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Title: Early Warning of Network Catastrophes 

Lead Laboratory: ITL 

Proposal Champions: Kevin Mills/772, Chris Dabrowski/772, Jim Filliben/776, 

Fern Hunt/771, Bert Rust/771 

 

Proposal Abstract: Society grows increasingly dependent on networked systems, such as the 

Internet, computational clouds, and content distribution networks, in which interactions among 

millions of components lead to dynamic global patterns that cannot be predicted by analyzing 

behavior of individuals. Such patterns include catastrophic events [1-10] that arise from 

cascading failures, malicious attacks, and sudden load increases, which can drive systems from 

normal operating ranges to congested states, leading to widespread outages for significant 

periods. To date, no practical methods exist to provide early warning of such catastrophes. Thus, 

our nation’s growing dependence on networked systems will continue to be plagued with costs 

from adverse consequences of large-scale failures. 

Over the past decade, researchers in physics and other disciplines have devised a 

mathematically based theory to explain processes leading to catastrophes in networks. Related 

studies [11-19] demonstrate that such events are preceded by widespread changes in self-

organized patterns, arising from increasing spatiotemporal correlation. Such patterns manifest 

ultimately as phase transitions, coincident with sudden changes in selected (so-called “order”) 

parameters, and foreshadowed by increases in variance and long-range dependence. While this 

theory could form a basis for early warning of network catastrophes, two barriers exist. First, the 

theory relies on abstract models that use topologies and behaviors unrepresentative of real 

networks. We will evaluate and validate the theory in realistic network models. Second, the 

theory assumes measurement methods impractical in real networks. We will develop 

measurement methods that can be deployed in real networks to give early warning of network 

catastrophes. 

If successful, this project will provide measurement methods to enhance commercial 

network control and management systems [20]. The project “…will create a strong foundation of 

system measurement that has not existed before…[to] help avoid…real-life network failures…” 

[21], improving resilience of networked systems in many applications [22]. 

Context of the proposed research: Commerce, government, utility grids, and even modern 

social interactions depend increasingly on large information systems, based on Internet 

technology. Disruptions of such systems, which appear likely to increase in scale and duration, 

incur significant costs. For example, Table 1 summarizes results from a study [23] of the cost of 

network failures for six companies in different industry sectors. As shown, companies incurred 

losses costing as much as $100K/hour from either complete outages or periods of degraded 

performance. Extrapolating to multiple companies, affected for extended periods by failures 

within large Internet service providers, implies staggering costs in aggregate. For example, 

another study [24] of outages across companies and industries estimated overall costs averaging 

about 3.6% of annual revenues. Such outages continue to occur [1-10], and the scope and cost 

will increase in the future, as the nation’s reliance on networked systems grows. 

Over the past decade, academic researchers have devised a mathematically based theory 

to explain processes that lead to catastrophic events in networked systems. Related studies 

demonstrate that onset of catastrophic events is preceded by widespread changes in self-

organized patterns, arising from increasing spatiotemporal correlation. Such patterns manifest 
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ultimately as phase transitions, coincident with sudden changes in selected order parameters, and 

foreshadowed by increases in variance and long-range dependence, as a system approaches a 

critical point. Table 2 provides a summary of nine such studies [11-19], which demonstrate phase 

transitions and identify various precursor signals that arise when a network approaches a critical 

point. We will use the studies by Sarkar et al. [17] and Ryalova et al. [19] to introduce some key 

elements of the theory of network phase transitions. 
 

Table 1. Summary of Infonetics study of network downtime costs in six companies; the table 

also gives the percentage of incidents due to complete outages vs. performance degradations 

 

 

Table 2. Summary of selected theoretical research related to network phase transitions 
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(a) Average Transit Delay (D’) vs. Network Load ()   (b) Transit Delay vs. Time for Four Network Loads () 

 

Figure 2. Illustrating a critical point in network load [17] 

 

Figure 2 (a), from Sarkar et al. [17], plots the relationship between average transit delay 

(D’) for delivered packets and increasing network load (). Transit delays remain small until the 

network load reaches a critical point (c), where a phase transition occurs, leading to a steep 

increase in packet transmission delays. Figure 2(b) demonstrates time series for packet delays at 

various load values: below ( = 0.25), near ( = 0.30) and above ( = 0.35 and  = 0.40) the 

critical point. The plots suggest that increases in the slope of time series of selected measured 

variables could signal crossing of a critical point, allowing network managers to be alerted prior 

to complete network collapse. 

Other researchers have identified increasing systemic correlations emerging as a network 

nears a critical point. Such correlations manifest as long-range dependence and increasing 

amplitude fluctuation in various measured variables. For example, Figure 3, from a study by 

Rykalova et al. [19], shows fluctuations over time in the number of messages in a network at two 

load levels—(a)  = 0.15 and (b)  = 0.1996—for a network where the critical point is c= 0.2. 

Notice that amplitude fluctuations increase by two orders of magnitude, and are highly 

temporally correlated, as the critical point is approached. 

 

 
Figure 3. Number of messages vs. time for two load levels: (a) =0.15 and (b) =0.1996 
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As shown in Table 2, other studies demonstrate similar phase-transition phenomena for 

abstract network models—models that lack some essential characteristics of real networks. The 

proposed ITL team has significant experience building computationally tractable, realistic 

network models [25], and applying such models to study [26] macroscopic behavior arising from 

congestion. From that previous work, the ITL team has identified key network characteristics 

(e.g., topology, relative forwarding speeds, source and receiver distributions, user behavior, and 

protocol functions) that must be included in realistic network models. Further, the ITL team has 

access to a network emulation facility that can be used to validate simulation results against 

laboratory networks, and to evaluate measurement methods, and related software, in operational 

settings. Using this knowledge, experience, and capability, the ITL team is uniquely positioned 

to investigate and leverage the theory of network phase transitions in real networks, and to create 

practical measurement methods based on that theory. 

Technical plan: We propose to build on a promising theory to establish practical, measurement-

based methods to provide early warning of impending catastrophes in networked systems. Our 

target milestone will be to develop measurement methods and tools to monitor spatiotemporal 

behavior in deployed networks, and predict impending catastrophes. First, we will validate 

existing theory by simulating realistic networks in order to characterize conditions, e.g., 

topologies, queuing disciplines, loads, congestion-control regimes, and user behaviors, where 

phase-transitions occur, and conditions where they do not. Second, we will confirm our 

simulated findings in laboratory networks, and ultimately real networks. Third, we will design, 

develop, evaluate, and apply measurement and analysis methods in laboratory networks to warn 

of impending catastrophes. Fourth, we will establish collaborations with network operators to 

evaluate our measurement methods in real networks. Technical risk arises from two main 

sources: (1) phase-transition behaviors demonstrated in abstract network models may fail to 

appear in real networks; and (2) online measurement methods might not scale sufficiently to 

provide effective alerts for nationwide networks. While the first risk is inherent in the proposed 

research, we have a plan (see Task 4 below) to mitigate the second risk.  

Our project deliverables will provide: (1) deepened understanding of the applicability of 

an existing phase-transition theory to real networks; (2) practical measurement and analysis 

methods, and related software, to monitor real networks for impending system collapse; and (3) 

assessment of the utility of measurement-based methods for early warning of catastrophes in real 

networks. As we elaborate below, the project plan (as shown in the attached project task 

schedule) consists of three, eighteen-month phases, encompassing eight tasks. Major decision 

points exist after each of the first two phases. 

Phase I: Validation—We will determine conditions under which the phase-transition behaviors 

demonstrated by theory, and related studies of abstract network models, also appear (or not) in 

realistic network models, and in laboratory networks. The phase requires three tasks, each lasting 

six months. 

In Task 1, Modeling, we will inject realistic network characteristics from our previous 

work [25-26] into an abstract model taken from academe. For example, Echenique, Gomez-

Gardenes and Moreno (EGM) developed an abstract model [27] based on an 11,174-node 

topology taken from the Internet autonomous system map, circa 2001. While the resulting 

topology is somewhat realistic, the EGM model lacks realism in node characteristics, as well as 

in source and receiver characteristics, in user behaviors, and in protocol procedures. We will 

replace the large EGM topology with a realistic, but smaller, more computationally tractable, 

topology, representing a U.S. network. We will then inject varied router speeds, finite buffers, 
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and propagation delays into the EGM model. We will also modify the EGM model to ensure that 

sources and receivers attach with bounded interface speeds, and only at access routers. We will 

allow sources and receivers to be distributed non-uniformly across access routers in a topology. 

We will model users as cyclic on-off processes that can transfer varied file sizes, and that exhibit 

limited patience when transfers take too long, or rates are too slow. Finally, we will inject into 

the EGM model the connection-establishment and congestion-control procedures associated with 

the transmission-control protocol (TCP), which is used for over 90% of the data transferred 

across the Internet. 

In Task 2, Characterization, we will assess the sensitivity (see Chapter 4 in [26]) of our 

modified EGM model to the realistic factors we injected. Subsequently, we will attempt to 

demonstrate the phase-transition behaviors shown in nine previous research projects (see Table 

2), and we will evaluate the ability of various precursor signals (e.g., changes in the slope of time 

series for order parameters and increasing amplitude fluctuations and long-range dependence in 

key metrics) to warn of impending phase transitions. We will determine if the onset of phase 

transitions can be predicted based on observable changes in only a subset of nodes, and, if so, 

how such subsets relate to network topology. At the same time, we will characterize relationships 

between false positives and the selection of measurement intervals and alerting thresholds. We 

will establish whether phase-transition behaviors seen in abstract network models also appear in 

realistic models, and under what circumstances. We will evaluate which precursor signals appear 

most effective in predicting onset of phase transitions, and under what constraints. If phase-

transition behaviors do not appear in realistic network models, then this task will provide 

explanations, which can serve to refocus ongoing academic research. Results from this task may 

also inform ongoing academic research that aims at predicting phase transitions in other types of 

networks, such as electrical grids and cyber-physical systems.  

In Task 3, Emulation, we will replicate phase-transitions demonstrated under Task 2, but 

in the context of the ITL Emulab network laboratory, which currently has 100 physical nodes 

that can emulate about 1500 virtual nodes. (With IE funds from this project, we intend to double 

the capacity of the ITL Emulab in order to match the scale of our simulations.) Demonstrating 

phase transitions in emulated networks will validate simulated phase transitions found in Task 2. 

Phase II: Measurement Methods— Existing phase-transition studies either sample 

measurements at one node or examine measurements across the entire network. Sampling at one 

node is not informative in real networks, which are composed of heterogeneous components 

(e.g., nodes with varying topological placements, capacities, and functionalities). Measuring 

across an entire network is infeasible for deployments of realistic scale, because the volume of 

measurement data would be difficult to collect, convey, and analyze. We will design, develop, 

and test pragmatic measurement and analysis methods that can be inserted into operational 

networks to provide effective sampling and signaling. This phase requires three tasks, each 

lasting six months. 

In Task 4, Design, we will explore techniques to select a limited number of measurement 

locations to achieve sufficient detection of precursor signals, as identified and selected from Task 

2. We suspect that network topology plays a crucial role in selection of effective measurement 

locations. In previous work [28] with a heterogeneous topology, we found that measuring at 

about 10% of the possible observation points was sufficient to detect signals from a range of 

distributed denial of service attacks. Further, we are collaborating with Dr. Yan Wan from the 

University of North Texas, who is investigating cascading failures in network models, using 

measurement methods based on sampling concepts [29-31] taken from control engineering, 
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algebraic graph theory, and information theory. In the context of simulation models, we will 

investigate combinations of such sampling techniques, and determine their ability to detect 

precursor signals, as well as to quantify associated uncertainty. 

In Task 5, Development, we will construct measurement and analysis software that can be 

deployed in real networks. The measurement software, which leverages existing network 

performance monitoring software known as perfSONAR [32], will collect requisite 

measurements and convey them to an analysis point. We will also construct analysis software 

that can process collected measurements to produce precursor signals, and after applying 

appropriate filters and thresholds, as determined during Task 2, generate early warnings of 

catastrophic events. The early warnings will include uncertainty estimates. 

In Task 6, Testing, we will deploy our measurement and analysis software in ITL’s 

network emulation laboratory and determine its ability to provide early warnings for phase 

transitions demonstrated in Task 3. This will establish the practicality and effectiveness of our 

measurement and analysis methods, and software. 

Phase III: Technology Transfer and Further Evaluation—We will package and release our 

software for general use, and will establish partnerships to evaluate our methods and software in 

commercial settings. The phase requires two tasks, the first lasting six months, and the second 

lasting twelve. 

In Task 7, Software Release, we will package our software into public-release form, 

which can be downloaded and used by any organization, and then distribute the software through 

perfSONAR, Source Forge [33], or similar software-distribution channels.  

In Task 8, Evaluation, we will establish partnerships with network operators to deploy 

and test our measurement and analysis methods and software. Basing our software on 

perfSONAR will provide immediate access to an existing consortium of (mainly) government 

and academic organizations seeking to build interoperable network performance middleware. To 

expand the scope of our partnerships, we will also invite interested commercial collaborators to 

enter a CRADA directly with NIST. The main goals of this task are: (1) to evaluate and improve 

our measurement and analysis software based on deployment in real networks; and (2) to interest 

network operators in deploying our measurement and analysis methods in national networks. 

Potential impacts: If completely successful, this project will transfer a promising theory into 

practice, thus improving the resilience of the nation’s networks and systems based on those 

networks, and ultimately reducing costs to the U.S. economy arising from widespread network 

outages and degradations. Further, the knowledge and measurement and analysis methods, 

developed by this project may find application in additional systems of national importance, 

systems such as computational clouds, the electrical grid and cyber-physical systems. For NIST, 

and particularly ITL, the project will open new research vistas into measurement and analysis 

methods aimed at characterizing behavior and dynamics in large-scale networks. Such 

measurement and analysis methods will be among the most important contributions that NIST 

can make to the future of measurement science for information technology. Even at its least 

successful, the project will characterize and explain conditions under which phase transitions 

will fail to materialize in real networks, thus raising the nation’s confidence in existing 

networked systems. 

Each phase of the project will generate unique scientific contributions that have 

independent value beyond the cumulative goal of the project. For example, independent 

assessment of the theory of network phase transitions will either reinforce existing directions, or 

refocus ongoing research into alternate paths. 
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Qualifications of research team: The multidisciplinary team comprises NIST’s leading experts 

in modeling of network-based systems, statistical analysis and experiment design, time series 

analysis, and mathematical analysis. In addition, over 80% of the IMS labor funds will be 

invested in significantly expanding ITL’s expertise in network measurement and data analysis. 

Through recruiting a new FTE and two new postdocs with proven research records in the design 

and analysis of systems for network measurement, we will position NIST to become a technical 

leader in subsequent research in these areas. 

Kevin Mills (772.04) ST-1550 Senior Computer Scientist—Dr. Mills has 30+ years of 

experience in developing Internet models, encompassing network structure and characteristics, 

transport layer protocols, and application behavior, and applying those models to study 

congestion behavior. 

Chris Dabrowski (772.04) ZP/1550/IV Computer Scientist—Mr. Dabrowski has created 

Markov chain models and simulations representing large distributed systems, including 

infrastructure clouds, computational grids, and communication networks. He recently developed 

methods to predict causes and expected patterns of performance degradation in large distributed 

systems. 

Jim Filliben (776.04) ZP/1529/V Supervisory Mathematical Statistician—Dr. Filliben has 40+ 

years of experience in leading NIST research and application of advanced statistical modeling 

and analysis techniques, including five years focused on experiment design for communications 

networks. 

Fern Hunt (771.01) ZP/1529/V Mathematician—Dr. Hunt has developed proofs of 

mathematical results in areas such as dynamical systems, probability, information theory, and 

complex systems and has also built models of failure in networks. She is currently working on 

near-optimal sets for the spread of information in networks. 

Bert Rust (771.01) ZP/1529/V Mathematician—Dr. Rust is a world-class expert in developing 

mathematical models to characterize time series data, and has applied that expertise to model 

data ranging from climate change measurements to traffic measurements from the Internet.  

New Hire FTE (772) ZP/IV Computer Scientist / Mathematician – Hire or contract recent Ph.D. 

with direct research experience in the measurement and analysis of network behavior. 

New Postdocs (3) – Statistician / Mathematician / Computer Scientist - Recruit three new 

postdocs with direct research experience in the design and evaluation of network measurement 

software and systems, and data analysis. 

New Guest Researcher – Recruit new guest researcher with experience in network data 

collection and analysis. 

 

 

 



 8 

Resources required: 

Budget Resources ($K) 

 STRS Invested Equipment (IE) 

Div/Grp FY15 FY16 FY17 FY18 FY19 FY15 FY16 FY17 FY18 FY19 

772/04 $810 $810 $810 $810 $810 $425 $375    

776/04 $230 $230 $230 $230 $230      

771/01 $172 $172 $172 $172 $172      

Totals $1,212* $1,212 $1,212 $1,212 $1,212 $425 $375    

*83% of labor spending for one new FTE, four new Post-Docs and one new Guest Researcher 

Staffing Resources 

Div/Grp NIST Employee Names # of NIST FTEs # of NIST Associates 

772/04 
New FTE, New Postdocs, New Guest 

Researcher 
1.0 3.0 

772/04 Kevin Mills and Chris Dabrowski 
(each 25% IMS funded) 

0.50 
 

776/04 Jim Filliben 0.25  

776/04 New Postdoc   1.0 

771/01 Fern Hunt and Bert Rust 
(each 25% IMS funded) 

0.50  

Totals  2.25 4.0 

 

Invested Equipment (IE) Planned Purchases * 

 Equipment Description & Estimated Cost 

FY2015 
 $375K – 50 additional Emulab nodes + software licenses  

  $50K – 6 additional network switches + cables 

FY2016  $375K – 50 additional Emulab nodes + software licenses 
*Totals referenced must tie to requested amounts in “Budget Resources” table. 

 

Project Task Schedule: 

 

Year 2015 2016 2017 2018 2019

Phase ID Task                  Qtr 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3

Validation

1 Modeling

2 Characterization

3 Emulation

Measurement 
Methods

4 Design

5 Development

6 Testing

Technology 
Transfer

7 Software Release

8 Evaluation
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