

Sequential Testing that Better Predicts Field Performance

Atlas-NIST Workshop 2017 December 4-6, 2017

William Gambogi, Steven MacMaster, Bao-Ling Yu, Thomas Felder, Hongjie Hu, Kaushik Roy Choudhury, and T. John Trout

DuPont Photovoltaic Solutions

For over 40 years

our material innovations have led the photovoltaics industry forward, and helped our clients transform the power of the Sun into power for us all. Today we offer a portfolio of solutions that deliver **proven power and lasting value** over the long term. Whatever your material needs, you can count on quality DuPont Photovoltaic Solutions to deliver the performance, efficiency and value you require, day after day after day...

Outline

- PV Market
- Stresses in the PV Field
- Field Examples
- PV Module Qualification and Limitations of IEC Qualification
- Approaches to Assessing PV Module Durability
- Reducing the Duration of PV Module Assessment
- Conclusions

Global PV Installations and Largest PV Installations

Tengger Desert Solar Park, 1.5GW, China

Datong Solar Power Top Runner Base, 1.0 GW, China

ongyangxia Dam Solar Park, 850MW, China Kamuthi Solar Power Project, 648MW, India

Data: IHS. Graph: PSE AG 2017

Kurnool Ultra Mega Solar Park, 900 MW, India

Copyright © DuPont 2017. All rights reserved.

2016

197

1,919,000

3.4

453

200,000

0

400,000

KW inspected

DuPont 2016 Field Analysis and Database - Overview

600.000

Field Degradation and Defect Categories

Other defects

TÜV Rheinland Data Shows Causes of Defects

11.06.2015

Intersolar 2015 - Roundtable Solarpraxi

Increasing trend of module related issues reported (19% to 48%)

Defective backsheet and delamination termed "Particularly Serious Defects".

Florian Reil Intersolar EU, 2015

TÜVRheinland[®]

Precisely Right

Stresses in the PV Field

- Photovoltaic modules are exposed to a wide range of stress conditions
- Stresses operate on the module simultaneously and sequentially, synergistic effects are observed

Shortcomings of Current Qualification Tests

Current IEC qualification standards

- were designed to identify early failures due to module design, not predict long term durability
- do not address synergistic effects of multiple stresses in the field
- do not adequately address durability of materials to UV exposure and weathering
- UV and weathering tests are typically not applied to modules due to the equipment challenges associated with large area UV and weathering exposure
- Only 10 modules used to establish PV module qualification
- Relatively low durability stress conditions

DuPont Single Exposure Testing Protocols

Test	Exposure Condition	Evaluation	Technical Reason		
Damp Heat		1000h	adequate for PET hydrolysis damage		
	85°C, 85%RH	2000h	test-to-failure		
		>3000h	test-to-failure		
	UV, 70°C BPT	275 kWh/m ²	dosort climato (25 year equivalent)		
	0.55 W/m²-nm at 340nm,	(4230 h)	desert climate (25 year equivalent)		
UV	~60 W/m² (300-400nm)	235 kWh/m ²	tropical climate (25 year equivalent)		
(Junction Box Side)		(3630 h)			
		171 kWh/m²	temperate elimete (25 year equivelent)		
		(2630 h)	temperate climate (25 year equivalent)		
UV (Encapsulant Side)	UV, 70°C BPT		desert condition (6 - 16 year equivalent)		
	1.1W/m²-nm at 340nm,				
	~120 W/m² (300-400nm),	550 kWh/m²	tropical condition (7 - 19 year equivalent)		
	glass/EVA/EVA filter,	(4600 h)			
	Standard and UV transmissive EVA	(4000 11)			
			temperate condition (10 - 26 year equivalent)		
Thermal Cycling	-40°C, 85°C, 200cyc	1x, 2x, 3x	3 x IEC requirement		
Thermal Cycling /	-40°C, 85°C (50cyc);	1, 0, 0,			
Humidity Freeze	-40°C, 85°C 85%RH (10cyc)	1x, 2x, 3x	3 x IEC requirement		

• Damp heat testing to 1000 hours is more than sufficient for PET hydrolysis over 25 years of outdoor exposure

- UV testing needs to be extended to 25 years to adequately address backsheet performance in the outdoor environment
- Dosage for UV testing should match 25 year outdoor exposure to insure durability

Module Accelerated Sequential Test (MAST1)

Most predictive test for backsheet field performance. Appropriate for component, minimodule, or full size module testing

Module Accelerated Sequential Test (MAST2)

Shortened MAST by using higher intensity UV Xenon exposure for shorter time at higher 90°C BPT. Results are equivalent to original MAST.

MAST Test Results

Yellowing in PET Backsheets in Test #1

Cracking in 1s PVDF Backsheet

Cracking in PA Backsheet

Copyright © DuPont 2017. All rights reserved.

Fielded Module Examples

Yellowing in PET Backsheets observed in the field

Cracking and delamination in 1s PVDF Backsheet

> Cracking in PA Backsheet

MAST Alternative Testing Sequences

Damp Heat & Thermal Cycling

Combines two important stress factors in a shorter test not requiring full size, expensive UV equipment.

Test Conditions DH 85C/85%RH Thermal Cycling 85°C <=> -40°C UVA & Water Simulation Combines UV and rainfall simulation, common weathering test conditions using commercially available weatherometer.

Test Conditions: ASTM G155 or SAE J1960 protocols in a weatherometer for backsheet coupon or minimodule. BPT = 90 C.

Summary of Sequential Tests Results

MAST Test Summary			Double Sided Fluoro			Single-Sided Fluoro			Non-Fluoro				
			Tedlar®PVF TPT	PVDF	FEVE	Tedlar® PVF TPE	PVDF	FEVE	Nylon	UVPET / HPET	UVPET / PET		
Test	Sequence	Measurement	Format	Unit	1							(Hydrolytically- stabilized)	(Standard)
1 DH1000-UVA1000- 3x(TC200-UVA1000)	Yellowing	Full size module, Minimodule or backsheet samples	b*	0.8	ОК	not available	0.6	0.2	0.6	3.1	3.7	4.1	
	Mechanical Loss- Cracking	Full size module, Minimodule or backsheet samples	Observe or % Elongation loss	ОК	Micro Cracking	not available	ОК	Cracking	45	Cracking	50-100	100	
2	DH1000-3x(TC200)	Mechanical Loss- Cracking	Minimodule	Observe	ОК	ОК	not available	ОК	Cracking	not available	Cracking	ОК	ОК
3	Weatherometer	Yellowing	Minimodule or backsheet samples	b*	0.1	not available	not available	0.2	0	not available	4.7	0.8	6.4
3 UVX-water spray- 3000 hours	Mechanical Loss- Cracking	Minimodule or backsheet samples		0	not available	not available	0	0	not available	50	10-100	80-100	
Outdoor Pe	erformance	Years in Field		Years	34	4	4	26	7	9	7	9	19
ci,	eld	Yellowing	Modules	b*	ОК			ОК	ОК			3-10	3-20
		Cracking	Modules	Observe	ОК			ОК	Cracking	Cracking	Cracking	Cracking	Cracking

Extensive Testing – both test methods and different backsheets Sequential Tests shows best correlation to field results

Comparison of Stress Tests to Field Results for Backsheet Degradation

Stress	PPE	КРЕ	PolyAmide	TPT/TPE	Comment	
Field	Yellowing Mech Prop Loss Cracking	Cracking Front Side Yellowing	Yellowing Mech Prop Loss Cracking	Low defects	Effects of simultaneous and sequential stresses	
Damp Heat (1000 hrs)	p Heat (1000 hrs) Slight Yellowing No Change Med		Mech Prop Loss	No Change	Misses UV degradation	
UV (4000 hrs)	Yellowing Mech Prop Loss	No Change	Mech Prop Loss	No Change	Misses hydrolysis and moisture	
DH/UV/TC (MAST Sequential Test)	Yellowing Mech Prop Loss Cracking	Cracking Front Side Yellowing	Yellowing Mech Prop Loss Cracking	No Change	Combines key stresses Gives best correlation	

Sequential Tests correlate better with degradation seen in the field

- Combine most important stress factors
- Use Stress levels / dosages that match field exposures
- Accelerate with highest temperature <u>but</u>
- Do NOT produce degradation not found in the field

New Accelerated Sequential Dynamic Mechanical Load Test

- Designed to better simulate the Field by combining Sequential Testing and with Dynamic Loading
 - In field environments mechanical loads are dynamic
- Current IEC 61215 only uses Static Mechanical Load

Protocol

- UV exposure: 65kWh/m² on the front
- DML 1: 1000 cycles of ±1500 Pa of loading @ 1/6 Hz
- DML 2: 1000 cycles of ±1500 Pa of loading @ 1 Hz
- TC200 = Thermal Cycling, -40°C + 85°C, ramp and hold per IEC62782, 200 cycles
- HF30 = Humidity Freeze, 30 cycles

Optional

DML 3: 1000 cycles of ±1000 Pa of loading @ 4 Hz

Tests designed by DuPont, conducted on full-size modules by independent 3rd party testing lab DNV-GL, USA

Results

	G/G modules	G/Backsheet modules
UVA	No change	No change
DML 1	No change	No change
DML 2	Slight delamination on front	No change
TC 200	Delamination on front, encapsulant voids on back	No change
HF 30	Severe delamination on front, multiple encapsulant voids on the back	Slight yellowing along the edge, no delamination
	DML 3 not performed	

EL: Some cracked cells in both G/G and G/Backsheet modules **Wet-leakage:** Both G/G and G/Backsheet modules passed test

Glass-Glass modules are more prone to delamination induced by mechanical load combined with UV exposure, thermal cycling and humidity

- Glass / Glass structures are more rigid and cannot dissipate stresses
- Glass/ Glass structures are not breathable and trap EVA degradation products

G-G modules: Front-side delamination in DML test and seen in field

¹A. Skoczek, et. al., Prog. Photovolt: Res. Appl. (2008) (JRC) Institute for Energy, Renewable Energy unit, Italy,

Copyright © DuPont 2017. All rights reserved.

G-G modules: Back-side delamination from DML test and seen in field

Copyright © DuPont 2017. All rights reserved.

QIPON,

Future Directions

- Higher irradiance
 - new equipment with higher intensity and full size module capability
- Higher temperature
 - Extend work with xenon exposure to higher temperature (from 90C to 100C BPT)
- New stress conditions
 - Static mechanical load, dynamic mechanical load, humidity freeze (-40C, 85C/85%RH), damp heat with bias, weathering (UV + water spray)

Improved durability test methods are the most effective way to prevent large scale field failures

Conclusions

- Sequential testing protocols introduced as an approach to assess synergistic stresses in the field
- Timing reduced from 9 months to 6 months for MAST test protocol
- Sequential testing shown to be a good predictor of backsheet defects observed in the field
- Major stresses are included at doses adequate for lifetime assessment
- New sequential test protocols offer an opportunity to assess new module structures and materials

Improved durability test methods are the most effective way to prevent large scale field failures

photovoltaics.dupont.com

Copyright © 2017 DuPont. All rights reserved. The DuPont Oval Logo, DuPont[™], The miracles of science[™], Materials Matter[™], and all products denoted with [®] or [™] are registered trademarks or trademarks of E.I. du Pont de Nemours and Company or its affiliates.

The miracles of science™