Large-Animal Radiation Dosimetry

Not as scary as you think!

Pre-Clinical Radiation Biology and Medical Physics Divisions Department of Radiation Oncology

Tom MacVittie; Karl L. Prado; Ann Farese

"It's all about decreasing the uncertainties".

 Consider the uncertainties in delivering and measuring a dose of radiation to a certain tissue depth in Rhesus macaques.

• THEN

 Consider the uncertainties in the biological response of the target organ or the whole animal.

Rule #1: Nothing is easy

The Propagation of Uncertainties

- There are uncertainties inherent in the dose measurement and calculation process
- Estimates of these uncertainties (for animal irradiations) are:
 - Calibration factors of instruments: ~±1-2% (⁶⁰Co and above), ~±5%⁺ (kV x ray)
 - Accuracy of dose-calculation data: ~±2-5%
 - Precision of measurements in field: ~±5-10%
 - Total uncertainty: From $\sim \pm 5.0\%$ to $\sim \pm 10.0\%$ (at one sigma!)
- Uncertainties strongly <u>depend upon</u> the <u>type and energy</u> of the <u>irradiators</u>, the <u>accuracy and thoroughness of</u> the <u>calibration</u>, and the <u>level of</u> radiation <u>physics support</u> that is provided

Initial Commissioning and Calibration: Summary

- Acquire / validate fundamental (relative) dosimetry data
 - Percent Depth Dose (PDD)/ Tissue Phantom Ratios (TPR)
 - Output Factors (OF)
 - Beam Profiles (OAR)
- Confirm concordance with clinical data
- Perform absolute calibration
 - Standard clinical-dosimetry configuration
- Transfer calibration to animal irradiation configuration and validate
 - Measurements / calculations

Transfer of Calibration: Maryland

- Perform calibration in standard configuration
 Per AAPM TG-51
- Transfer calibration to animal-irradiation geometry using calibration system and suitable phantom
 - Per AAPM TG-29
- Verify calibration in animal-irradiation geometry using clinical dosimetry formalism
- (See next slide)

Initial Commissioning and Calibration: Maryland Unit

- Varian C-Series Accelerator
 - 6 MV X-Ray Beam, 2MV avg.
- PDDs, OFs, OARs match clinical data
- Standard calibration
 - At d_{max}, 100-cm isocenter, 10x10 field
 - Using AAPM TG-51 Protocol
- Transfer calibration to animal-irradiation geometry
 - At 145-cm distance, 40x40 field
 - Use suitable phantom (cylindrical, water-filled, 12-cm diameter, 40-cm long, accepts farmer chamber)
 - Using AAPM TG-29
 - Verify via calculations using standard (Khan) formalism:

 $D = MU \times S_C \times S_P \times S_S \times TMR \times ISq \times OAF$

(S_s is a geometry factor per TG-29)

Ongoing Quality Assurance

- Follow (essentially) AAPM TG-142
- Determine at time of calibration "constancy checks"
 - Daily Constancy Checks
 - Mechanical checks: lasers, field-size and distance indicators and readouts, field light, safety checks
 - Output and energy check at some standard geometry
 - Calibration of In-Vivo dosimeters (OSLDs)
 - Monthly Constancy Checks
 - Different instrumentation than daily instruments
 - All of the above + flatness and symmetry, light vs. radiation field congruence
 - Annual Checks
 - Full calibration

In-Vivo Dosimetry

- Each and every irradiation
- Verification that all has gone according to plan
 - Reality check
- At Maryland:
 - Optically-Stimulated Luminescent Dosimeters (OSLDs)
 - Landauer MicroStar
 - Entrance and exit dosimeters
 - For TBIs: 2 dosimeters, AP and PA, at xiphoid process.

- GLP-Compliant Animal Model Research Platform: The rhesus macaque
 - Males, bw 4.0-11.0 kg; Chinese bred
 - Viral free: SIV, herpes-B etc.
 - MLTD: xiphoid process
 - Dose rate: 0.70-0.80Gy/min
 - Models: Endpoint: Mortality vs Dose over Time
 - TBI: H-ARS 7.0-9.0Gy; GI-ARS 9.0-13.0Gy
 - WTLI: whole thorax lung irradiation, 9.0-12.5Gy
 - PBI/BM5: 9.0–12.5Gy
- Organ-specific injury vs multi-organ injury

Radiation Dosimetry and Biology Validated Models for Determining MCM Efficacy FDA-AR

Recent studies performed in the rhesus macaque

- TBI: H-ARS dose range, d60, n=48
- TBI: GI-ARS dose range, d8-15, n=61
- PBI/BM5: GI-ARS dose range, d8-15, n=74
- PBI/BM5: GI-, H-ARS + GI prolonged-ARS, d60, n=72
- PBI/BM5: GI-, H-, GIpro-ARS, + lung-DEARE, d180, n=64
- WTLI: lung-DEARE, 180d in-life

Cross sectional images

Upper lung lobe Middle lung Lower lung Stomach/Liver Liver/colon Colon bowel Bowel/pelvis

WTLI Dose Distribution

- Dose calculation to "midplane"
- Relatively uniform but not all structures receive an equal dose

CT Scans of NHPs

NHP 030489 10Gy 5%BM Shield

NHP 030609 11Gy 5%BM Shield

- Rhesus macaque: LD50 estimates [95% C.I.]
 - TBI: H-ARS LD50/60, 7.52Gy [6.59, 7.86]
 - TBI: GI-ARS LD50/15, 11.30Gy [10.8, 11.72]
 - PBI/BM5: LD50/15, 11.73Gy [11.43, 12.15]
 - PBI/BM5: LD50/60, 10.97Gy [10.52, 11.39]
 - PBI/BM5: LD50/180, 9.71Gy [8.96, 10.14]
 - WTLI: whole thorax lung irradiation, TBD ongoing study

- Rhesus macaque: Dose response for organ-specific lethality.
 - **TBI:** H-ARS, LD10 to LD90/60; 6.51Gy 8.70Gy = 2.19Gy range
 - TBI: GI-ARS, LD10 to LD90/15; 10.02Gy 12.74Gy = 2.72Gy range
 - **PBI/BM5: GI-ARS** LD10 to LD90; 10.02 12.74Gy = **2.72Gy**
 - PBI/BM5: GI-, H-ARS + GI pro-ARS, LD10 to LD90/60; 9.54Gy -12.62Gy = 3.08Gy range
 - PBI/BM5: GI-, H-, GIpro-ARS, + lung-DEARE, LD10 to LD90/180; 8.71Gy - 10.83Gy = 2.12G range
 - LD10 to LD90 range is 2.12Gy to 3.08Gy

Rhesus macaque: Dose response for organ-specific lethality.

- 10% Variability in Dose
- PBI BM5
- LD50/15 : Acute GI = 11.7 Gy
- 5% > (0.60 Gy) = 12.3 Gy = LD75/15
- 5% < (0.60 Gy) = 11.1 Gy = LD25/15

- Rhesus macaque: LD50 estimates [95% C.I.]
- Respective "dose response" permits estimates for LD30, 50 and 70 for design of MCM efficacy and pivotal trial studies.
 - Recent study: Determine efficacy of neupogen (G-CSF) to enhance survival of lethally irradiated NHP.
 - TBI: H-ARS LD50/60, 7.52Gy [6.59, 7.86]
 - Study parameters: TBI at 7.50Gy +spt care
 - Est. LD50/60; G-CSF admin at 24h, then qd thru effect (ANC > 1,000/ul)
 - Stats designed for 30% inc in Survival to show efficacy.
 - Results:
 - control LD 59.1%, n=22 vs neupogen LD20.8%, n=24
 - P = 0.004

Radiation Dosimetry and Biology The LD90:LD10 value

- Rhesus macaque: Dose response for mortality due to organ-specific and multi-organ injury.
 - TBI: H-ARS, 1.34 *H-ARS, 1.45; ** H-ARS, 1.55
 - TBI: GI–ARS, 1.27
 - PBI/BM5: GI-ARS, 1.22
 - PBI/BM5: GI-, H-ARS + GI pro-ARS, 1.32
 - PBI/BM5: GI-, H-, GIpro-ARS, + lung-DEARE, 1.24
 - *, ** historical data bases, 1967, Eltringham; 1965, Dalrymple

- Human and canine: Dose response for mortality due to organ-specific and multi-organ injury.
 - The LD50/60 and LD90:LD10 value
 - Canine: TBI: H-ARS,
 - LD50/60 = 3.38Gy [3.23, 3.50], (+) spt care
 - LD50/60 = 2.58Gy [2.48, 2.68], (-) spt care
 - LD90:LD10 = 1.29 (+) spt care
 - Human: TBI, relative homogeneous H-ARS, GI-ARS
 - LD50/60 = 4.5Gy (MLT)*
 - LD90:LD10 = 2.26
 - $LD50/7-14 = 9.6Gy^{**}$ (MLT)
 - LD90:LD10 = 3.01
 - * Anno G et al Health Phys 84:565, 03; ** NRC study (NUREG/CR-6545, 1997)

- Acknowledgements:
 - Radiation Physics: K. Prado, G. Lasio, W. Lu
 - Preclinical Radiobiology Lab: 15 staff; Statistics Core
 - NIAID: D. Cassatt, B. Maidment, E. Davies