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A comparison of precision frequency measurements to quantum electrodynamics (QED) predictions for
Rydberg states of hydrogenlike ions can yield information on values of fundamental constants and test
theory. With the results of a calculation of a key QED contribution reported here, the uncertainty in the
theory of the energy levels is reduced to a level where such a comparison can yield an improved value of
the Rydberg constant.
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Quantum electrodynamics (QED) makes extremely ac-
curate predictions despite the ‘‘mathematical inconsisten-
cies and renormalized infinities swept under the rug’’ [1].
With the assumption that the theory is correct, it is used to
determine values of the relevant fundamental constants by
adjusting their values to give the best agreement with
experiments [2]. In this Letter, we consider the possibility
of making such comparisons of theory and experiment for
Rydberg states of cooled hydrogenlike ions using an opti-
cal frequency comb. We find that because of simplifica-
tions in the theory that occur for Rydberg states, together
with the results of a calculation reported here, the uncer-
tainty in the predictions of the energy levels is dominated
by the uncertainty in the Rydberg constant, the electron-
nucleus mass ratio, and the fine-structure constant. Apart
from these sources of uncertainty, to the extent that the
theory remains valid, the predictions for the energy levels
appear to have uncertainties as small as parts in 1017 in the
most favorable cases.

The CODATA recommended value of the Rydberg con-
stant has been obtained primarily by comparing theory and
experiment for 23 transition frequencies or pairs of fre-
quencies in hydrogen and deuterium [2]. The theoretical
value for each transition is the product of the Rydberg
constant and a calculated factor based on QED that also
depends on other constants. While the most accurately
measured transition frequency in hydrogen (1S–2S) has a
relative uncertainty of 1:4� 10�14 [3], the recommended
value of the Rydberg constant has a larger relative uncer-
tainty of 6:6� 10�12 which is essentially the uncertainty in
the theoretical factor. The main source is the uncertainty in
the charge radius of the proton with additional uncertainty
due to uncalculated or partially calculated higher-order
terms in the QED corrections. This uncertainty could be
reduced by a measurement of the proton radius in muonic
hydrogen [4], or by a sufficiently accurate measurement of
a different transition in hydrogen. On the other hand, for
Rydberg states, the fact that the wave function is small near
the nucleus results in the finite nuclear size correction
being completely negligible. Also, for Rydberg states, the
higher-order terms in the QED corrections are relatively

smaller than they are for S states, so theoretical expressions
with a given number of terms are more accurate.

Circular Rydberg states of hydrogen in an 80 K atomic
beam have been studied with high precision for transition
wavelengths in the millimeter region, providing a determi-
nation of the Rydberg constant with a relative uncertainty
of 2:1� 10�11 [5,6]. With the advent of optical frequency
combs [7], precision measurements of optical transitions
between Rydberg states have now become possible using
femtosecond lasers. An illustration is the laser spectros-
copy of antiprotonic helium [8]. Figure 1 gives isofre-
quency curves corresponding to the spacing between
adjacent Bohr energy levels (n to n� 1) in the two-
dimensional parameter space of the principal quantum
number n and the nuclear charge Z for hydrogenlike
ions. Much of this space is accessible to optical frequency
synthesizers based on mode-locked femtosecond lasers,
which readily provide ultraprecise reference rulers span-
ning the near-infrared and visible region of the optical
spectrum (530–2100 nm). Diverse techniques in spectros-
copy (such as double-resonance methods) broaden the
range of applications. Even when the absolute accuracy
is limited by the primary frequency standard (a few parts in

FIG. 1 (color). Graph showing values of Z and approximate n
that give a specified value of the frequency for transitions
between states with principal quantum number n and n� 1 in
a hydrogenlike ion with nuclear charge Z. Frequencies in the
near-infrared and visible range are indicated in color.
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1016), optical frequency combs can enable relative fre-
quency measurements with uncertainties approaching 1
part in 1019 over 100 THz of bandwidth [9]. The precise
pulse train from a femtosecond laser can also be used
directly to probe the global atomic structure, thus integrat-
ing the optical, terahertz, and radio-frequency domains
[10].

There are simplifications in the theory of energy levels
of Rydberg states of hydrogenlike ions that, in some cases,
allow calculations to be made at levels of accuracy com-
parable to these breakthroughs in optical metrology. In the
following, we write the known theoretical expressions for
the energy levels of these ions, describe and give results of
a calculation that eliminates the largest source of uncer-
tainty, and list the largest remaining sources of uncertainty.
We also make numerical predictions for a transition in two
different ions as illustrations, look at the natural linewidth,
and discuss what might be learned from comparison of
theory and experiment.

In a high-n Rydberg state of a hydrogenlike atom with
nuclear charge Z and angular momentum l � n� 1, the
probability of the electron being within a short distance r
from the origin is of order �2Zr=na0�

2n�1=�2n� 1�!,
where a0 is the Bohr radius. Because of this strong damp-
ing near the origin, effects arising from interactions near or
inside the nucleus are negligible, including the effect of the
finite size of the nucleus.

For l � 2, the theoretical energy levels can be accurately
expressed as a sum of the Dirac energy with nuclear motion
corrections EDM, relativistic-recoil corrections ERR, and
radiative corrections EQED: En � EDM � ERR � EQED.
Reviews of the theory and references to original work are
given in [2,11,12]. The difference between the Dirac ei-
genvalue and the electron rest energy is proportional to
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spin-angular quantum number, and j is the total angular
momentum quantum number. The energy level, taking into
account the leading nuclear motion effects, but not includ-
ing the electron or nucleus rest energy, is given by [12]
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where h is the Planck constant, c is the speed of light,
R1 � �2mec=2h is the Rydberg constant, rN � me=mN is
the electron-nucleus mass ratio, and �r � 1=�1� rN� is
the ratio of the reduced mass to the electron mass.

Relativistic corrections to Eq. (2) associated with motion
of the nucleus are classified as relativistic-recoil correc-
tions. For the states with l � 2 considered here
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where lnk0�n; l� is the Bethe logarithm. We assume that the
uncertainty due to uncalculated higher-order terms is Z�
ln�Z���2 times the contribution of the last term in Eq. (3).

Quantum electrodynamics (QED) corrections for high-l
states are summarized as
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where ae is the electron magnetic moment anomaly and
G�Z�� is a function that contains higher-order QED cor-
rections. Equation (4) contains no explicit vacuum polar-
ization contribution because of the damping of the wave
function near the origin. Also in that equation, the uncer-
tainties in the theory of ae may be eliminated by using the
experimental value ae � 1:159 652 180 73�28� � 10�3 ob-
tained with a one-electron quantum cyclotron [13].

The leading terms in G�Z�� are expected to be
 

G�Z�� � A60 � A81�Z��
2 ln�Z���2 � A80�Z��
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The coefficients indicated by the letter A arise from the
one-photon QED corrections; A60 and A81 arise from the
self-energy, and A80 arises from both the self-energy and
the long-range component of the vacuum polarization. The
term A60 has been calculated for many states with l � 8,
but not for higher-l states before this work. The uncertainty
introduced by this term if it were not calculated, based on
plausible extrapolations from lower-l known values, would
be the largest uncertainty in the theory and larger than the
uncertainty from the Rydberg constant. The higher-order
coefficient A81 and the self-energy component of the coef-
ficient A80 are not known, but can be expected to be small.
The vacuum polarization contribution to A80 is known [14]
and is extremely small. The coefficient B60 arises from
two-photon diagrams and has not been calculated for
high-l states, but a comparison of calculated values of
B60 [15] and A60 [16] for l � 5, suggests it has a magnitude
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of roughly 4A60, which is used as the associated uncer-
tainty. Further, a term proportional to ��=��B61 ln�Z���2,
that is nonzero for S and P states, vanishes for higher-l
states [17]. The term C60 is expected to be the next three-
photon term, in analogy with the two-photon terms.

In order to eliminate the main source of theoretical
uncertainty in the energy levels, we have calculated the
value of A60 for a number of Rydberg states. This calcu-
lation uses methods from field theory, i.e., nonrelativistic
QED (NRQED) effective operators which facilitate the cal-
culation [18], and methods from atomic physics to handle
the extensive angular momentum algebra in the higher-
order binding corrections of near-circular Rydberg states.
Distinct contributions to the self-energy from high- and
low-energy virtual photons, are matched using an inter-
mediate cutoff parameter [19]. For near-circular Rydberg
states, the radial wave functions have at most a few nodes,
yet the calculation of A60 coefficients for these states is
much more involved than for low-lying states. The reason
is that in using the Sturmian decomposition of the hydro-
gen Coulomb Green function, as done for lower-n states,
the radial integrations lead to sums over hypergeometric
functions with high indices, which in turn give rise to an
excessive number of terms. For states with n � 8, there are
of order 105 terms in intermediate steps, which is roughly
2 orders of magnitude more terms than for states with n �
2 [20]. This trend continues as n increases making calcu-
lation at high n with this conventional method intractable.

Here we report that the calculation has been done with a
combined analytic and numerical approach based on lattice
methods by using a formulation of the Schrödinger-
Coulomb Green function on a numerical grid [21].
Provided quadruple precision (	32 significant digits) in
the Fortran code is used, and provided a large enough box
to represent the Rydberg states on the grid is used, the
positive continuum of states can be accurately represented
by a pseudospectrum of states with positive discrete ener-
gies. With this basis set, the virtual photon energy integra-
tion can be carried out analytically for each pseudostate
using Cauchy’s theorem. This solves the problem of the
calculation of the relativistic Bethe logarithms without the
need for the subtraction of many pole terms, which would
otherwise be necessary if the virtual photon energy were
used as an explicit numerical integration variable. The
results of this calculation for a number of states with n �
13 to 16 are given in Table I.

We incorporate the results for A60 to numerically evalu-
ate the theoretical prediction for the frequency of the
transition between the state with n � 14, l � 13, j � 27

2

and the state with n � 15, l � 14, j � 29
2 in the hydrogen-

like ions He� and Ne9�. The constants used in the evalu-
ation are the 2006 CODATA recommended values [22],
with the exception of the neon nucleus mass m�20Ne10��
which is taken from the neon atomic mass [23], corrected
for the mass of the electrons and their binding energies.
Values of the various contributions and the total are given

as frequencies in Table II. Standard uncertainties are listed
with the numbers where they are non-negligible. The the-
ory is sufficiently accurate that the largest uncertainty
arises from the Rydberg frequency cR1, which is a factor
in all of the contributions. There is no uncertainty from the
Planck constant, since � � �E15 � E14�=h.

Table III gives sources and estimates of the various
known uncertainties in the theory. To put them in perspec-
tive, in hydrogen, the relative uncertainty from the two-
photon term B60 for the 1S–2S transition is of the order of
10�12 due to disagreement between different calculations,
whereas in the n � 14 to n � 15 Rydberg transition it is
likely to be roughly 5� 10�19, based on the smallness of
the calculated value of the A60 coefficient. The improved
convergence of the expansion of the QED corrections in
powers of Z� is indicated by the fact that A60 is smaller by
a factor of about 106 for the Rydberg states than the value
A60 
 �30 for S states.

The QED level shift given by Eq. (4) is understood to be
the real part of the radiative correction, while the complete
radiative correction to the level EQED � EQED � i�=2 is
complex and includes an imaginary part proportional to the
rate A � �=@ for spontaneous radiative decay of the level
to all lower levels. For the highest-l state with principal
quantum number n, the dominant decay mode is an E1
decay to the highest-l state with principal quantum number
n� 1 [24]. Formulas in Ref. [24] give the nonrelativistic
expression for the decay rate, which can also be derived
from the nonrelativistic limit of the imaginary part of the
level shift [25].

As a first approximation, for transitions between states
with quantum numbers n and n� 1 the ratio of the tran-
sition energy to the width of the line, is given by

TABLE I. Calculated values of the constant A60. The numbers
in parentheses are standard uncertainties in the last figure.

n l 2j � A60 2j � A60

13 11 21 11 0:679 575�5� � 10�5 23 �12 4:318 998�5� � 10�5

13 12 23 12 0:469 973�5� � 10�5 25 �13 2:729 475�5� � 10�5

14 12 23 12 0:410 825�5� � 10�5 25 �13 2:979 937�5� � 10�5

14 13 25 13 0:296 641�5� � 10�5 27 �14 1:945 279�5� � 10�5

15 13 25 13 0:252 108�5� � 10�5 27 �14 2:116 050�5� � 10�5

15 14 27 14 0:189 309�5� � 10�5 29 �15 1:420 631�5� � 10�5

16 14 27 14 0:155 786�5� � 10�5 29 �15 1:540 181�5� � 10�5

16 15 29 15 0:121 749�5� � 10�5 31 �16 1:059 674�5� � 10�5

TABLE II. Transition frequencies between the highest-j states
with n � 14 and n � 15 in hydrogenlike helium and hydrogen-
like neon.

Term 4He� ��THz� 20Ne9� ��THz�

EDM 8:652 370 766 008�58� 216:335 625 5746�14�
ERR 0:000 000 000 000 0:000 000 000 1
EQED �0:000 000 001 894 �0:000 001 184 1

Total 8:652 370 764 114�58� 216:335 624 3907�14�
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where the expression on the right is the asymptotic form as
n! 1 of the nonrelativistic value. This is just a rough
indication, since transitions with smaller l values will
generally have a smaller Q, whereas transitions with a
change of n greater than 1 will have a larger Q. The effect
of possible asymmetries of the line shape on the apparent
resonance center has been shown to be small by Low [26],
of order ��Z��2EQED. For the 1S–2S transition in hydro-
gen, such effects are indeed completely negligible at the
current level of experimental accuracy [27]. However, for
Rydberg states of hydrogenlike ions, particularly at
higher-Z, asymmetries in the line shape, some of which
depend on details of the experiment, may be significant,
and can be calculated if necessary.

Recent advances in atomic-molecular-optical physics
have generated an array of tools and techniques useful
for engineering highly simplified atomic systems [28]. In
particular, observations of cold antihydrogen production at
CERN illustrate two ways for a cooled ion/antiproton to
capture an electron/positron in high-l Rydberg states, ei-
ther by three-body recombination or by charge exchange
[29]. Properties of atomic cores have also been studied
using a double-resonance detection technique to observe
the fine structure of Rydberg states produced by charge
exchange in a fast beam of highly charged ions [30]. Using
electron cooling [29] (and charge exchange), cold hydro-
genlike ions can be recombined in high-l Rydberg states
from a variety of bare ions extracted from sources such as
an electron beam ion source or trap. Although two-photon
spectroscopy is possible in certain cases, if the ions are
confined in a trap within a region smaller than about half
the wavelength of the radiation exciting the transition,
Dicke narrowing also eliminates the first-order Doppler
shift [31]. Assuming T � 100 K, the relative second-order
Doppler shift is about 3:5� 10�12 for He� and 7� 10�13

for Ne9�. Temperatures in the range 4 K <T < 77 K are
obtainable in cryogenic ion traps by resistive cooling [31]
and by electron or positron cooling [29]. For lower tem-

peratures (T < 1 K), sympathetic laser cooling methods
can be used [31].

Of the variety of (n, l, Z) combinations of hydrogenlike
ions, circular Rydberg states of low-Z ions seem the most
favorable for a comb-based determination of the Rydberg
constant. On the other hand, some perturbations are
smaller and linewidths are larger in heavier ions. Hence,
using ions with a variety of (n, Z) combinations could be
useful for experimental optimization and consistency
checks, as well as for extending diversity of experiments
used to determine fundamental constants and test theory.
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TABLE III. Sources and estimated relative standard uncertain-
ties in the theoretical value of the transition frequency between
the highest-j states with n � 14 and n � 15 in hydrogenlike
helium and hydrogenlike neon.

Source He� Ne9�

Rydberg constant 6:6� 10�12 6:6� 10�12

Fine-structure constant 7:0� 10�16 1:7� 10�14

Electron-nucleus mass ratio 5:8� 10�14 1:2� 10�14

ae 5:1� 10�20 1:3� 10�18

Theory: ERR higher order 6:2� 10�17 2:4� 10�14

Theory: EQEDA81 1:7� 10�18 1:6� 10�14

Theory: EQEDB60 8:6� 10�18 5:4� 10�15
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