Dosimetry for Small Animal Studies

Patricia Lindsay, Ph.D.

Radiation Medicine Program, Princess Margaret Hospital Department of Radiation Oncology, University of Toronto

I am a part of a commercialization agreement with Precision X-Ray, Inc. for XRad225Cx.

Acknowledgments

PMH XRad Team

- Steve Ansell
- Richard Clarkson
- Paul DeJean
- Richard Hill
- David Jaffray
- Salomeh Jelveh
- James Stewart
- Graham Wilson

Users and Collaborators

- Bristow Lab (Christina Schutze and Carla Coackley)
- James Chow
- Caroline Chung
- Ralph DaCosta Lab
- Hill Lab (Naz Chaudary)
- Andrew Hope
- Doug Moseley
- Taylor Lab (Livia Garzia)
- Robert Weersink

Outline

- Systems for small animal irradiation
 - Image-guided, conformal irradiation
- Dosimetric guidelines for small animal irradiation
 - Input data/system characterization
 - Examples of small animal irradiations & dose calculations
 - Sources of Error
 - Validation
 - Monte Carlo studies

Small Animal Irradiation Experiments

Gammacell 40 (Best Theratronics)

In house xray irradiator

Conformal, orthotopic, image-guided, multi-beam

Systems for Animal Irradiation

Pre-clinical imaging modalities

μCΤ

Pre-clinical imaging modalities

μUS

μOptical

Components: CD Camera and Imaging Charber, Acquisition Computer, HigResolution Monitor, Living Imige® Software, Cryogenic Referation Unit, and Camera Costroller

SARRP (XStrahl/Johns Hopkins)

XRad225Cx (Precision X-Ray/Princess Margaret Hospital)

Verhaegen, Granton and Tryggestad, Phys. Med. Biol. 56 (2011) R55-R83, Small animal radiotherapy research platforms

Washington University - microRT

Stojadinovich et al, Med Phys 34 (12), 2007, *MicroRT—Small animal conformal irradiator*

Stanford – GE RS120 microCT

Zhou et al, IJROBP 2010, DEVELOPMENT OF A MICRO-COMPUTED TOMOGRAPHY–BASED IMAGE-GUIDEDCONFORMAL RADIOTHERAPY SYSTEM FOR SMALL ANIMALS

Systems for Conformal Image Guided Small Animal Irradiation

Technical Requirements

- Depth of irradiation ≤ 5 cm
- Small field sizes (0.5 mm 5 cm)
- High dose gradients (penumbra < 1mm)
- High dose rate (>1 Gy/min, < 15 min treatment)
- High precision and accuracy of field placement

System Commissioning

- Dosimetric
- Mechanical
- Image-guidance

Kilovoltage Radiation Sources (100-320 kVp)

Absolute Dosimetry

- Absolute dosimetry following AAPM TG-61 protocol
- 0.6 cc farmer chamber, calibrated at NRCC
- Chamber placed in air at isocenter
- Measuring exposure (air kerma) in air
- Output depends on kVp (HVL) and mA
- Calculate dose at surface of water under full scatter conditions

10 x 10 cm field, at i cm from the source)	socenter	(30
225 kVp, 13 mA	4.2 Gy/min	
100kVp, 29 mA	4.0 Gy/ı	min

Dosimetric verification - RDS TLDs

Irradiated April 6 and 7th, 2011

Results Read April 20th, 2011

System	Energy	MDACC/Institution	
	HVL		
PMH	100 kVp	1.02	
	3.1 mm Al		
PMH	225 kVp	0.98	
	0.9 mm Cu		
STTARR	100 kVp	1.01	
	2.93 mm Al		
STTARR	225 kVp	1.01	
	1.02 mm Cu		

Relative Dosimetry

- Percent depth dose (PDD) and relative output factors (ROF)
 - Small volume (0.07 cc) ion chamber in water, and waterequivalent plastic (solid water)
 - Radiochromic film (EBT/EBT-2) in solid water

Film Dosimetry

Profiles for 3 collimator sizes

Profiles vs depth for 1.0 cm collimator

Relative Dosimetry – percentage depth dose (PDD)

- Plane parallel chamber in small water tank
- Comparison with Monte-Carlo calculations using EGSnrc

Chow et al, Med phys 37(10), 2010

System Output/Stability over time

• Tube output decreases over time

System Use: Irradiations

May - August 2008	301
August - Dec 2008	276
Jan - April 2009	93
May - August 2009	314
August - Dec 2009	485
Jan - April 2010	665
May - August 2010	535
August - Dec 2010	403
Jan – April 2011	395

Almost 3500 fractions of irradiation~ 100 irradiation/month (on average)

Normal Tissue

- Lung
- Brain
- Liver
- Bone

Tumour Models

- Sub-cutaneous
- Brain
- Craniospinal
- Pelvis (prostate, cervix)
- Bone metastasis

Examples of Small Animal Irradiation

Example 1 – Sub-cutaneous tumour

- Hind leg
- No-image guidance
- Standard field size for all animals (2-2.5 cm diameter)
- Parallel-opposed pair geometry
 - Prescribed to 5 mm depth
- Dosimetric sources of error
 - Tumor size
 - Scatter conditions

Example 1 – Sub-q tumour

Depth Dose -2.5 cm field

Single Field – inverse square

- Nominal 30 cm SSD
- Variation of 0.5 cm (30.5 cm SSD)
 - Dose decreases by 3.3%
- Variation of 1.0 cm (31 cm SSD)
 - Dose decreases by 6.8%

Parallel Opposed Pair (POP) vs Single beam

Field Size and Scatter Conditions

Scatter Conditions

Backscatter vs Field Size

From AAPM TG-61

Field Size	1 cm	2 cm	3 cm	5 cm
3 mm Al HVL	1.063	1.120	1.164	1.221
1 mm Cu HVL	1.044	1.096	1.139	1.211

Example 2 – Focal Brain Irradiation

- 5 mm circular collimator
- Parallel-opposed pair geometry
 - Prescribed at 5mm depth
- Image-guided set-up
 - With multi-modality image fusion
- Sources of error
 - Tissue heterogeneity
 - Surface curvature

Caroline Chung, MD

T1-Gad

T2

Example 2 – Focal Brain Irradiation

Single Beam Dose Display

Example 3 – Orthotopic soft-tissue irradiation

- 0.5 1.5 cm circular collimator
- Multi-beam geometry
 - Prescribed to the center of the tumor
- Image-guided set-up
 - With multi-modality image fusion
- Fractionated delivery
- Sources of error
 - Target localization and contouring
 - Set-up reproducibility

Example 3 – Orthotopic soft-tissue irradiation

Richard Hill, Naz Chaudary, Salomeh Jelveh

Star Axial distribution, corrections ON

Figure 1000 Elle Edit Insert Iools Desktop Window Help View k 🔍 🔍 🖑 🗐 🐙 🔏 - 🗌 10 100 6 Dose x-profile, ROI #1 Dose y-profile, ROI #1 Dose (Gy) Dose (Gy) 5 4 3 2 10 15 20 10 15 20 5 Position (mm) Position (mm)

5 mm collimator

Contouring of the tumor volume

1 cm collimator

1.5 cm collimator

3D Dosimetric Evaluation

Dosimetric Calculations and Validation

Calculations

- Treatment planning
- Monte-Carlo Simulations
- Validation with Measurements
 - Custom Geometries
 - Biological end-points
 - γH2AX staining
 - In-vivo measurements
 - TLD, OSL, Mosfets
 - Transit Dosimetry
 - Flat-panel detector/Film

Dose Calculations and Treatment Planning

- Hand calculations of the dose at isocenter based on tabulated data (current method)
- Pencil beam/ray tracing based method
- Superposition-convolution
 - Valid for kilovoltage energies?
- Monte Carlo
 - Image data-sets may be as large as 1024x1024x1024 voxels
- Small field dosimetry and dose calculations

Surface dose enhancement

Arndt et al, Radiation Research 175: 784-789 (2011) Dosimetric Calibration and Characterization for Experimental Mouse Thoracic Irradiation Using Orthovoltage X Rays

Monte Carlo Results

100 kVp

Single beam

225 kVp

360 arc

Chow et al, Med phys 37(10), 2010

Ford et al, Rad Research 175: 774-783 (2011), Localized CT-Guided Irradiation Inhibits Neurogenesis in Specific Regions of the Adult Mouse Brain

"Mouse-fet" project at the Dana-Farber Cancer Institute

- MOSFETs surgically implanted in organs of interest in newly expired mice
- Irradiated with 220 kVp, 13 mA, 0.15 Cu, 5x5 mm, from above (PA) only
- Compared calculated dose with measured dose
- Results indicate effect of homogenous assumption in 2D planning
- overall, no more that 6% difference for any site

Ngwa, Korideck, Chin, Makrigiorgos, and Berbeco, "MOSFET assessment of radiation dose delivered to mice using the Small Animal Radiation Research Platform (SARRP)". Radiation Research. *In Press*

Dosimetric and Image-Guidance Intercomparison

AAPM Working Group on Conformal Small Animal Irradiation

- Members from ~15 different institutions
- Intercomparison of dosimetry and image-guidance capabilities across member institutions
- Will look at small (1-5mm) and moderate (1-2cm) fields
- Using EBT-2 Film and solid water phantoms

Summary

- Systems for image-guided animal allow individualized treatments for specific animals/animal models
- Extensive characterization of the dosimetric (and mechanical and imaging) properties of the system are necessary
- Dosimetric sources of error include
 - Irradiation geometry
 - Scatter conditions
 - Tissue heterogeneities
 - Target identification
 - Set-up reproducibility