

Low Dose Radiation Research: "Radiation Dose is More than a Number"

Radiation Dosimetry Standardization Workshop NCI / NIAID / NIST

September 15 -16, 2011

Noelle Metting, Sc.D.

Program Manager Low Dose Radiation Research Program U.S. Department of Energy

Office of Biological and Environmental Research History – Low Dose Program initiated in 1999

"The lowest dose at which a statistically significant radiation risk has been shown is ~ 100 mSv (10 rem) of x-rays."

> Bridging Radiation Policy and Science An international meeting of experts, held at Airlie House Conference Center 1 – 5 December 1999

2– Dosimetry Workshop Sep2011 U.S. Department of Energy • Office of Science • Biological and Environmental Research

History – Low Dose Program initiated in 1999

"The lowest dose at which a statistically significant radiation risk has been shown is ~ 100 mSv (10 rem) of x-rays."

But what do these numbers really mean...??

- What did they mean in the <u>past</u>?
- What do they mean <u>now</u>?

Bridging Radiation Policy and Science

An international meeting of experts, held at Airlie House Conference Center

1 – 5 December 1999

DOE's Low Dose Program (1):

- Focused on very low dose exposures that are encountered by workers in energy production and environmental cleanup
 - Less than 0.1 Gy (10 rads)
 - Mostly low LET (x- and gamma-ray)
 - Higher doses, then titrate down to lower doses
 - Low dose rates
 - High dose rates
- For low dose exposures, the dosimetry is critically important (spatial and temporal)

DOE's Low Dose Program (2):

- Biological models include
 - Molecular endpoints within single cells (microbeams)
 - Cell culture models (yeast, rodent, human)
 - 3-D tissue models
 - Rat trachea
 - Matek skin model
 - Ductal mammary epithelia
 - Animal subjects
 - rat
 - mouse
 - Medaka and zebrafish
- Re-analysis of archived tissues and data
 - Mega-mouse studies
 - Beagle dog studies
 - Conducted in the second half of the 20th century

DOE's Low Dose Program (3):

- Research to enable mechanism-based models that incorporate both radiobiology and epidemiology
 - From cellular and molecular actions within tissues
 - To the evolution of cancer as a multi-cellular disease
 - ... in human populations
- Clear understanding of both the biological assumptions and the dosimetry underlying epidemiological analysis in low dose range

The Underlying Assumption for (Low Dose) Dosimetry:

"If the spatial and temporal distribution of energy deposition events were clearly described, it would improve the understanding of biological mechanisms leading to radiation-induced effects."

Hans-Georg Menzel, 2010 (paraphrased)

End

8– Dosimetry Workshop Sep2011 U.S. Department of Energy • Office of Science • Biological and Environmental Research

DOE Low Dose Radiation Research Program

<u>Classic Paradigm of Radiation Injury</u> (High Dose)

DOE Low Dose Radiation Research Program

<u>Classic Paradigm of Radiation Injury</u> (High Dose)

DOE Low Dose Radiation Research Program

Low Doses show other pathways....

Time Factors:

- Dose Rates
 - The biology is clearly different (dose rate effects...)
 - Gamma irradiators change over time (half-lives calculated...)
 - Calibrated radiation-generating machines can drift...

Timing of the Experimental Protocol

- Dose Fractionation
- The periods before, between, after each step

• Daytime, Nighttime

- The biology is clearly different (diurnal/nocturnal effects...)
- The physics

• Historical Time

- The definitions of quantities change
- New measurement techniques allow improved precision, accuracy
- Annotation, curation of the literature...

Spatial Factors:

- Microdosimetry
 - (Les Braby)
 - Energy distributions
 - Monte Carlo track structure simulations

• Partial vs. Full

- Body of animal subject
- Cell/tissue culture dish
- Single cell (intra-, inter-, extra-)
- Uniform radiation field
 - To encompass entire subject
- Background radiation matters
 - Gamma-rays (soil)
 - Radon
 - Cosmic rays
 - (manmade)

Background Radiation:

µR/hr

?-- 35 µR/hr,

including radon?

Terrestrial Gamma-Ray Exposure at 1m above ground

Dose Rates from Natural Background USGS

U.S. average annual dose = 310 mrem/yr, including radon

United States Geological Survey Digital Data Series DDS-9, "National Geophysical Data Grids: Gamma-Ray, Magnetic, and Topographic Data for the Conterminous United States", by J.D. Phillips, J.S. Duval, and R.A. Ambrosiak, 1993

/ ii ~ !! stands for ilopprovimately equal to!!)

