolecular levels, in order to understand and creat materials, devices and systems with fundamentally new properties and functions becasue of their small structures.
- ID nanostructures: 1/1000 the size of a human hair, high surface area to volume ratio, ranges from 10 nm to 100 nm in diameter
- Synthesis techniques: laser ablation, CVD, MOVPE, CBE, MBE....
- Applications: Nanotransistors, field emitters, energy and charge Storage ...

Nature 393 (1998)

Flexible Technology and Field Emission

Circuits

Displays

Flexible nanomaterials: inorganic semiconductors and organic conducting materials.

Challenge: (1) The high-performance inorganic electronic materials such as silicon tend to fracture under 1% tensile strain. (2) Carbon nanotubes have shown great promise for applications in flexible electronics, ill control of structural chirality makes them a big challenge for being useful in high-performance integrated circuits.

New materials and techniques need to be developed!

Properties:

- Low density , 2.364 g/cm³ ;
- High melting point , 2300 °C ;
- Large bulk Young's modulus of 380–400 GPa
- Extreme hardness close to diamond
- Only non-metallic element that has fewer than 4 electrons in its outer shell ;
- Unusual three-center sp2 hybrid valence bond
- Electron configuration is 1s22s22p
- Poor conductor at room temp but good at high temps

Structures:

Boron

(a) B₁₂ icosahedron (b) Tetragonal B (c) α- rhombohedral B (d) β- rhombohedral B

Applications:

- Lightweight coating ;
- High-temperature semiconductor devices ;
- Neutron absorbent ;
- Surface catalyst

Theoretical Work on Boron Nanostructures

J. Chem. Phys. 110 (1999) 3176

PRL 99 (2007) 115501

Aufbau principle

Boron NT and sheet can be formed by B_7 cluster.

PRB 78 (2008) 201401

ChemPhysChem 6 (2005) 2001

PRB 77 (2008) 041402 Can boron nanotube be synthesized?

Experimental Work on 1D Boron

Adv. Mater. 2001 13 1701

Adv. Mater. 2001 13 1487

4020.00.20.40

Chem. Comm. 2002 2806

Nano Lett 2006 6 385

H. J. Gao et al. Adv. Mater 2007 *19* 4480

Properties of Boron Nanostructures

50.40.20.00.20.40.6 Voltage (V) 30 35 40 45 50 5 V(V)

J AM CHEM SOC 2002 124 4564

Appl. Phys. Lett. 2003 83 5280

Appl. Phys. Lett. 86, 212101 (2005)

H. J. Gao et al. Adv. Mater 2007 19 4480

OUTLINE

Introduction

- Four Probe STM Setup: Imaging and I-V Measurements
- Boron Nanostructures: synthesis and characterization
- Properties of Boron Structures: electrical, mechanical and field emission

Conclusions

MBE-FSTM Combined System

Four probe STM

2009 Frontiers of Characterization and Metrology for Nanoelectronics, NY, May 11-15, 2009

MBE

Nanoprobe Stage

- Four independent STMs
- Atomic resolution (with IDE air spring)
- Temperature: from 30K to 500K (with CryoVac)

Four Probe STM System

30 35 40 45 50 5

4020.00.20.40.6

I-V Measurements with Keithley SCS-4200

- Three independent source-measure units (SMUs) and their preamplifiers (PAs)
- Common ground unit (GNDU)
- Capable for fourterminal-method
- Current resolution: 1E-15A

Optical Property Measurements with Acton Inspectrum-300-122B

- Wavelength: 200 ~ 900nm
- Resolution:0.2nm
- CL spectrum (SEM) &
 tunneling current induced photon emission (STM)
- Others after slight alteration in inducing source

Optical Measurements Setup

-

30 35 40 45 50 50 V(V)

604020.00.20.40.6 Voltage (V)

Vacuum System and Other UHV-MBE-STMs

STM Imaging: Atomic Resolution Capability

HOPG I=500pA, V=70mV B nanowire on HOPG I=500pA, V=300mV

30 35 40 45 50 5

Manipulation of Nanowires: Pushing

30 35 40 45 50 55

0.4020.00.20.40.6 Voltage (V)

Manipulation of Nanowires: Hocking

30 35 40 45 50

Manipulation of Nanowires: Hocking

Manipulation of Nanowires and I-V Measurements

Manipulation of Nanowires: I-V Measurements

Manipulation of Nanowires: Cutting and Annealing

Cutting

Sublimation

Manipulation of Nanowires: I-V Measurements

SEM image: 25µm x 25µm

Manipulation of Nanowires: I-V measurements

CL Property of ZnO Nanowires

30 35 40 45 50 5 V(V)

4020.00.20.40.6

I-V Measurements of Strained ZnO Nanowires

30 35 40 45 50

I-V Properties of A Strained Nanowire during Bending Process

30 35 40 45 50

2009 Frontiers of Characterization and Metrology for Nanoelectronics, NY, May 11-15, 2009

CL Property and Temperature- Conductance Relationship Of ZnO Nanowires

Strong emission of green-light
High electrical conductance
Slight change during T change
R is proportional to InT at LT

2D metal-like characteristic

Low temperature (30K)

Theoretical Considerations

Weak localization: $R \propto -p \ln T$

$$\sigma = \alpha \ln T + \frac{\beta}{1 + \exp(\Delta E / K_B T)} + \gamma \qquad (\alpha = \frac{e^2 p}{\pi h} = 1.2 \times 10^{-5} \times p)$$

$$\sigma = 1.0 \times 10^{-5} \ln T + \frac{0.00048}{1 + \exp(530.2/T)} + 0.00056$$

X. Lin/H.J. Gao et al., APL 2007

OUTLINE

Introduction

- Four Probe STM Setup: Imaging and I-V Measurements
- Boron Nanostructures: synthesis and characterization
- Properties of Boron Structures: electrical, mechanical and field emission

Conclusions

Experimental Details: Thermo-reduction of boron-oxygen compounds with active metal

Precursors: B, B₂O₃ and Mg

Catalyst: Fe₃O₄ nanoparticles

Substrate: Si (111) and STM tips

Carrier gases: $5 \sim 10\% \text{ H}_2/\text{Ar}$

Reaction temperature: 400 °C for 30 min ; 1100 ~ 1200 °C for 2 h

Controllable Growth of Boron Nanowires

High density

Pattern

STM tip

Structures of Boron Nanowires

The Composition of Boron Nanowires

a) A typical EELS spectum from individual nanowire; b) K-shell ionization edge of the boron is clearly seen at about 188 eV; c, d, e) The EELS for possible impurities of carbon (284 eV), oxygen (532 eV) and magnesium (1305 eV), respectively.

The EFTEM Image of Boron Nanowire

a) Typical TEM image of boron nanowire; Elemental mappings ofb) boron, c) carbon, d) iron and e) oxygen.

OUTLINE

Introduction

- Four Probe STM Setup: Imaging and I-V Measurements
- Boron Nanostructures: synthesis and characterization
- Properties of Boron Nanowires: electrical, mechanical and field emission

Conclusions

I-V characteristics : Ohmic contact (two terminal measurement -23,13,14) (Electrodes are Pt)

The Temperature Dependent Behavior of B NWs

for the three-dimensional VRH

Robust Conductance and Flexibility of B NWs

a) $\rho = 139.3\Omega \cdot cm$, effective length L_{effect} =23.45 µm, diameter d=150 nm.

b)
$$\rho = 143.8 \,\Omega \cdot cm$$
,
 $L_{effect} = 20.08 \,\mu m$

- $\rho = 142.4\Omega \cdot \text{cm}, L_{\text{effect}} = 20.44$ c) μm, and the distortion of the nanowire is 3%.
- d) After releasing the strain.
- e) $R_1 = R_2 / R_1 + R_2$ vs T, where R_1 and R_2 are the resistances of boron nanowire without and with 3% strain f)
 - Temperature dependence.

Field Emission---High Density B NWs Film

Turn-on Field : the applied field when the emission current gets to $10\mu A/cm^{2}$.

Threshold Field : the applied field when the emission current gets to 1 mA/cm^{2} .

E_{on} =5.7 V/ μm	B nanocone	AlN nanocone	CNT
	3 V/ μm	12 V/ μm	2.5 V/ μm
$E_{th}=9 \text{ V}/\mu\text{m}$	5.3 V/ µm		

Field Emission of Patterned B NWs Film

Field Emission Properties of A Single B Nanowire

Turn on field : 70 V/ μ m at 500 nm

ZnO nanowire: 10²~10³ LaB₆ NW: 10³~10⁴

OUTLINE

Introduction

- Four Probe STM Setup: Imaging and I-V Measurements
- Boron Nanostructures: synthesis and characterization
- Properties of Boron Carbide NanoStructures: electrical, mechanical and field emission

Conclusions

SEM and TEM Structure of B₄C Nnaowires

- A) The SEM image of large-scale boron carbide nanowires.
- B) The SEM image of high density boron carbide nanowires with higher magnification.
- C) The side-view SEM image showing some protrusions of boron carbide nanowires.
- D) The TEM image of boron carbide nanowires.
- E) The HRTEM image of boron carbide nanowire, the inset is the 1) 1100 °C: FT 20 30 nm: corresponding FFT pattern from the HRTEMstalligne; 4). Nanowires.

Composition and Distribution of B₄C nanowires

The EELS from Boron carbide nanowire showing characteristic B and C K-edges at 188 eV and 284 eV. B: C = 4.08

(A) TEM image. (B) The mapping image of boron. (C) Carbon. (D) Iron.

VLS growth mechanism

Field Emission Property of B₄C Nanostructure Films

The FE current density (J) is turned on at 4.0 V/ μ m and steadily increases to 2.48 mA/cm² at 20.6 V/ μ m. Then it experiences a sudden drop to 1.43 mA/cm² when the applied field (E) passes 20.6 V/ μ m.

Field Emission Property of B₄C Nanowire Films

The turn-on field was decreased from 3.8 V/ μ m to 3 V/ μ m corresponding to the vacuum gaps increased from 300 μ m to 1000 μ m. The current fluctuation is less than 9%.

The turn-on fields decreases (16 V/ μ m to 6.3 V/ μ m) with increasing vacuum gaps (100 μ m to 1000 μ m).

The high field emission current of B_4C nanowires is very stable with fluctuation below 5%.

There is no current decline during a long-term emission.

Field Emission Property of a Single B₄C Nanowire

Voltage (V)

30 35 40 45 50 5 V(V)

Boron Nanoswords: Growth and Properties

400°C, 0.5h,
 8.0X10² Pa;
 1200°C, 2h,
 5.5X10³ Pa。

4020.00.20.404

10-5 nm
Thickness:
a few tens nm

Conclusions

- We have developed a novel synthetic route for controllable growth of high quality boron nanowires.
- > The electrical transport of single boron nanowires shows room temperature conductivity of 4.4 x 10⁻⁴ (Ω •cm)⁻¹, and follows the Mott's VRH mechanism. This electrical conductivity is very robust under mechanical strain up to 3% which indicted that boron nanowires show excellent flexibility.
- FE characteristic of boron nanowires film, patterned boron nanowires film and a single boron nanowire reveal a high field emission current density from them. Boron nanowire material is a good candidate for field emission applications.

Acknowledgements

L. Gao, Y.L. Wang, X. Lin, Y. Pan, Q. Liu, H.G. Zhang, Z.T. Deng, Z.H. Cheng, X.B. He, W. Ji, S.X. Du, C.M. Sheng, D.X. Shi, and IOP CAS, China

Feng Liu, Utah U., USA Qian Niu, UT-Austin, USA X.C. Xie, IOP/ASU Werner Hofer, Liverpool Univ., UK Hong Guo, Mcgill U., Canada

0 0 0 0 0 0

The National Science Foundation of China, MOST "863" and "973" projects, and Chinese Academy of Sciences

Thank you for your attention!