

Face Recognition Vendor Test
MORPH

Performance of Automated Facial Morph Detection and
Morph Resistant Face Recognition Algorithms

Concept, Evaluation Plan and API
VERSION 1.1

Updates since the last version of this document are highlighted in cyan.

Mei Ngan

Patrick Grother
Kayee Hanaoka

Information Access Division
Information Technology Laboratory

September 6, 2018

FRVT MORPH

NIST Concept, Evaluation Plan and API Page 2 of 15

Table of Contents 1

1. MORPH .. 4 2

1.1. SCOPE .. 4 3

1.2. AUDIENCE ... 4 4

1.3. REPORTING ... 4 5

1.4. ACCURACY METRICS .. 4 6

2. RULES FOR PARTICIPATION ... 5 7

2.1. IMPLEMENTATION REQUIREMENTS .. 5 8

2.2. PARTICIPATION AGREEMENT ... 5 9

2.3. NUMBER AND SCHEDULE OF SUBMISSIONS ... 5 10

2.4. VALIDATION .. 5 11

2.5. HARDWARE SPECIFICATION .. 5 12

2.5.1. Central Processing Unit (CPU)-only platforms .. 6 13

2.6. OPERATING SYSTEM, COMPILATION, AND LINKING ENVIRONMENT .. 6 14

2.7. SOFTWARE AND DOCUMENTATION .. 6 15

2.7.1. Library and platform requirements .. 6 16

2.7.2. Configuration and developer-defined data .. 7 17

2.7.3. Submission folder hierarchy.. 7 18

2.7.4. Installation and usage .. 7 19

2.8. RUNTIME BEHAVIOR.. 8 20

2.8.1. Modes of operation .. 8 21

2.8.2. Interactive behavior, stdout, logging ... 8 22

2.8.3. Exception handling ... 8 23

2.8.4. External communication ... 8 24

2.8.5. Stateless behavior ... 8 25

2.8.6. Single-thread requirement and parallelization .. 8 26

3. DATA STRUCTURES SUPPORTING THE API ... 8 27

3.1. REQUIREMENT ... 8 28

3.2. FILE FORMATS AND DATA STRUCTURES ... 9 29

3.2.1. Overview ... 9 30

3.2.2. ImageLabel describing the format of an image ... 9 31

3.2.3. Data type for similarity scores .. 9 32

3.2.4. Data structure for return value of API function calls .. 9 33

4. API SPECIFICATION ... 10 34

4.1. NAMESPACE .. 10 35

4.2. API .. 10 36

4.2.1. Implementation Requirements ... 10 37

4.2.2. Interface .. 11 38

4.2.3. Initialization .. 11 39

4.2.4. Single-image Morph Detection ... 12 40

4.2.5. Two-image Differential Morph Detection .. 13 41

4.2.6. 1:1 Comparison ... 13 42

4.2.7. Training for Morph Detection ... 14 43
 44
 45

 46

FRVT MORPH

NIST Concept, Evaluation Plan and API Page 3 of 15

List of Tables 47

Table 1 – Implementation library filename convention .. 7 48
Table 2 – Structure for a single image ... 9 49
Table 3 – Enumeration of image label ... 9 50
Table 4 – Enumeration of return codes ... 9 51
Table 5 – ReturnStatus structure ... 10 52
Table 6 – API Functions .. 10 53
Table 7 – Initialization .. 11 54
Table 8 – Single-image Morph Detection of Non-Scanned Photos ... 12 55
Table 9 – Two-image Differential Morph Detection .. 13 56
Table 10 – 1:1 Comparison .. 14 57
Table 11 – Training ... 14 58
 59

60

FRVT MORPH

NIST Concept, Evaluation Plan and API Page 4 of 15

1. MORPH 61

1.1. Scope 62

Facial morphing (and the ability to detect it) is an area of high interest to a number of photo-credential issuance 63
agencies and those employing face recognition for identity verification. The FRVT MORPH test will provide ongoing 64
independent testing of prototype facial morph detection technologies. The evaluation is designed to obtain an 65
assessment on morph detection capability to inform developers and current and prospective end-users. This 66
document establishes a concept of operations and an application programming interface (API) for evaluation of two 67
separate tasks: 68

1. Algorithmic capability to detect facial morphing (morphed/blended faces) in still photographs 69

a. Single-image morph detection of non-scanned photos, printed-and-scanned photos, and images of 70
unknown photo format/origin 71

b. Two-image differential morph detection of non-scanned photos, printed-and-scanned photos, and 72
images of unknown photo format/origin 73

2. Face recognition algorithm resistance against morphing 74

1.2. Audience 75

Participation is open to any organization worldwide involved in development of morph detection algorithms. While 76
NIST intends to evaluate stable technologies that could be readily made operational, the test is also open to 77
experimental, prototype and other technologies. All algorithms must be submitted as implementations of the C++ API 78
defined in this document. There is no charge for participation. 79

1.3. Reporting 80

For all algorithms that complete the evaluation, NIST will provide performance results back to the participating 81
organizations. NIST may additionally report and share results with partner government agencies and interested 82
parties, and in workshops, conferences, conference papers, presentations and technical reports. 83
 84
Important: This is a test in which NIST will identify the algorithm and the developing organization. Algorithm results 85
will be attributed to the developer. Results will be machine generated (i.e. scripted) and will include timing, accuracy 86
and other performance results. These will be provided alongside results from other implementations. Results will be 87
expanded and modified as additional implementations are tested, and as analyses are implemented. Results may be 88
regenerated on-the-fly, usually whenever additional implementations complete testing, or when new analyses are 89
added. 90

1.4. Accuracy metrics 91

This test will evaluate algorithmic ability to detect whether an image is a morphed/blended image of two or more 92
faces and/or to correctly reject 1:1 comparisons of morphed images against other images of the subjects used to 93
create the morph (but similarly, correctly authenticate legitimate non-morphed, mated pairs and correctly reject non-94
morphed, non-mated pairs). Per established metrics1,2 for assessment of morphing attacks, NIST will compute and 95
report: 96

1 International Organization for Standardization: Information Technology – Biometric presentation attack detection – Part 3: Testing
and reporting. ISO/IEC FDIS 30107-3:2017, JTC 1/SC 37, Geneva, Switzerland, 2017

2 U. Scherhag, A. Nautsch, C. Rathgeb, M. Gomez-Barrero, R. Veldhuis, L. Spreeuwers, M. Schils, D. Maltoni, P. Grother, S. Marcel, R.
Breithaupt, R. Raghavendra, C. Busch: "Biometric Systems under Morphing Attacks: Assessment of Morphing Techniques and
Vulnerability Reporting", in Proceedings of the IEEE 16th International Conference of the Biometrics Special Interest Group
(BIOSIG), Darmstadt, September 20-22, (2017)

FRVT MORPH

NIST Concept, Evaluation Plan and API Page 5 of 15

• Attack Presentation Classification Error Rate (APCER) – the proportion of morph attack samples incorrectly 97
classified as bona fide presentation 98

• Bona Fide Presentation Classification Error Rate (BPCER) – the proportion of bona fide samples incorrectly 99
classified as morphed samples 100

• Mated Morph Presentation Match Rate (MMPMR) - the proportion of comparisons where the morphed 101
image successfully authenticates against all constituents 102

• True Acceptance Rate (TAR) – the proportion of non-morphed, mated comparisons that correctly 103
authenticate 104

• False Match Rate (FMR) – the proportion of non-morphed, non-mated comparisons that incorrectly 105
authenticate 106

 107

We will report the above quantities as a function of alpha (the fraction of each subject that contributed to the morph), 108
image compression ratio, image resolution, image size, and others. 109

We will also report error tradeoff plots (BPCER vs. APCER, MMPMR vs. FMR, parametric on threshold). 110

2. Rules for participation 111

2.1. Implementation Requirements 112

Developers are not required to implement all functions specified in this API. Developers may choose to implement 113
one or more functions of this API – please refer to Section 4.2.1 for detailed information regarding implementation 114
requirements. 115

2.2. Participation agreement 116

A participant must properly follow, complete, and submit the FRVT MORPH Participation Agreement. This must be 117
done once, either prior or in conjunction with the very first algorithm submission. It is not necessary to do this for 118
each submitted implementation thereafter. 119

2.3. Number and Schedule of Submissions 120

Currently, the number and schedule of submissions is not regulated, so participants can send submissions at any time. 121
NIST reserves the right to amend this section with submission volume and frequency limits. NIST will evaluate 122
implementations on a first-come-first-served basis and provide results back to the participants as soon as possible. 123

2.4. Validation 124

All participants must run their software through the provided FRVT MORPH validation package prior to submission. 125
The validation package will be made available at https://github.com/usnistgov/frvt. The purpose of validation is to 126
ensure consistent algorithm output between the participant’s execution and NIST’s execution. Our validation set is 127
not intended to provide training or test data. 128

2.5. Hardware specification 129

NIST intends to support high performance by specifying the runtime hardware beforehand. There are several types of 130
computer blades that may be used in the testing. Each machine has at least 192 GB of memory. We anticipate that 16 131
processes can be run without time slicing, though NIST will handle all multiprocessing work via fork()3. Participant-132
initiated multiprocessing is not permitted. 133

All implementations shall use 64-bit addressing. 134

NIST intends to support highly optimized algorithms by specifying the runtime hardware. There are several types of 135

3 http://man7.org/linux/man-pages/man2/fork.2.html

https://www.nist.gov/sites/default/files/documents/2018/01/12/frvt_morph_participation_agreement.pdf
https://github.com/usnistgov/frvt

FRVT MORPH

NIST Concept, Evaluation Plan and API Page 6 of 15

computers that may be used in the testing. 136

2.5.1. Central Processing Unit (CPU)-only platforms 137

The following list gives some details about the hardware of each CPU-only blade type: 138

• Dual Intel® Xeon® CPU E5-2630 v4 @ 2.2GHz (10 cores each)4 139

• Dual Intel® Xeon® CPU E5-2680 v4 @ 2.4GHz (14 cores each)4 140

This test will not support the use of Graphics Processing Units (GPUs). NIST intends on running algorithms over a very 141
large number of CPU cores to support large-scale, timely test execution. 142

2.6. Operating system, compilation, and linking environment 143

The operating system that the submitted implementations shall run on will be released as a downloadable file 144
accessible from http://nigos.nist.gov:8080/evaluations/CentOS-7-x86_64-Everything-1511.iso, which is the 64-bit 145
version of CentOS 7.2 running Linux kernel 3.10.0. 146

For this test, MacOS and Windows-compiled libraries are not permitted. All software must run under CentOS 7.2. 147

NIST will link the provided library file(s) to our C++ language test drivers. Participants are required to provide their 148
library in a format that is dynamically-linkable using the C++11 compiler, g++ version 4.8.5. 149

A typical link line might be 150

g++ -std=c++11 -I. -Wall -m64 -o frvt_morph frvt_morph.cpp -L. -lfrvtmorph_acme_000.so 151

The Standard C++ library should be used for development. The prototypes from this document will be written to a file 152
"frvt_morph.h" which will be included via #include. 153

The header files will be made available to implementers at https://github.com/usnistgov/frvt. All algorithm 154
submissions will be built against the officially published header files – developers should not alter the header files 155
when compiling and building their libraries. 156

All compilation and testing will be performed on x86_64 platforms. Thus, participants are strongly advised to verify 157
library-level compatibility with g++ (on an equivalent platform) prior to submitting their software to NIST to avoid 158
linkage problems later on (e.g. symbol name and calling convention mismatches, incorrect binary file formats, etc.). 159

2.7. Software and documentation 160

2.7.1. Library and platform requirements 161

Participants shall provide NIST with binary code only (i.e. no source code). The implementation should be submitted 162
in the form of a dynamically-linked library file. 163

The core library shall be named according to Table 1. Additional supplemental libraries may be submitted that 164
support this “core” library file (i.e. the “core” library file may have dependencies implemented in these other 165
libraries). Supplemental libraries may have any name, but the “core” library must be dependent on supplemental 166
libraries in order to be linked correctly. The only library that will be explicitly linked to the FRVT MORPH test driver is 167
the “core” library. 168

4 cat /proc/cpuinfo returns fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse
sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc
aperfmperf eagerfpu pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2
x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch ida arat epb pln pts dtherm
tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm rdseed adx smap
xsaveopt cqm_llc cqm_occup_llc

http://nigos.nist.gov:8080/evaluations/CentOS-7-x86_64-Everything-1511.iso
https://github.com/usnistgov/frvt

FRVT MORPH

NIST Concept, Evaluation Plan and API Page 7 of 15

Developers may obviously use common deep learning frameworks (e.g. Caffe, TensorFlow, etc.) and should submit 169
those dependencies as supplemental libraries. NIST has successfully received and run implementations leveraging 170
such deep learning frameworks in other evaluations with no issues. 171

Intel Integrated Performance Primitives (IPP) ® libraries are permitted if they are delivered as a part of the developer-172
supplied library package. It is the provider’s responsibility to establish proper licensing of all libraries. The use of IPP 173
libraries shall not prevent running on CPUs that do not support IPP. Please take note that some IPP functions are 174
multithreaded and threaded implementations are prohibited. 175

NIST will report the size of the supplied libraries. 176

Table 1 – Implementation library filename convention 177

Form libfrvtmorph_provider_sequence.ending

Underscore
delimited parts of
the filename

libfrvtmorph provider sequence ending

Description First part of the
name, required to
be this.

Single word, non-
infringing name of
the main provider
EXAMPLE: Acme

A three digit decimal
identifier to start at 000
and incremented by 1
every time a library is
sent to NIST. EXAMPLE:
007

.so

Example libfrvtmorph_acme_007.so

 178
Important: Results will be attributed with the provider name and the 3-digit sequence number in the submitted library 179
name. 180

2.7.2. Configuration and developer-defined data 181

The implementation under test may be supplied with configuration files and supporting data files. These might 182
include, for example, model, calibration or background feature data. NIST will report the size of the supplied 183
configuration files. 184

2.7.3. Submission folder hierarchy 185

Participant submissions shall contain the following folders at the top level 186

― lib/ - contains all participant-supplied software libraries 187

― config/ - contains all configuration and developer-defined data 188

― doc/ - contains any participant-provided documentation regarding the submission 189

― validation/ - contains validation output 190

2.7.4. Installation and usage 191

The implementation shall be installable using simple file copy methods. It shall not require the use of a separate 192
installation program and shall be executable on any number of machines without requiring additional machine-193
specific license control procedures or activation. The implementation shall not use nor enforce any usage controls or 194
limits based on licenses, number of executions, presence of temporary files, etc. The implementation shall remain 195
operable for at least twelve months from the submission date. 196

FRVT MORPH

NIST Concept, Evaluation Plan and API Page 8 of 15

2.8. Runtime behavior 197

2.8.1. Modes of operation 198

Implementations shall not require NIST to switch “modes” of operation or algorithm parameters. For example, the use 199
of two different feature extractors must either operate automatically or be split across two separate library 200
submissions. 201

2.8.2. Interactive behavior, stdout, logging 202

The implementation will be tested in non-interactive “batch” mode (i.e. without terminal support). Thus, the 203
submitted library shall: 204

― Not use any interactive functions such as graphical user interface (GUI) calls, or any other calls which require 205
terminal interaction e.g. reads from “standard input”. 206

― Run quietly, i.e. it should not write messages to "standard error" and shall not write to “standard output”. 207

― Only if requested by NIST for debugging, include a logging facility in which debugging messages are written to a 208
log file whose name includes the provider and library identifiers and the process PID. 209

2.8.3. Exception handling 210

The application should include error/exception handling so that in the case of a fatal error, the return code is still 211
provided to the calling application. 212

2.8.4. External communication 213

Processes running on NIST hosts shall not side-effect the runtime environment in any manner, except for memory 214
allocation and release. Implementations shall not write any data to external resource (e.g. server, file, connection, or 215
other process), nor read from such, nor otherwise manipulate it. If detected, NIST will take appropriate steps, 216
including but not limited to, cessation of evaluation of all implementations from the supplier, notification to the 217
provider, and documentation of the activity in published reports. 218

2.8.5. Stateless behavior 219

All components in this test shall be stateless, except as noted. This applies to face detection, feature extraction and 220
matching. Thus, all functions should give identical output, for a given input, independent of the runtime history. NIST 221
will institute appropriate tests to detect stateful behavior. If detected, NIST will take appropriate steps, including but 222
not limited to, cessation of evaluation of all implementations from the supplier, notification to the provider, and 223
documentation of the activity in published reports. 224

2.8.6. Single-thread requirement and parallelization 225

Implementations must run in single-threaded mode, because NIST will parallelize the test by dividing the workload 226
across many cores and many machines. Implementations must ensure that there are no issues with their software 227
being parallelized via the fork() function. 228

3. Data structures supporting the API 229

3.1. Requirement 230

FRVT MORPH participants should implement the relevant C++ prototyped interfaces of section 4. C++ was chosen in 231
order to make use of some object-oriented features. Any functions that are not implemented should return 232
ReturnCode::NotImplemented. 233

FRVT MORPH

NIST Concept, Evaluation Plan and API Page 9 of 15

3.2. File formats and data structures 234

3.2.1. Overview 235

In this test, an individual is represented by a K = 1 two-dimensional facial image. All images will contain exactly one 236
face. 237

Table 2 – Structure for a single image 238

C++ code fragment Remarks
typedef struct Image
{
 uint16_t width; Number of pixels horizontally
 uint16_t height; Number of pixels vertically
 uint16_t depth; Number of bits per pixel. Legal values are 8 and 24.
 std::shared_ptr<uint8_t> data; Managed pointer to raster scanned data. Either RGB color or

intensity.
If image_depth == 24 this points to 3WH bytes RGBRGBRGB...
If image_depth == 8 this points to WH bytes IIIIIII

} Image;

3.2.2. ImageLabel describing the format of an image 239

Table 3 – Enumeration of image label 240

Return code as C++ enumeration Meaning
enum class ImageLabel {
 Unknown=0, Image origin is unknown or unassigned
 NonScanned=1 Non-scanned photo
 Scanned=2, Printed-and-scanned photo
};

3.2.3. Data type for similarity scores 241

1:1 comparison/verification functions shall return a measure of the similarity between the face data contained in the 242
two templates. The datatype shall be an eight-byte double precision real. The legal range is [0, DBL_MAX], where the 243
DBL_MAX constant is larger than practically needed and defined in the <climits> include file. Larger values indicate 244
more likelihood that the two samples are from the same person. 245

Providers are cautioned that algorithms that natively produce few unique values (e.g. integers on [0,127]) will be 246
disadvantaged by the inability to set a threshold precisely, as might be required to attain a false match rate of exactly 247
0.0001, for example. 248

3.2.4. Data structure for return value of API function calls 249

Table 4 – Enumeration of return codes 250

Return code as C++ enumeration Meaning
enum class ReturnCode {
 Success=0, Success
 ConfigError, Error reading configuration files
 RefuseInput, Elective refusal to process the input, e.g. because cannot handle greyscale
 ExtractError, Involuntary failure to process the image, e.g. after catching exception
 ParseError, Cannot parse the input data
 MatchError, Error occurred during the 1:1 comparison operation
 FaceDetectionError, Unable to detect a face in the image
 NotImplemented, Function is not implemented

FRVT MORPH

NIST Concept, Evaluation Plan and API Page 10 of 15

 VendorError Vendor-defined failure. Vendor errors shall return this error code and
document the specific failure in the ReturnStatus.info string from Table 5.

};

 251

Table 5 – ReturnStatus structure 252

C++ code fragment Meaning
struct ReturnStatus {
 ReturnCode code; Return Code
 std::string info; Optional information string
 // constructors
};

 253

4. API specification 254

Please note that included with the FRVT MORPH validation package (available at https://github.com/usnistgov/frvt) is 255
a “null” implementation of this API. The null implementation has no real functionality but demonstrates mechanically 256
how one could go about implementing this API. 257

4.1. Namespace 258

All data structures and API interfaces/function calls will be declared in the FRVT_MORPH namespace. 259

4.2. API 260

4.2.1. Implementation Requirements 261

Developers are not required to implement all functions specified in this API. Developers may choose to implement 262
one or more functions of Table 6, but at a minimum, developers must submit a library that implements 263

1. MorphInterface of Section 4.2.2, 264

2. initialize() of Section 4.2.3, and 265

3. AT LEAST one of the functions from Table 6. For any other function that is not implemented, the function 266
shall return ReturnCode::NotImplemented. 267

Table 6 – API Functions 268

Function Section

detectMorph() – single image morph detection of

• Non-scanned photo

• Printed-and-scanned photo

• Image of unknown format

4.2.4

detectMorphDifferentially() – two image differential
morph detection of

• Non-scanned photo
• Printed-and-scanned photo

• Image of unknown format

4.2.5

compareImages() – 1:1 comparison 4.2.6

trainMorphDetector() – training for morph detection 4.2.7

 269

https://github.com/usnistgov/frvt

FRVT MORPH

NIST Concept, Evaluation Plan and API Page 11 of 15

4.2.2. Interface 270

The software under test must implement the interface MorphInterface by subclassing this class and 271
implementing AT LEAST ONE of the methods specified therein. 272

 C++ code fragment Remarks
1. Class MorphInterface
2. {

public:

3. static std::shared_ptr<MorphInterface> getImplementation(); Factory method to return a managed pointer
to the MorphInterface object. This
function is implemented by the submitted
library and must return a managed pointer to
the MorphInterface object.

4. // Other functions to implement
5. };

There is one class (static) method declared in MorphInterface. getImplementation() which must also be 273
implemented. This method returns a shared pointer to the object of the interface type, an instantiation of the 274
implementation class. A typical implementation of this method is also shown below as an example. 275

 C++ code fragment Remarks
 #include “frvt_morph.h”

using namespace FRVT_MORPH;

NullImpl:: NullImpl () { }

NullImpl::~ NullImpl () { }

std::shared_ptr<MorphInterface>

MorphInterface::getImplementation()

{

 return std::make_shared<NullImpl>();

}

// Other implemented functions

4.2.3. Initialization 276

Before any morph detection or matching calls are made, the NIST test harness will call the initialization function of 277
Table 7. This function will be called BEFORE any calls to fork() are made. This function must be implemented. 278

Table 7 – Initialization 279

Prototype ReturnStatus initialize(

const std::string &configDir, Input

const std::string& configValue); Input

Description

This function initializes the implementation under test and sets all needed parameters in preparation for template
creation. This function will be called N=1 times by the NIST application, prior to parallelizing M >= 1 calls to any
morph detection or matching functions via fork().

This function will be called from a single process/thread.

Input Parameters configDir A read-only directory containing any developer-supplied configuration parameters or
run-time data files.

configValue An optional string value encoding algorithm-specific configuration parameters.
Developers may provide documentation for such configuration parameter(s) in their
submission to NIST. Otherwise, the default value for this parameter will be an
emptry string.

Output
Parameters

None

Return Value See Table 4 for all valid return code values. This function must be implemented.

FRVT MORPH

NIST Concept, Evaluation Plan and API Page 12 of 15

 280

4.2.4. Single-image Morph Detection 281

The function of Table 8 evaluates morph detection on non-scanned photos, scanned photos, and photos of unknown 282
formats. A single image along with an associated image label describing the image format/origin is provided to the 283
function for detection of morphing. Both morphed images and non-morphed images will be used, which will support 284
measurement of a morph attack presentation classification error rate (APCER) with a bona fide presentation 285
classification error rate (BPCER). 286

Non-scanned photos 287

Non-scanned photos are digital images known to not have been printed and scanned back in. There are a number of 288
operational use-cases for morph detection on such digital images. 289

Scanned photos 290

While there are existing techniques to detect manipulation of a digital image, once the image has been printed and 291
scanned back in, it leaves virtually no traces of the original image ever being manipulated. So the ability to detect 292
whether a printed-and-scanned image contains a morph warrants investigation. 293

Photos of unknown format 294

In some cases, the format and/or origin of the image in question is not known, so images with “unknown” labels will 295
also be tested. 296

 297

Multiple instances of the calling application may run simultaneously or sequentially. These may be executing on 298
different computers. 299

Table 8 – Single-image Morph Detection 300

Prototypes ReturnStatus detectMorph(

const Image &suspectedMorph, Input

const ImageLabel &label, Input

bool &isMorph, Output

double &score); Output

Description This function takes an input image and associated image label describing the image format/origin, and outputs a
binary decision on whether the image is a morph and a "morphiness" score on [0, 1] indicating how confident the
algorithm thinks the image is a morph, with 0 meaning confidence that the image is not a morph and 1
representing absolute confidence that it is a morph.

Input
Parameters

suspectedMorph Input Image

label ImageLabel (Section 3.2.2) describing the format of the input image

• NonScanned = non-scanned digital photo

• Scanned = a photo that is printed, then scanned

• Unknown = unknown photo format/origin

Output
Parameters

isMorph True if image contains a morph; False otherwise

score A score on [0, 1] representing how confident the algorithm is that the image contains a
morph. 0 means certainty that image does not contain a morph and 1 represents certainty
that image contains a morph.

Return Value See Table 4 for all valid return code values.

If this function is not implemented, the return code should be set to ReturnCode::NotImplemented.

If this function is not implemented for a certain type of image, for example, the function supports non-scanned
photos but not scanned photos, then the function should return ReturnCode::NotImplemented when the
function is called with the particular unsupported image type.

FRVT MORPH

NIST Concept, Evaluation Plan and API Page 13 of 15

4.2.5. Two-image Differential Morph Detection 302

4.2.5. 301

Two face samples are provided to the function of Table 9 as input, the first being a suspected morphed facial image 303
and the second image representing a known, non-morphed face image of one of the subjects contributing to the 304
morph (e.g., live capture image from an eGate). This procedure supports measurement of whether algorithms can 305
detect morphed images when additional information (provided as the second supporting known subject image) is 306
provided. 307

Similar to single-image morph detection, the function of Table 9 will support non-scanned, scanned, and photos of 308
unknown format/origin. The input image type will be specified by the associated ImageLabel input parameter. 309

 310

Multiple instances of the calling application may run simultaneously or sequentially. These may be executing on 311
different computers. 312

Table 9 – Two-image Differential Morph Detection 313

Prototypes ReturnStatus detectMorphDifferentially(

const Image &suspectedMorph, Input

const ImageLabel &label, Input

const Image &probeFace, Input

bool &isMorph, Output

double &score); Output

Description This function takes two input images - a known unaltered/not morphed image of the subject (probeFace) and
an image of the same subject that's in question (may or may not be a morph) (suspectedMorph) with an
associated image label describing the image format/origin. This function outputs a binary decision on whether
suspectedMorph is a morph (given probeFace as a prior) and a "morphiness" score on [0, 1] indicating
how confident the algorithm thinks the suspectedMorph is a morph, with 0 meaning confidence that the
suspectedMorph is not a morph and 1 representing absolute confidence that it is a morph.

Input
Parameters

suspectedMorph Input Image

 label ImageLabel (Section 3.2.2) describing the format of the suspected morph image

• NonScanned = non-scanned digital photo

• Scanned = a photo that is printed, then scanned

• Unknown = unknown photo format/origin

probeFace An image of the subject known not to be a morph (e.g., live capture image)

Output
Parameters

isMorph True if image contains a morph; False otherwise

score A score on [0, 1] representing how confident the algorithm is that the image contains a
morph. 0 means certainty that image does not contain a morph and 1 represents certainty
that image contains a morph.

Return Value See Table 4 for all valid return code values.

If this function is not implemented, the return code should be set to ReturnCode::NotImplemented.

If this function is not implemented for a certain type of image, for example, the function supports non-scanned
photos but not scanned photos, then the function should return ReturnCode::NotImplemented when the

function is called with the particular unsupported image type.

4.2.6. 1:1 Comparison 314

Two face samples are provided to the function of Table 10 for one-to-one comparison of whether the two images are 315
of the same subject. The expected behavior from the algorithm is to be able to correctly reject comparisons of 316
morphed images against constituents that contributed to the morph. The goal is to show algorithm robustness 317
against morphing alterations when morphed images are compared against other images of the subjects used for 318
morphing. Comparisons of morphed images against constituents should return a low similarity score, indicating 319

FRVT MORPH

NIST Concept, Evaluation Plan and API Page 14 of 15

rejection of match. Comparisons of unaltered/non-morphed images of the same subject should return a high 320
similarity score, indicating acceptance of match. 321

 322

Multiple instances of the calling application may run simultaneously or sequentially. These may be executing on 323
different computers. 324

Table 10 – 1:1 Comparison 325

Prototypes ReturnStatus compareImages(

const Image &enrollImage, Input

const Image &verifImage, Input

double &similarity); Output

Description This function compares two images and outputs a similarity score. In the event the algorithm cannot perform the
comparison operation, the similarity score shall be set to -1.0 and the function return code value shall be set
appropriately.

Input
Parameters

enrollImage The enrollment image

 verifImage The verification image

Output
Parameters

similarity A similarity score resulting from comparison of the two images, on the range [0,DBL_MAX].

Return Value See Table 4 for all valid return code values.

If this function is not implemented, the return code should be set to ReturnCode::NotImplemented.

4.2.7. Training for Morph Detection 326

For developers who implement the training function, NIST will run tests with and without training to assess the 327
performance impacts of turn-key training. The training function of Table 11 will be invoked as a separate process 328

outside of the morph detection and/or comparison process. So, given 1) K  1 images with associated labels on 329
whether the photo is a morph or not and 2) the implementation’s configuration directory, the implementation may 330
use the provided training data to populate a new “trained” configuration directory. This directory will be used to 331
initialize the algorithm during subsequent morph detection and/or comparison processes. 332

Please note that this function may or may not be called prior to morph detection or matching. The implementation’s 333
ability to detect a morph or match images should not be dependent on prior execution of this function. 334

This function will be called from a single process/thread. 335

Table 11 – Training 336

Prototype ReturnStatus trainMorphDetector(

const std::string &configDir, Input

const std::string &trainedConfigDir, Input

const std::vector<Image> &faces, Input

 const std::vector<bool> &isMorph); Input

Description

This function provides the implementation a list of face images and whether they are morphs. This function
may or may not be called prior to the various morph detection and/or matching functions. The
implementation’s ability to detect morphs should not be dependent on this function.

This function will be called from a single process/thread.

Input
Parameters

configDir A read-only directory containing any developer-supplied configuration parameters or
run-time data files. The name of this directory is assigned by NIST, not hardwired by
the provider. The names of the files in this directory are hardwired in the
implementation and are unrestricted.

FRVT MORPH

NIST Concept, Evaluation Plan and API Page 15 of 15

trainedConfigDir A directory with read-write permissions where the implementation can store any
training output. The name of this directory is assigned by NIST, not hardwired by the
provider. The names of the files in this directory are hardwired in the implementation
and are unrestricted. Important: This directory is what will subsequently be provided
to the implementation’s initialize() function as the input configuration directory

if this training function is invoked.

If this function is not implemented, the function shall do nothing, and the return code
should be set to ReturnCode::NotImplemented.

faces A vector of face images provided to the implementation for training purposes

 isMorph A vector of boolean values indicating whether the corresponding face image is a morph
or not. The value in isMorph[i] corresponds to the face image in faces[i].

Output
Parameters

none

Return Value See Table 4 for all valid return code values.

If this function is not implemented, the return code should be set to ReturnCode::NotImplemented.

 337

	1. MORPH
	1.1. Scope
	1.2. Audience
	1.3. Reporting
	1.4. Accuracy metrics

	2. Rules for participation
	2.1. Implementation Requirements
	2.2. Participation agreement
	2.3. Number and Schedule of Submissions
	2.4. Validation
	2.5. Hardware specification
	2.5.1. Central Processing Unit (CPU)-only platforms

	2.6. Operating system, compilation, and linking environment
	2.7. Software and documentation
	2.7.1. Library and platform requirements
	2.7.2. Configuration and developer-defined data
	2.7.3. Submission folder hierarchy
	2.7.4. Installation and usage

	2.8. Runtime behavior
	2.8.1. Modes of operation
	2.8.2. Interactive behavior, stdout, logging
	2.8.3. Exception handling
	2.8.4. External communication
	2.8.5. Stateless behavior
	2.8.6. Single-thread requirement and parallelization

	3. Data structures supporting the API
	3.1. Requirement
	3.2. File formats and data structures
	3.2.1. Overview
	3.2.2. ImageLabel describing the format of an image
	3.2.3. Data type for similarity scores
	3.2.4. Data structure for return value of API function calls

	4. API specification
	4.1. Namespace
	4.2. API
	4.2.1. Implementation Requirements
	4.2.2. Interface
	4.2.3. Initialization
	4.2.4. Single-image Morph Detection
	Non-scanned photos
	Scanned photos
	Photos of unknown format

	1.1.1.
	1.1.1.
	1.1.1.
	1.1.1.
	1.1.1.
	4.2.5. Two-image Differential Morph Detection
	4.2.6. 1:1 Comparison
	4.2.7. Training for Morph Detection

