NCI/NIAID/NIST Workshop 'Dose is More Than a Number'. September 15-16th 2011.

Biological Framework

R. P Hill OCI/PMH, Toronto

Normal tissue response to irradiation is multifactorial

Genetic susceptibility (DNA repair e.g. ATM, NBS1,
Rad 51, DNA Pk, Ku).
Tissue type specific expression?

Cellular sensitivity

Multiple cell types Parenchymal cells Endothelial cells Inflammatory cells EarlyTGF beta, IL-1, IL-6,
TNF alpha, bFGF.Normal
tissueInduced DifferentiationNormal
tissueTissue related factorsLateCell-Cell Contact

Cytokine induction, e.g.

Cell-Matrix Interactions

Induced Apoptosis DNA/Membrane damage Radical Scavengers e.g. GSH, MnSOD

Issues to be discussed

- Dose response
- Radiobiological effectiveness (RBE)
- Repair of radiation damage and consequent effect of dose rate.
- Differences in different endpoints
- Differences in different tissues

Dose response curves are steep

Lethality due to bone marrow failure (30 day survival)

Co-60 γ-rays 1 Gy/min

From Srinivasan et al 2002

NIST sept 2011

10 MeV electrons 20 Gy/sec Or Cs γrays at 4.5 Gy/min

8

Dose Gy

12

From Hendry et al 1983 Potton 2003

Crypt cell survival and GI tract lethality

(a)

(b)

16

LD. 711.1Gy

100-

20

60 60 40

surviving fraction

0.35

0.1

10.01-

D.=1.25Gy

Day 3+4 surviving mice

D.=1.23Gy

Expression of specific genes in irradiated human blood from different donors at 6 or 24 hrs after

Cytokine mRNA levels in lung after irradiation

Survival curves for different normal tissue cells

Modified from Hall, 1988

Dependence of RBE on type of cell irradiated

From Steel 2002

dose in rad (x 100)

Cell survival following treatment with different sources (RBE effects)

Dose response – teleangiectasia in human skin (Breast Ca patients)

8 MV photons 8-10 MeV electrons Dose was estimated at 0.1 mm depth.

Bentzen and Overgaard R and O 1991

RBE effects for different tissues

Fig. 2. RBE of Hammersmith cyclotron neutrons for different tissues, as a function of dose per fraction. O_1 and O_2 represent values for single doses and two fractions for oesophageal death, L_1 and L_2 represent values for lung death.

From Field and Hornsey, EJC, 1974

NIST sept 2011

RBE and fractionation

Radiobiological mechanisms underlying the dose rate effects in normal tissues.

Crypt cell survival curves (time between fractions)

From Steel 2002

Dose-rate effects in rat spinal cord: continuous irradiation using ¹⁹²Ir- wires (= 6 different constant dose rates)

Dose-rate effect in murine normal tissues

Figure 12.6 The dose-rate effect in various rodent normal tissues: lung, spinal cord, lip mucosa and bone marrow.

From Joiner and Van der Kogel Basic Clinical Radiobiology 2009

Effect of (rate of) cell proliferation during LDR irradiation

From Joiner and Van der Kogel Basic Clinical Radiobiology 2009

Dose response relationship for skin and kidney following fractionated irradiation

Dose response of lung in different animals

Figure 2. Dose-related incidence of lungs showing: (i) pneumonitis in patients (--- van Dyk et al. 1981); (_ Mah et al. 1987); and pigs (○ Herrmann et al. 1990, unpublished data). (ii) A ≥ 15% loss of ventilation function in pigs after 13-26 weeks (--- Rezvani et al. 1989). (iii) Deaths within 40 and 196 days in mice (□ Parkins and Fowler 1985) or rats (--- Lehnert and El-Khatib 1989). (iv) A ≥ 20% increase in breathing rate at 28 weeks in mice (◇ Parkins and Fowler 1985) or 120 days in rats (* Lehnert and El-Khatib 1989). (v) A ≥ 20% increase in lung density at 120 days in rats as determined by CT (---- Lehnert and El-Khatib 1989).

Strain differences in response to lung irradiation

Mice (whole lung) 200 kVp X-rays @ 0.44 Gy/min

Jackson et al 2010

Rats (hemi lung) 200 kVp X-rays @ 0.66 Gy/min

Van Eerde et al 2001

Fig. 1. Time related changes in breathing frequency after irradiation with 12 Gy (\blacksquare) or 18 Gy (\blacktriangle) in Wistar (A), Sprague–Dawley (B) or Fisher rats (C). Data points represent mean values \pm 1 SEM. The hatched bar indicates the mean breathing frequency (\pm 1 SEM) in non-irradiated control rats.

Critical Issues

- Steep dose response curves for functional endpoints.
- Dose response may vary for different molecular endpoints.
- Different tissues/cells have different repair capacity. Leads to:
 - Differences in RBE effects
 - Differences in dose rate or fractionation effects.
- Functional tissue endpoints are usually multifactorial due to:
 - Different cell types in the same tissue
 - Parenchymal cells, Stromal cells, Vascular cells.
 - Inflammatory responses
 - Immune responses
 - Tissue 'repair' responses
- Strain differences
- Issues of husbandry in lethality studies