
Input to the Commission on Enhancing National Cybersecurity On behalf of the Free Software 

Foundation 

 

Read online: https://www.fsf.org/news/free-software-foundation-stresses 

-necessity-of-full-user-control-over-internet-connected-devices 

 

Free Software Foundation stresses necessity of full user control over Internet-connected devices 

 

by Matthew Garrett, FSF Board of Directors 

 

The Internet of Things (IoT) refers to the integration of Internet technology into a wider range of home 

devices than previously envisaged by most users. Early adopters of IoT may now have homes with 

Internet- connected lightbulbs, alarm systems, baby monitors and even coffee machines. Internet 

integration allows owners to have greater flexibility over their devices, making it possible to turn on 

their air conditioning as they leave work to cool the house before they return, to have curtains that 

automatically close based on sunset time, or lights that automatically turn off after the owner has left 

the house. 

Each individual benefit may seem marginal, but overall they add significant benefit to the owners. 

Most IoT systems consist of three components: 

 

1) The "smart" device itself, capable of communicating via a protocol such as Z-Wave, Zigbee, Bluetooth 

or IEEE 802.11, running either a full operating system (commonly based on the kernel Linux) or an 

embedded OS designed for this purpose. 

 

2) A remote service provided by the device manufacturer. The smart device communicates with this 

service in order to provide information about its current state and in order to provide an interface for 

users to control the device. 

 

3) An application designed for mobile platforms which interacts with the remote service and allows 

control of the smart device regardless of whether the user is currently located near the device or not. 

 

Devices that use the Zigbee or Z-Wave protocols also typically require a local "hub," a device running 

interface software that bridges the devices to the remote service. 



 

There are multiple significant security concerns around this design pattern. The first is that either the 

smart devices themselves or the hub that they communicate with require Internet access. Depending on 

local network configuration, this may result in the devices being visible to the public Internet. These 

devices inherently provide a service of some description in order to permit their integration with the 

remote services, but frequently also provide additional services for directly local communication and 

often include further unnecessary services used for diagnostics during the design and production stage 

(such as MicroCell -- the same backdoor was present on a series of baby monitors shipped by a major 

manufacturer). 

 

These devices are often locked down in such a way that it is impossible for the user to replace the 

software that they run. These devices are also often abandoned by their manufacturers after a short 

space of time due to them being either discontinued or replaced by newer devices. 

Users who continue using these devices are thus at significant risk, without any real chance of security 

updates being made available and frequently without any notification that any security issues have been 

identified. If any issues are identified, then without the permission of the manufacturer it is impossible 

for any third party to provide aid to said users. 

 

This concern is frequently mitigated by typical home network setups that restrict external access to 

internal devices. But smart devices inherently require external access to be possible, and this 

functionality is provided by the remote service. The smart device connects to the remote service and 

awaits commands -- users in turn connect to the remote service and send commands. 

 

These remote services are themselves frequently insecure. 

Authentication details are often sent in plaintext, allowing anyone who can observe network traffic to 

obtain credentials. Some systems involve no authentication at all (for instance). This makes it possible 

for a malicious individual to gain control over home devices, in some cases potentially even being able to 

execute arbitrary code on said devices and gain access to the internal network. 

 

If vendors are unwilling or unable to fix these security issues, users are left in an unfortunate position. 

They can either retain the convenience provided by the smart devices they paid for, or they can remove 

them and attempt to obtain a refund. The worst case scenario is perhaps when the vendor unilaterally 

decides to shut down the remote service, rendering the devices useless. 

 

Another consideration is the behavior of the manufacturer itself. 

Manufacturers may not always act in the interests of their customers, doing things ranging from invasive 

collection of personal data to intrusive advertising or even disabling device functionality remotely. 



Even if ostensibly permitted by terms of service, users should be able to protect themselves against such 

scenarios. 

 

There is an alternative. Third-party free software alternatives to the pre-installed software are common 

in certain market segments, such as home routers (libreCMC, OpenWrt and DD-WRT, for instance). 

Security vulnerabilities can be mitigated by replacing the original software with a functional equivalent 

provided by a third party. Unfortunately, many IoT devices are designed such that the software can only 

be replaced by the manufacturer. The software will only communicate with the manufacturer's remote 

service -- no third party can provide a functional equivalent. 

 

To ensure that users do not end up in a situation where they are left choosing between security and 

convenience, or left with no ability whatsoever to use the devices they bought, it is vital that these 

devices be ultimately under the control of the user. The user should be able to replace the software on 

the device in order to fix security vulnerabilities. The user should be able to modify the software on the 

device such that it communicates with a different remote service that provides strong security 

guarantees. The user should not be left with no option other than to discard the device and replace it 

with a new version. 

 

In order for this to be possible, it is necessary to know how the devices communicate with the remote 

server. Unfortunately this is frequently in the form of a proprietary protocol that lacks any public 

documentation, and as such it is a significant engineering effort for anyone to implement a replacement 

service. Several well-known protocols exist for controlling remote devices (such as MQTT) and re-using 

these rather than proprietary protocols makes it easier to both identify whether any security issues exist 

(being forced to reverse engineer a protocol may result in missing subtle aspects that cause security 

issues) and provide alternative implementations in the event of significant security flaws being 

discovered or the vendor choosing to cease support of the remote services. 

 

To that end, we encourage the adoption of practices that: 

 

a) Ensure that documented and freely-implementable (rather than patent- 

encumbered) protocols be used for communication between smart devices and remote services, and 

 

b) Ensure that owners of smart devices are able to replace their software with implementations 

provided by either themselves or third parties in order to prevent the vendor being a single point of 

failure in either service 

 



c) Strongly encourage the use of free "as in freedom" software throughout the entire stack, making it 

easier for security researchers to identify issues, third parties to provide alternative implementations 

and users to retain as much control as possible over devices that will become increasingly integrated 

into their homes and lives. 

 

-- 

stephen mahood 

outreach & communication 

free software foundation 

http://fsf.org http://gnu.org 

GPG Key: 7CF9305D 





Accessibility Report





		Filename: 

		fsf_rfi_response.pdf









		Report created by: 

		



		Organization: 

		







[Enter personal and organization information through the Preferences > Identity dialog.]



Summary



The checker found no problems in this document.





		Needs manual check: 0



		Passed manually: 2



		Failed manually: 0



		Skipped: 0



		Passed: 30



		Failed: 0







Detailed Report





		Document





		Rule Name		Status		Description



		Accessibility permission flag		Passed		Accessibility permission flag must be set



		Image-only PDF		Passed		Document is not image-only PDF



		Tagged PDF		Passed		Document is tagged PDF



		Logical Reading Order		Passed manually		Document structure provides a logical reading order



		Primary language		Passed		Text language is specified



		Title		Passed		Document title is showing in title bar



		Bookmarks		Passed		Bookmarks are present in large documents



		Color contrast		Passed manually		Document has appropriate color contrast



		Page Content





		Rule Name		Status		Description



		Tagged content		Passed		All page content is tagged



		Tagged annotations		Passed		All annotations are tagged



		Tab order		Passed		Tab order is consistent with structure order



		Character encoding		Passed		Reliable character encoding is provided



		Tagged multimedia		Passed		All multimedia objects are tagged



		Screen flicker		Passed		Page will not cause screen flicker



		Scripts		Passed		No inaccessible scripts



		Timed responses		Passed		Page does not require timed responses



		Navigation links		Passed		Navigation links are not repetitive



		Forms





		Rule Name		Status		Description



		Tagged form fields		Passed		All form fields are tagged



		Field descriptions		Passed		All form fields have description



		Alternate Text





		Rule Name		Status		Description



		Figures alternate text		Passed		Figures require alternate text



		Nested alternate text		Passed		Alternate text that will never be read



		Associated with content		Passed		Alternate text must be associated with some content



		Hides annotation		Passed		Alternate text should not hide annotation



		Other elements alternate text		Passed		Other elements that require alternate text



		Tables





		Rule Name		Status		Description



		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot



		TH and TD		Passed		TH and TD must be children of TR



		Headers		Passed		Tables should have headers



		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column



		Summary		Passed		Tables must have a summary



		Lists





		Rule Name		Status		Description



		List items		Passed		LI must be a child of L



		Lbl and LBody		Passed		Lbl and LBody must be children of LI



		Headings





		Rule Name		Status		Description



		Appropriate nesting		Passed		Appropriate nesting










Back to Top

