
FRVT

NIST Concept, Evaluation Plan and API Page 1 of 58

 1

 2

 3

 5

 6

 7

 8

Still Face Image and Video
Concept, Evaluation Plan and API

Version 1.4

9

Face Recognition Vendor Test (FRVT) 4

10

11

12

 13

 14

 15

Patrick Grother, George W. Quinn, and Mei Ngan 16

Image Group

Information Access Division

Information Technology Laboratory

July 10, 2013

 17

 18

 19

 20

FRVT

NIST Concept, Evaluation Plan and API Page 2 of 58

Status of this Document 21

This document amends the version 1.1 of this document released in Aug 2012 which regulated the still and video parts 22
of the FRVT. This amendment adds a new class of participation (class F) for frontal reconstruction, and updates some 23
milestones and dates. frvt2012@nist.gov. 24

 25

Timeline of the FRVT Evaluation 26

Phase 2, 3
(Class V only)

To be determined

Phase 1
(Class F only)

September 12 2013 Closing of Phase 1

July 25 2013 Opening of Phase 1

Phase 3 October 4 2013 Final deadline for Class A, C, D Participation.

July 25 2013 Opening of Phase 3

Phase 2
Feb-Mar 2013

March 2013 Deadline for submission of algorithms to Phase 2.

February 2013 Open of Phase 3

Phase 1
July to Sept 2012

January 24 2013 First interim report card released to submitting participants.

August 28 2012 Deadline for submission for inclusion of results in first interim report card.

Phase 0
April to July 2012

July 25 2012 Open submission period begins.

June 27 2012 Final evaluation plan.

 27
 January 2013

Su Mo Tu We Th Fr Sa

 1 2 3 4 5

 6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26

27 28 29 30 31

 February 2013

Su Mo Tu We Th Fr Sa

 1 2

 3 4 5 6 7 8 9

10 11 12 13 14 15 16

17 18 19 20 21 22 23

24 25 26 27 28

 March 2013

Su Mo Tu We Th Fr Sa

 1 2

 3 4 5 6 7 8 9

10 11 12 13 14 15 16

17 18 19 20 21 22 23

24 25 26 27 28 29 30

31

 April 2013

Su Mo Tu We Th Fr Sa

 1 2 3 4 5 6

 7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30

 May 2013

Su Mo Tu We Th Fr Sa

 1 2 3 4

 5 6 7 8 9 10 11

12 13 14 15 16 17 18

19 20 21 22 23 24 25

26 27 28 29 30 31

 June 2013

Su Mo Tu We Th Fr Sa

 1

 2 3 4 5 6 7 8

 9 10 11 12 13 14 15

16 17 18 19 20 21 22

23 24 25 26 27 28 29

30

 28

Major Changes since MBE 2010 29

Please note that this document is derived from the MBE-STILL 2010 API document for continuity and to aid implementers 30
of the FRVT 2012 API. 31

― For this test, Windows machines will not be used. Windows-compiled libraries are not permitted. All software must 32
run under Linux (see section 1.21). 33

― The FRVT 2012 API is written in the C++ language. Participants are required to provide their library in a format that is 34
linkable using g++ (see 1.21). 35

― This evaluation contains new focus areas, which include: 36

 Age, gender, and expression neutrality estimation for still images (see section 1.8) 37

 Dedicated API for video data (see section 3.7) 38

 Reporting minimum cost recognition (see section 1.16) 39

― New datasets will be used for FRVT 2012 and will contain individuals spanning a full age range. 40

― The header/source files for the API will be made available to implementers at http://nigos.nist.gov:8080/frvt2012/. 41

42

mailto:frvt2012@nist.gov
http://nigos.nist.gov:8080/frvt2012/

FRVT

NIST Concept, Evaluation Plan and API Page 3 of 58

Table of Contents 43

1. FRVT .. 7 44
1.1. Scope... 7 45
1.2. Audience ... 7 46
1.3. Market drivers .. 7 47
1.4. Offline testing ... 8 48
1.5. Phased testing ... 8 49
1.6. Interim reports .. 8 50
1.7. Final reports .. 8 51
1.8. Application scenarios .. 9 52
1.9. Image source labels .. 10 53
1.10. Options for participation .. 10 54
1.11. Number and schedule of submissions .. 11 55
1.12. Use of multiple images per person ... 11 56
1.13. Provision of photograph date information to the implementation.. 12 57
1.14. Core accuracy metrics ... 12 58
1.15. Generalized accuracy metrics ... 12 59
1.16. Reporting minimum cost recognition ... 13 60
1.17. Reporting template size .. 14 61
1.18. Reporting computational efficiency.. 14 62
1.19. Exploring the accuracy-speed trade-space ... 14 63
1.20. Hardware specification ... 14 64
1.21. Operating system, compilation, and linking environment ... 15 65
1.22. Software and Documentation ... 15 66
1.23. Runtime behavior ... 17 67
1.24. Threaded computations .. 17 68
1.25. Time limits... 18 69
1.26. Test datasets ... 18 70
1.27. Quality analysis ... 19 71
1.28. Ground truth integrity .. 19 72

2. Data structures supporting the API .. 20 73
2.1. Overview ... 20 74
2.2. Requirement ... 20 75
2.3. File formats and data structures ... 20 76
2.4. File structures for enrolled template collection ... 22 77
2.5. Data structure for result of an identification search .. 22 78

3. API Specification ... 23 79
3.1. Implementation identifiers ... 23 80
3.2. Maximum template size ... 23 81
3.3. 1:1 Verification .. 23 82
3.4. 1:N Identification .. 28 83
3.5. Pose conformance, age, gender, and expression neutrality estimation .. 34 84
3.6. Video ... 39 85

4. References .. 56 86
Annex A Submission of Implementations to the FRVT 2012 .. 57 87

A.1 Submission of implementations to NIST ... 57 88
A.2 How to participate .. 57 89
A.3 Implementation validation ... 58 90

 91
 92
 93
 94
 95

FRVT

NIST Concept, Evaluation Plan and API Page 4 of 58

List of Figures 96

Figure 1 – Organization and documentation of the FRVT 2012 ... 7 97
Figure 2 – Notional DETs targeted by two different cost models .. 14 98
Figure 3 – Schematic of verification without enrollment database ... 26 99
 100

List of Tables 101

Table 1 – Abbreviations .. 6 102
Table 2 – Subtests supported under the FRVT 2012 Still Image activity .. 9 103
Table 3 – FRVT 2012 classes of participation ... 10 104
Table 4 – Cumulative total number of algorithms, by class ... 11 105
Table 5 – Summary of accuracy metrics ... 12 106
Table 6 – Cost parameters for both submission types ... 13 107
Table 7 – Implementation library filename convention ... 16 108
Table 8 – Number of threads allowed for each application ... 17 109
Table 9 – Processing time limits in milliseconds .. 18 110
Table 10 – Main image corpora (others will be used) .. 18 111
Table 11 – Labels describing types of images... 20 112
Table 12 – Structure for a single face ... 20 113
Table 13 – Structure for a set of images from a single person ... 21 114
Table 14 – Structure for a pair of eye coordinates ... 21 115
Table 15 – Enrollment dataset template manifest ... 22 116
Table 16 – Structure for a candidate .. 22 117
Table 17 – Implementation identifiers ... 23 118
Table 18 – Implementation template size requirements ... 23 119
Table 19 – Functional summary of the 1:1 application .. 25 120
Table 20 – SDK initialization ... 26 121
Table 21 – Template generation .. 26 122
Table 22 – Template matching ... 27 123
Table 23 – Procedural overview of the identification test ... 28 124
Table 24 – Enrollment initialization .. 29 125
Table 25 – Enrollment feature extraction .. 30 126
Table 26 – Enrollment finalization .. 31 127
Table 27 – Identification feature extraction initialization .. 31 128
Table 28 – Identification feature extraction ... 32 129
Table 29 – Identification initialization .. 33 130
Table 30 – Identification search ... 33 131
Table 31 – “Base” Estimator Class Structure .. 35 132
Table 32 – Example of SdkEstimator Class Declaration .. 36 133
Table 33 – Example of SdkEstimator Class Definition .. 36 134
Table 34 – Initialization of Pose conformance, Age, Gender, and Expression neutrality estimation 37 135
Table 35 – Pose conformance, Age, Gender, Expression neutrality estimation .. 37 136
Table 36 – API implementation requirements for Video ... 39 137
Table 37 – ONEVIDEO Class .. 40 138
Table 38 – EYEPAIR Class .. 41 139
Table 39 – PersonTrajectory typedef ... 41 140
Table 40 – PERSONREP Class .. 41 141
Table 41 – CANDIDATE Class .. 42 142
Table 42 – CANDIDATELIST typedef ... 42 143
Table 43 – ReturnCode class .. 42 144
Table 44 – VideoEnrollment::getPid ... 43 145
Table 45 – VideoEnrollment::initialize ... 44 146
Table 46 – VideoEnrollment::generateEnrollmentTemplate ... 44 147

FRVT

NIST Concept, Evaluation Plan and API Page 5 of 58

Table 47 – VideoFinalize::finalize ... 45 148
Table 48 – VideoFeatureExtraction::initialize .. 46 149
Table 49 – VideoFeatureExtraction::generateIdTemplate ... 47 150
Table 50 – VideoSearch::initialize .. 48 151
Table 51 – VideoSearch::identifyVideo and VideoSearch::identifyImage .. 48 152
Table 52 – ImageEnrollment::getPid .. 49 153
Table 53 – ImageEnrollment::initialize ... 50 154
Table 54 – ImageEnrollment::generateEnrollmentTemplate ... 50 155
Table 55 – ImageFinalize::finalize ... 51 156
Table 56 – ImageFeatureExtraction::initialize .. 52 157
Table 57 – ImageFeatureExtraction::generateIdTemplate .. 53 158
Table 58 – ImageSearch::initialize .. 54 159
Table 59 – ImageSearch::identifyVideo .. 54 160
 161

162

FRVT

NIST Concept, Evaluation Plan and API Page 6 of 58

Acknowledgements 163

― The authors are grateful to the experts who made extensive comments on the first version of this document. 164

Project History 165

― March 2, 2012 – Addition of Class F for frontal reconstruction. 166

― Aug 18, 2012 – Release with updated "number of allowed algorithm submissions" information, v1.1 167

― July 31, 2012 – Release of additional information as API, v1.0 168

― April 17, 2012 - Release of first public draft of the Face Recognition Vendor Test (FRVT) 2012 – Concept, Evaluation 169
Plan and API v0.5. 170

― June 17, 2010 – Published public report of MBE-STILL 2010 test (NISTIR 7709 – Report on the Evaluation of 2D Still-171
Image Face Recognition Algorithms) linked from http://face.nist.gov/mbe. 172

― August 2009 - Briefed large scale 1:N proposal to U. S. Government sponsors 173

Terms and definitions 174

The abbreviations and acronyms of Table 1 are used in many parts of this document. 175

Table 1 – Abbreviations 176

FNIR False negative identification rate

FPIR False positive identification rate

FMR False match rate

FNMR False non-match rate

FRVT NIST’s Face Recognition Vendor Test program

FTS Failure to Search

FTX Failure to extract features from an enrollment image

GFAR Generalized false accept rate

GFRR Generalized false reject rate

DET Detection error tradeoff characteristic: For verification this is a plot of FNMR vs. FMR (sometimes as
normal deviates, sometimes on log-scales). For identification this is a plot of FNIR vs. FPIR.

INCITS InterNational Committee on Information Technology Standards

ISO/IEC 19794 ISO/IEC 19794-5: Information technology — Biometric data interchange formats — Part 5:Face image
data. First edition: 2005-06-15. (See Bibliography entry).

MBE NIST's Multiple Biometric Evaluation program

NIST National Institute of Standards and Technology

SDK The term Software Development Kit refers to any library software submitted to NIST. This is used
synonymously with the terms "implementation" and "implementation under test".

177

http://face.nist.gov/mbe

FRVT

NIST Concept, Evaluation Plan and API Page 7 of 58

1. FRVT 178

1.1. Scope 179

This document establishes a concept of operations and an application programming interface (API) for evaluation of face 180
recognition implementations submitted to NIST's Face Recognition Vendor Test 2012. See 181

http://www.nist.gov/itl/iad/ig/frvt-2012.cfm for all FRVT 2012 documentation.

 Face Recognition Vendor Test
(FRVT) 2012

Still Face
Image(s)

Video
1:N identification

1:1
Verification

1:N
Identification

Gender, Age,
Expression

Neutrality, and
Pose Estimation

Video-to-
video

Still-to-
video

Video-to-
still

API and Concept of Operations are defined in this document

Reconstruction of
frontal image(s)

182

Figure 1 – Organization and documentation of the FRVT 2012 183

1.2. Audience 184

Universities and commercial entities with capabilities in any of the following areas are invited to participate in the FRVT 185
2012 Face test. 186

― Identity verification with face recognition algorithms. 187

― Large scale identification implementations. 188

― Profile view recognition. 189

― Those with a capability to assess age, gender, expression neutrality, and/or pose orientation of a face in an image. 190

― Face recognition in video capability 191

Organizations will need to implement the API defined in this document. Participation is open worldwide. There is no 192
charge for participation. While NIST intends to evaluate technologies that could be readily made operational, the test is 193
also open to experimental, prototype and other technologies. 194

1.3. Market drivers 195

This test is intended to support a plural marketplace of face recognition systems. While the dominant application, in 196
terms of revenue, has been one-to-many search for driving licenses and visa issuance, the deployment of one-to-one face 197
recognition has re-emerged with the advent of the e-Passport verification projects

1
. In addition, there remains 198

considerable activity in the use of FR for surveillance applications. 199

1
 These match images acquired from a person crossing a border against the ISO/IEC 19794-5 facial image stored on the embedded

ISO/IEC 7816 + ISO/IEC ISO 14443 chips.

http://www.nist.gov/itl/iad/ig/frvt-2012.cfm

FRVT

NIST Concept, Evaluation Plan and API Page 8 of 58

These applications are differentiated by the population size (and other variables). In the driving license duplicate 200
detection application, the enrollment database might exceed 10

7
 people. In the surveillance application, the watchlist 201

size can readily extend to 10
4
. 202

1.4. Offline testing 203

While this set of tests is intended as much as possible to mimic operational reality, this remains an offline test executed 204
on databases of images. The intent is to assess the core algorithmic capability of face recognition algorithms. This test will 205
be conducted purely offline - it does not include a live human-presents-to-camera component. Offline testing is attractive 206
because it allows uniform, fair, repeatable, and efficient evaluation of the underlying technologies. Testing of 207
implementations under a fixed API allows for a detailed set of performance related parameters to be measured. 208

1.5. Phased testing 209

To support research and development efforts, this testing activity will embed multiple rounds of testing. These test 210
rounds are intended to support improved performance. Once the test commences, NIST will evaluate implementations 211
on a first-come-first-served basis and will return results to providers as expeditiously as possible. Providers may submit 212
revised SDKs to NIST only after NIST provides results for the prior SDK and invites further submission. The frequency with 213
which a provider may submit SDKs to NIST will depend on the times needed for developer preparation, transmission to 214
NIST, validation, execution and scoring at NIST, and developer review and decision processes. 215

For the schedule and number of SDKs of each class that may be submitted, see sections 1.10 and 1.11. 216

1.6. Interim reports 217

The performance of each SDK will be reported in a "score-card". This will be provided to the participant. While the score 218
cards may be used by the provider for arbitrary purposes, they are intended to facilitate development. Score cards will 219

 be machine generated (i.e. scripted), 220

 be provided to participants with identification of their implementation, 221

 include timing, accuracy and other performance results, 222

 include results from other implementations, but will not identify the other providers, 223

 be expanded and modified as revised implementations are tested, and as analyses are implemented, 224

 be generated and released asynchronously with SDK submissions, 225

 be produced independently of the other status of other providers’ implementations, 226

 be regenerated on-the-fly, usually whenever any implementation completes testing, or when new analysis is added. 227

NIST does not intend to release these test reports publicly. NIST may release such information to the U.S. Government 228
test sponsors. While these reports are not intended to be made public, NIST can only request that agencies not release 229
this content. 230

1.7. Final reports 231

NIST will publish one or more final public reports. NIST may also 232

 publish additional supplementary reports (typically as numbered NIST Interagency Reports), 233

 publish in other academic journals, 234

 present results at conferences and workshops (typically PowerPoint). 235

Our intention is that the final test reports will publish results for the best-performing implementation from each 236
participant. Because “best” is ill-defined (accuracy vs. time vs. template size, for example), the published reports may 237
include results for other implementations. The intention is to report results for the most capable implementations (see 238
section 1.14, on metrics). Other results may be included (e.g. in appendices) to show, for example, examples of progress 239
or tradeoffs. IMPORTANT: Results will be attributed to the providers. 240

FRVT

NIST Concept, Evaluation Plan and API Page 9 of 58

1.8. Application scenarios 241

The test will include one-to-one verification tests and one-to-many identification tests
6
 [MBE 2010, IREX III] for still 242

images. It will also include one-to-many identification tests for video sequences. As described in Table 2, the test is 243
intended to represent: 244

― Close-to-operational use of face recognition technologies in identification applications in which the enrolled dataset 245
could contain images from up to three million persons. 246

― Verification scenarios in which still images are compared. 247

― Pose, age, gender, and expression neutrality estimation. 248

― Identification applications for face recognition in video 249

Table 2 – Subtests supported under the FRVT 2012 Still Image activity 250

A B C D V

1. Aspect 1:1 verification 1:1 verification with
enrollment database –
Not Supported

1:N identification Pose Conformance,
Age, Gender, and
Expression neutrality
Estimation

Video-video, Still-
video, video-still

2. Enrollment
dataset

None, application to
single images

In MBE 2010, this class
supported 1:1
verification with an
enrollment database.

This will not be
supported for FRVT
2012.

N enrolled subjects None, application to
single images.

Images will primarily
be frontal controlled
images (visa +
mugshot) for which
ground truth is known.

N enrolled sequences
or N enrolled stills

3. Prior NIST test
references

Equivalent to 1 to 1
matching in [MBE
2010]

Equivalent to 1 to N
matching in [MBE 2010]

4. Example
application

Verification of e-
Passport facial image
against a live border-
crossing image.

Open-set identification of
an image against a
central database, e.g. a
search of a mugshot
against a database of
known criminals.

For sex and age: Digital
signage for marketing.

For pose and
expression:
Conformance to
ISO/IEC 19794-5
requirements.

Open-set
identification against
a central database,
e.g. a search of a
wanted criminal
through a live-video
surveillance system at
an airport who may
attempt to flee the
country

5. Score or
feature space
normalization
support

Vendor uses
normalization
techniques over SDK-
internal datasets

Any score or feature
based statistical
normalization
techniques-are applied
against enrollment
database

 Any score or feature
based statistical
normalization
techniques-are
applied against
enrollment database

6. Intended
number of
subjects

Up to O(10
5
) Up to O(10

7
) but

dependence on N will be
computed. From O(10

2
)

upwards.

Expected O(10
3
) Expected O(10

3
)

7. Number of
images per
individual

Variable, see section
1.12.

Variable, see section
1.12.

1 Variable

 251

NOTE 1: The vast majority of images are color. The API supports both color and greyscale images. 252

FRVT

NIST Concept, Evaluation Plan and API Page 10 of 58

NOTE 2: For the operational datasets, it is not known what processing was applied to the images before they were 253
archived. So, for example, we do not know whether gamma correction was applied. NIST considers that best practice, 254
standards and operational activity in the area of image preparation remains weak. 255

1.9. Image source labels 256

NIST may mix images from different source in an enrollment set. For example, NIST could combine N/2 mugshot images 257
and N/2 visa images into a single enrollment dataset. For this reason, in the data structure defined in clause 2.3.3, each 258
image is accompanied by a "label" which identifies the set-membership images. Legal values for labels are in clause 2.3.2. 259

1.10. Options for participation 260

The following rules apply: 261

― A participant must properly follow, complete and submit the Annex A Participation Agreement. This must be done 262
once, not before July 18, 2012. It is not necessary to do this for each submitted SDK. 263

― All participants shall submit at least one class A SDK, or one class D SDK, or one class V SDK. 264

― A class A SDK shall be sent before, or concurrently with, any class C SDK. 265

― A class D SDK may be submitted without submission of a class A SDK. 266

― A class V SDK may be submitted without submission of a class A SDK. 267

― Any SDK shall implement exactly one of the functionalities defined in Table 3. So, for example, the 1:1 functionality 268
of a class A SDK shall not be merged with that of a class C SDK. 269

Table 3 – FRVT 2012 classes of participation 270

Function 1:1 verification 1:1 verification
with enrollment
database

1:N identification Pose conformance,
Age, Gender, and
Expression
neutrality
estimation

Frontal
Reconstruction

Video

Class label A B C
[CP & CN,

see Table 6]

D F V

Co-requisite class
SDK

None Not Supported A None None None

API requirements 3.1 + 3.2 + 3.3 Not Supported 3.1 + 3.2 + 3.5 3.1 + 3.6 3.3 3.7

Class A might be preferred by academic institutions because the API is simple, supporting just the elemental hypothesis 271
test: "are the images from the same person or not?" 272

 273

 274

 275

 276

 277

 278

 279

 280

 281

FRVT

NIST Concept, Evaluation Plan and API Page 11 of 58

1.11. Number and schedule of submissions 282

The test is conducted in three phases, as scheduled on page 2. The maximum total (i.e. cumulative) number of 283
submissions is regulated in Table 4. 284

Table 4 – Cumulative total number of algorithms, by class 285

Phase 1 Total over Phases
1 + 2

Total over Phases 1 + 2 + 3

Cumulative total number
of class A submissions

2 3 4 if at least 1 was successfully executed by end Phase 2
2 if zero had been successfully executed by end Phase 2

Cumulative total number
of class C submissions

3 = 2CN + 1CP
see sec. 1.16

4 = 3CN + 1CP
(see sec 1.16)

7 = 5CN + 2CP if at least 1 CN or CP was successfully executed by
end Phase 2
3 = 2CN + 1CP if 0 had been successfully executed by end Phase 2

Cumulative total number
of class D submissions

1 2 3

Cumulative total number
of class F submissions

1 1 2

Cumulative total number
of class V submissions

2 2 4 if at least 1 was successfully executed by end Phase 2
2 if zero had been successfully executed by end Phase 2

The numbers above may be increased as resources allow. 286

NIST cannot conduct surveys over runtime parameters - NIST must limit the extent to which participants are able to train 287
on the test data. 288

1.12. Use of multiple images per person 289

Some of the proposed datasets includes K > 2 images per person for some persons. This affords the possibility to model a 290
recognition scenario in which a new image of a person is compared against all prior images

2
. Use of multiple images per 291

person has been shown to elevate accuracy over a single image [FRVT2002b, MBE 2010]. 292

For still-face recognition in this test, NIST will enroll K  1 images under each identity. Normally the probe will consist of a 293
single image, but NIST may examine the case that it could consist of multiple images. Ordinarily, the probe images will be 294
captured after the enrolled images of a person

3
. The method by which the face recognition implementation exploits 295

multiple images is not regulated: The test seeks to evaluate developer provided technology for multi-presentation fusion. 296
This departs from some prior NIST tests in which NIST executed fusion algorithms (e.g. [FRVT2002b]), and sum score 297
fusion, for example, [MINEX]). 298

This document defines a template to be the result of applying feature extraction to a set of K  1 images. That is, a 299
template contains the features extracted from one or more images, not generally just one. An SDK might internally fuse K 300
feature sets into a single representation or maintain them separately - In any case the resulting proprietary template is 301
contained in a contiguous block of data. All verification and identification functions operate on such multi-image 302
templates. 303

The number of images per person will depend on the application area: 304

― In civil identity credentialing (e.g. passports, driving licenses) the images will be acquired approximately uniformly 305
over time (e.g. five years for a Canadian passport). While the distribution of dates for such images of a person might 306
be assumed uniform, a number of factors might undermine this assumption

4
. 307

2
 For example, if a banned driver applies for a driving license under a new name, and the local driving license authority maintains a

driving license system in which all previous driving license photographs are enrolled, then the fraudulent application might be detected
if the new image matched any of the prior images. This example implies one (elemental) method of using the image history.
3
 To mimic operational reality, NIST intends to maintain a causal relationship between probe and enrolled images. This means that the

enrolled images of a person will be acquired before all the images that comprise a probe.
4
 For example, a person might skip applying for a passport for one cycle (letting it expire). In addition, a person might submit identical

images (from the same photography session) to consecutive passport applications at five year intervals.

FRVT

NIST Concept, Evaluation Plan and API Page 12 of 58

― In criminal applications the number of images would depend on the number of arrests
5
. The distribution of dates for 308

arrest records for a person (i.e. the recidivism distribution) has been modeled using the exponential distribution, but 309
is recognized to be more complicated. NIST currently estimates that the number of images will never exceed 100. 310

1.13. Provision of photograph date information to the implementation 311

Due to face ageing effects, the utility of any particular enrollment image is dependent on the time elapsed between it and 312
the probe image. In FRVT 2012, NIST intends to use the most recent image as the probe image, and to use one or more of 313
the remaining prior images under a single enrolled identity. 314

1.14. Core accuracy metrics 315

Notionally the error rates for verification applications will be false match and false non-match error rates, FMR and FNMR. 316

For identification testing, the test will target open-universe applications such as benefits-fraud and watch-lists. It will not 317
address the closed-set task because it is operationally uncommon. 318

While some one-to-many applications operate with purely rank-based metrics, this test will primarily target score-based 319
identification metrics. Metrics are defined in Table 5. The analysis will survey over various rank and thresholds. Plots of 320
the two error rates, parametric on threshold, will be the primary reporting mechanism. 321

Table 5 – Summary of accuracy metrics 322

 Application Metric

A 1:1 Verification FMR = Fraction of impostor comparisons that produce a similarity score
greater than or equal to a threshold value

FNMR = Fraction of genuine comparisons that produce a similarity score less
than some threshold value

B 1:N Identification
Primary identification metric

FPIR = Fraction of searches that do not have an enrolled mate for which
one or more candidate list entries is at or above a threshold

FNIR = Fraction of searches that have an enrolled mate for which the mate
is below a threshold

C 1:N Identification (with rank criteria)
Secondary identification metric

FPIR = Fraction of searches that do not have an enrolled mate for which
one or more candidate list entries is at or above a threshold

FNIR = Fraction of searches that have an enrolled mate for which the mate
is not in the best R ranks and at or above a threshold

 323

NOTE: The metric on line B is a special case of the metric on line C: the rank condition is relaxed (R  N). Metric B is the 324
primary metric of interest because the target application does not include a rank criterion. 325

FPIR will be estimated using probe images for which there is no enrolled mate. 326

NIST will extend the analysis in other areas, with other metrics, and in response to the experimental data and results. 327

1.15. Generalized accuracy metrics 328

Under the ISO/IEC 19795-1 biometric testing and reporting standard, a test must account for "failure to acquire" (FTA) 329
and "failure to enroll" (FTE) events (e.g. elective refusal to make a template, or fatal errors). The way these are treated is 330
application-dependent. 331

For verification, the appropriate metrics reported in FRVT 2012 will be generalized error rates (GFAR, GFRR). When single 332
images are compared, (GFAR,GFRR) and (FMR,FNMR) will be equivalent if no failures are observed. 333

Similarly for identification, generalized error rates will be reported. 334

5
 A number of distributions have been considered to model recidivism, see ``Random parameter stochastic process models of criminal

careers.'' In Blumstein, Cohen, Roth & Visher (Eds.), Criminal Careers and Career Criminals, Washington, D.C.: National Academy of
Sciences Press, 1986.

FRVT

NIST Concept, Evaluation Plan and API Page 13 of 58

1.16. Reporting minimum cost recognition 335

This evaluation will investigate the use of cost parameters for application-specific algorithm optimization. The goal is to 336
determine if matching algorithms can be modified to improve performance when the costs of errors are known in 337
advance. The following cost model will be used as an evaluation metric for recognition performance: 338
 339

E[Cost(τ)] = (1−PMated)FPIR(τ)CP + PMated FNIR(τ)CN 340
 341

where PMated is the a priori probability that the user is mated, CP is the cost of a false positive, CN is the cost of a false 342
negative, FPIR(τ) is the false positive identification rate, FNIR(τ) is the false negative identification rate, and τ is the 343
operating threshold. The model estimates the expected cost per user attempt, which could be a measure of time, 344
workload, money, etc. The participant is tasked with minimizing the cost for a predetermined and fixed set of cost 345
parameters (CP, CN, and PMated). 346
Cost parameters are often chosen to correspond to a specific application. Consider a biometric system that provides bank 347
vault access to specific individuals. One might reasonably set the cost of a false positive to be the monetary value of 348
whatever is in the vault, and the cost of a false negative to a value that reflects the amount of inconvenience incurred 349
from having to open the vault by some other method. Setting PMated to 0.1 assumes that one out of every ten access 350
attempts is by an allowed user. 351
NIST recommends each participant to submit instances of the class C SDK, each corresponding to a different set of cost 352
parameters. These parameters are defined in the table below. Class CP implementations penalize false positives heavily 353
and false negatives lightly. Class CN implementations assign comparatively greater penalty to false negatives. For this 354
class of implementations, suppression of false positives is less important. 355

Table 6 – Cost parameters for both submission types 356

Implementation Class CN CP PMated

Class CP 1 1000 0.6

Class CN 250 1 0.001

 357
Additionally, failures to extract (FTXs) and failures to search (FTSs) will be treated differently depending on the 358
implementation class. 359
― For Class CP implementations, both will be treated as failures in a positive recognition system (e.g. access control). 360

This is the way NIST has handled FTXs and FTSs in prior evaluations. 361
― For Class CN implementations, FTXs and FTSs will be treated like failures in a negative recognition system (e.g. a 362

watchlist). Failures in a negative recognition system increase the FPIR when they occur for non-mated searches, but 363
do not increase the FNIR when they occur for mated searches. This differs from the way NIST has traditionally 364
handled these types of failure. 365

The motivation for participants to submit two implementations is to see if it is possible to change the shape of a DET to 366
reduce cost for a specific set of cost parameters. Figure 2 plots standard DET curves for two identification algorithms. 367
The two curves cross one another, making it impossible to state which is more accurate in any absolute sense. Since class 368
CN implementations are penalized heavily for false negatives, and only lightly for false positives, both algorithms are 369
expected to achieve their lowest cost toward the right end of the figure, where the blue curve performs better. 370
Conversely, class CP implementations are penalized heavily for false positives but only lightly for false negatives. Thus, for 371
this set of cost parameters, both algorithms are expected to achieve their lowest cost toward the left end of the figure, 372
where the red curve performs better. 373
 374

FRVT

NIST Concept, Evaluation Plan and API Page 14 of 58

 375

Figure 2 – Notional DETs targeted by two different cost models 376

1.17. Reporting template size 377

Because template size is influential on storage requirements and computational efficiency, this API supports 378
measurement of template size. NIST will report statistics on the actual sizes of templates produced by face recognition 379
implementations submitted to FRVT 2012. NIST may report statistics on runtime memory usage. Template sizes were 380
reported in the IREX III test

6
 and the MBE-STILL 2010 test

7
. 381

1.18. Reporting computational efficiency 382

As with other tests, NIST will compute and report recognition accuracy. In addition, NIST will also report timing statistics 383
for all core functions of the submitted SDK implementations. This includes feature extraction, 1:1 and 1:N recognition, 384
and age, gender, pose frontality and expression neutrality estimation. For an example of how efficiency can be reported, 385
see the final report of the IREX III test

6
and the MBE-STILL 2010 test

7
. 386

Note that face recognition applications optimized for pipelined 1:N searches may not demonstrate their efficiency in pure 387
1:1 comparison applications. 388

1.19. Exploring the accuracy-speed trade-space 389

NIST will explore the accuracy vs. speed tradeoff for face recognition algorithms running on a fixed platform. NIST will 390
report both accuracy and speed of the implementations tested. While NIST cannot force submission of "fast vs. slow" 391
variants, participants may choose to submit variants on some other axis (e.g. "experimental vs. mature") 392
implementations. NIST encourages “fast-less-accurate vs. slow-more-accurate” with a factor of three between the speed 393
of the fast and slow versions. 394

1.20. Hardware specification 395

NIST intends to support high performance by specifying the runtime hardware beforehand. There are several types of 396
computer blades that may be used in the testing. The blades are labeled as Dell M905, M910, M605, and M610. The 397
following list gives some details about the hardware of each blade type: 398

 Dell M605 - Dual Intel Xeon E5405 2 GHz CPUs (4 cores each) 399

 Dell M610 - Dual Intel Xeon X5680 3.3 GHz CPUs (6 cores each) 400

 Dell M905 - Quad AMD Opteron 8376HE 2 GHz CPUs
8
 (4 cores each) 401

6
 See the IREX III test report: NIST Interagency Report 7836, linked from http://iris.nist.gov/irex

7
 See the MBE-STILL 2010 test report, NIST Interagency Report 7709, linked from http://face.nist.gov/mbe

8
 cat /proc/cpuinfo returns fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht

syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm 3wext 3dnow constant_tsc nonstop_tsc pni cx16 popcnt lahf_lm cmp_legacy svm extapic
cr8_legacy altmovcr8 abm sse4a misalignsse 3dnowprefetch osvw

http://iris.nist.gov/irex
http://face.nist.gov/mbe

FRVT

NIST Concept, Evaluation Plan and API Page 15 of 58

 Dell M910 - Dual Intel Xeon X7560 2.3 GHz CPUs (8 cores each) 402

Each CPU has 512K cache. The bus runs at 667 Mhz. The main memory is 192 GB Memory as 24 8GB modules. We 403
anticipate that 16 processes can be run without time slicing. 404

NIST is requiring use of 64 bit implementations throughout. This will support large memory allocation to support 1:N 405
identification task with image counts in the millions. For still images, if all templates were to be held in memory, the 406
192GB capacity implies a limit of ~19KB per template, for a 10 million image enrollment. For video, given the data 407
expectations and the occurrence of faces in the imagery, we anticipate the developers will have sufficient memory for 408
video templates. Note that while the API allows read access of the disk during the 1:N search, the disk is, of course, 409
relatively slow. 410

Some of the section 3 API calls allow the implementation to write persistent data to hard disk. The amount of data shall 411
not exceed 200 kilobytes per enrolled image. NIST will respond to prospective participants' questions on the hardware, 412
by amending this section. 413

1.21. Operating system, compilation, and linking environment 414

The operating system that the submitted implementations shall run on will be released as a downloadable file accessible 415
from http://nigos.nist.gov:8080/evaluations/ which is the 64-bit version of CentOS 6.2 running Linux kernel 2.6.32-220. 416

For this test, Windows machines will not be used. Windows-compiled libraries are not permitted. All software must run 417
under Linux. 418

NIST will link the provided library file(s) to our C++ language test drivers. Participants are required to provide their library 419
in a format that is linkable using g++ version 4.4.6. The standard libraries are: 420

/usr/lib64/libstdc++.so.6.0.13 lib64/libc.so.6 -> libc-2.12.so lib64/libm.so.6 -> libm-2.12.so 421

A typical link line might be 422

g++ -I. -Wall -m64 -o frvt12test frvt12test.cpp -L. –lfrvt2012_Enron_A_07 423

The Standard C++ library should be used for development of the SDKs. The prototypes from the still image API portion of 424
this document will be written to a file "frvt2012.h" which will be included via 425

#include <frvt2012.h>

The prototypes from the video API portion of this document will be written to a file "frvt2012Video.h" which will be 426
included via 427

#include <frvt2012Video.h>

The header files will be made available to implementers at http://nigos.nist.gov:8080/frvt2012/. 428

NIST will handle all input of images via the JPEG and PNG libraries, sourced, respectively from http://www.ijg.org/ and see 429
http://libpng.org. 430

All compilation and testing will be performed on x86 platforms. Thus, participants are strongly advised to verify library-431
level compatibility with g++ (on an equivalent platform) prior to submitting their software to NIST to avoid linkage 432
problems later on (e.g. symbol name and calling convention mismatches, incorrect binary file formats, etc.). 433

Dependencies on external dynamic/shared libraries such as compiler-specific development environment libraries are 434
discouraged. If absolutely necessary, external libraries must be provided to NIST upon prior approval by the Test Liaison. 435

1.22. Software and Documentation 436

1.22.1. SDK Library and Platform Requirements 437

Participants shall provide NIST with binary code only (i.e. no source code). Header files (“.h”) are allowed, but these shall 438
not contain intellectual property of the company nor any material that is otherwise proprietary. It is preferred that the 439
SDK be submitted in the form of a single static library file. However, dynamically linked shared library files are permitted. 440

http://nigos.nist.gov:8080/frvt2012/
http://www.ijg.org/
http://libpng.org/

FRVT

NIST Concept, Evaluation Plan and API Page 16 of 58

The core library shall be named according to Table 7. Additional shared object library files may be submitted that support 441
this “core” library file (i.e. the “core” library file may have dependencies implemented in these other libraries). 442

Intel Integrated Performance Primitives (IPP) libraries are permitted if they are delivered as a part of the developer-443
supplied library package. It is the provider’s responsibility to establish proper licensing of all libraries. The use of IPP 444
libraries shall not inhibit the SDK’s ability to run on CPUs that do not support IPP. Please take note that some IPP 445
functions are multithreaded and threaded implementations may complicate comparative timing. 446

Access to any GPUs is not permitted. 447

Table 7 – Implementation library filename convention 448

Form libFRVT2012_provider_class_sequence.ending

Underscore
delimited parts of
the filename

libFRVT2012 provider class sequence ending

Description First part of the
name, required to
be this.

Single word name of
the main provider
EXAMPLE: Acme

Function classes
supported in Table
3.
EXAMPLE: C

A two digit decimal
identifier to start at 00
and increment by 1
every time any SDK is
sent to NIST. EXAMPLE:
07

Either .so or .a

Example libFRVT2012_Acme_C_07.a

 449

NIST will report the size of the supplied libraries. 450

1.22.2. Configuration and developer-defined data 451

The implementation under test may be supplied with configuration files and supporting data files. The total size of the 452
SDK, that is all libraries, include files, data files and initialization files shall be less than or equal to 1 073 741 824 bytes = 453
1024

3
 bytes. 454

NIST will report the size of the supplied configuration files. 455

1.22.3. Installation and Usage 456

The SDK must install easily (i.e. one installation step with no participant interaction required) to be tested, and shall be 457
executable on any number of machines without requiring additional machine-specific license control procedures or 458
activation. 459

The SDK shall be installable using simple file copy methods. It shall not require the use of a separate installation program. 460

The SDK shall neither implement nor enforce any usage controls or limits based on licenses, number of executions, 461
presence of temporary files, etc. The SDKs shall remain operable until April 30 2013. 462

Hardware (e.g. USB) activation dongles are not acceptable. 463

1.22.4. Hard disk space 464

FRVT 2012 participants should inform NIST if their implementations require more than 100K of persistent storage, per 465
enrolled image on average. 466

1.22.5. Documentation 467

Participants shall provide complete documentation of the SDK and detail any additional functionality or behavior beyond 468
that specified here. The documentation must define all (non-zero) developer-defined error or warning return codes. 469

FRVT

NIST Concept, Evaluation Plan and API Page 17 of 58

1.22.6. Modes of operation 470

Individual SDKs provided shall not include multiple “modes” of operation, or algorithm variations. No switches or options 471
will be tolerated within one library. For example, the use of two different “coders” by a feature extractor must be split 472
across two separate SDK libraries, and two separate submissions. 473

1.22.7. Watermarking of images 474

The SDK functions shall not watermark or otherwise steganographically mark up the images. 475

1.23. Runtime behavior 476

1.23.1. Interactive behavior 477

The SDK will be tested in non-interactive “batch” mode (i.e. without terminal support). Thus, the submitted library shall 478
not use any interactive functions such as graphical user interface (GUI) calls, or any other calls which require terminal 479
interaction e.g. reads from “standard input”. 480

1.23.2. Error codes and status messages 481

The SDK will be tested in non-interactive “batch” mode, without terminal support. Thus, the submitted library shall run 482
quietly, i.e. it should not write messages to "standard error" and shall not write to “standard output”. An SDK may write 483
debugging messages to a log file - the name of the file must be declared in documentation. 484

1.23.3. Exception Handling 485

The application should include error/exception handling so that in the case of a fatal error, the return code is still 486
provided to the calling application. 487

1.23.4. External communication 488

Processes running on NIST hosts shall not side-effect the runtime environment in any manner, except for memory 489
allocation and release. Implementations shall not write any data to external resource (e.g. server, file, connection, or 490
other process), nor read from such. If detected, NIST will take appropriate steps, including but not limited to, cessation of 491
evaluation of all implementations from the supplier, notification to the provider, and documentation of the activity in 492
published reports. 493

1.23.5. Stateless behavior 494

All components in this test shall be stateless, except as noted. This applies to face detection, feature extraction and 495
matching. Thus, all functions should give identical output, for a given input, independent of the runtime history. NIST 496
will institute appropriate tests to detect stateful behavior. If detected, NIST will take appropriate steps, including but not 497
limited to, cessation of evaluation of all implementations from the supplier, notification to the provider, and 498
documentation of the activity in published reports. 499

1.24. Threaded computations 500

Table 8 shows the limits on the numbers of threads a face recognition implementation may use. In many cases threading 501
is not permitted (i.e. T=1) because NIST will parallelize the test by dividing the workload across many cores and many 502
machines. For the functions where we allow multi-threading, e.g. in the 1:N test, NIST requires the provider to disclose 503
the maximum number of threads to us. If that number is T, NIST will run the largest integer number of processes, P, in 504

parallel such that TP  16. 505

Table 8 – Number of threads allowed for each application 506

 A C D F V

Function 1:1 verification 1:N identification Pose conformance,
Age, Gender,
Expression neutrality
estimation

Frontal
Reconstruction

Video

FRVT

NIST Concept, Evaluation Plan and API Page 18 of 58

Feature extraction 1 1

1 1

1

Verification 1 NA NA

Finalize enrollment
(before 1:1 or 1:N)

NA 1  T  16 1  T  16

Identification NA 1  T  16 1  T  16

For comparative timing, the IREX III
6
 test report estimated a factor by which the speed of threaded algorithms would be 507

adjusted. Non-threaded implementations will eliminate the need for NIST to apply such techniques [IREX III]. 508

NIST will not run an implementation from participant X and an implementation from participant Y on the same machine at 509
the same time. 510

To expedite testing, for single-threaded libraries, NIST will run up to P = 16 processes concurrently. NIST's calling 511
applications are single-threaded. 512

1.25. Time limits 513

The elemental functions of the implementations shall execute under the time constraints of Table 9. These time limits 514
apply to the function call invocations defined in section 3. Assuming the times are random variables, NIST cannot regulate 515
the maximum value, so the time limits are 90-th percentiles. This means that 90% of all operations should take less than 516
the identified duration. 517

The time limits apply per image. When K images of a person are present, the time limits shall be increased by a factor K. 518

Table 9 – Processing time limits in milliseconds 519

 A C D F V

Function 1:1 verification
without enrollment
database

1:N identification Pose conformance, Age,
Gender, and Expression
neutrality estimation

Frontal reconstruction Video

Feature extraction enrollment 1000 (1 core)
600x480 pixels

1000 (1 core)
600x480 pixels

500 (1 core)

800K + 200L for K input
images, L outputs

5 * class C per
video frame

Feature extraction for
verification or identification

1000 (1 core)
600x480 pixels

1000 (1 core)
600x480 pixels

NA 5 * class C per
video frame

Verification 5 (1 core) NA NA NA

Identification of one search
image against 1,000,000 single-

image MULTIFACE records.

NA 10000 (16 cores)
or 160000 (1 core)

NA NA

For video: the multiple of 5 is a notional average of the number of persons expected in any given frame. This figure is 520
highly unreliable for any given sample. 521

In addition the enrollment finalization procedure is subject to a time limit, as follows. For an enrollment of one million 522
single-image MULTIFACEs, the total time shall be less than 7200 seconds. The implementation can use up to 16 cores. 523
This limit includes disk IO time. 524

1.26. Test datasets 525

This section is under development. The data has, in some cases, been estimated from initial small partitions. The 526
completion of this section depends on further work. The information is subject to change. We intend to update this 527
section as fully as possible. 528

NIST is likely to use other datasets, in addition. Information for video data is given in section 3.7. 529

Table 10 – Main image corpora (others will be used) 530

 Laboratory FRVT 2002+2006 / HCINT New Dataset Multiple Encounter Database
(MEDS)

Collection, environment See FRVT 2006
Report, Phillips

Visa application process Visa application process Law enforcement booking

Live scan, Paper Live Live Live, few paper

FRVT

NIST Concept, Evaluation Plan and API Page 19 of 58

Documentation et al.
NIST IR 7408.

See NIST IR 6965 [FRVT2002] New See NIST Special Database 32
Volume 1 (MEDS-I) and Volume 2
(MEDS-II)

9
.

Compression from [MBE
2010]

10

JPEG mean size 9467 bytes. See
[FRVT2002b]

JPEG mean size 17 kilobytes JPEG ~ 20:1

Maximum image size 300 x 252 300 x 252 Mixed, some are 640x480 others
are 768x960, some are smaller.

Minimum image size 300 x 252 300 x 252

Eye to eye distance Median = 71 pixels Median = 71 pixels mean=156, sd=46

Frontal Yes, well controlled Moderately well controlled
Profile images will be included and
labeled as such.

Full frontal geometry Yes, in most cases. Faces may
have small background than ISO
FF requires.

Yes, in most cases. Faces may
have small background than ISO
FF requires.

Mostly not. Varying amounts of
the torso are visible.

Intended use 1:1 1:1 and 1:N 1:N

Age University
population

18 years and above 0 years and above 18 years and above

1.27. Quality analysis 531

NIST will examine the effectiveness of quality scores in predicting recognition accuracy. A quality score is computed from 532
an input record during feature extraction. The default method of analysis will be the error vs. reject analysis document in 533
P. Grother and E. Tabassi, Performance of biometric quality measures, IEEE Trans. PAMI, 29:531–543, 2007. 534

The default use-case is that the enrollment image is assumed to be pristine (in conformance with the ISO standard, for 535
example), and quality is being used during a verification or identification transaction to select the image most likely to 536
match the reference image. The reference image is assumed to be unavailable for matching during the collection. 537

For reasons of operational realism, metadata, such as a date of birth, will not be provided to the quality computation. 538

Analyses other than for the default case may be conducted. 539

1.28. Ground truth integrity 540

Some of the test databases will be derived from operational systems. They may contain ground truth errors in which 541

― a single person is present under two different identifiers, or 542

― two persons are present under one identifier, or 543

― in which a face is not present in the image. 544

If these errors are detected, they will be removed. NIST will use aberrant scores (high impostor scores, low genuine 545
scores) to detect such errors. This process will be imperfect, and residual errors are likely. For comparative testing, 546
identical datasets will be used and the presence of errors should give an additive increment to all error rates. For very 547
accurate implementations this will dominate the error rate. NIST intends to attach appropriate caveats to the accuracy 548
results. For prediction of operational performance, the presence of errors gives incorrect estimates of performance. 549

9
 NIST Special Database 32, Volume 1 and Volume 2 are available at: http://www.nist.gov/itl/iad/ig/sd32.cfm. MEDS-II is an update to

MEDS-I and was published in February 2011. Note that NIST does not provide "training" data per se - this differs from the paradigm
often used in academic research where a model is trained, tested and validated. Instead FRVT 2012 follows operational reality:
software is typically shipped "as is" with a fixed internal representation that is designed to be usable "off the shelf" without training and
with only minimal configuration.
10

 Compression effects were studied under MBE 2010 in NIST Interagency Report 7830, linked from http://face.nist.gov/mbe

http://www.nist.gov/itl/iad/ig/sd32.cfm
http://face.nist.gov/mbe

FRVT

NIST Concept, Evaluation Plan and API Page 20 of 58

2. Data structures supporting the API 550

2.1. Overview 551

This section describes separate APIs for the core face recognition applications described in section 1.8. All SDK's 552
submitted to FRVT 2012 shall implement the functions required by the rules for participation listed before Table 3. 553

2.2. Requirement 554

FRVT 2012 participants shall submit an SDK which implements the relevant C++ prototyped interfaces of clause 3. C++ 555
was chosen in order to make use of some object-oriented features. 556

2.3. File formats and data structures 557

2.3.1. Overview 558

In this face recognition test, an individual is represented by K  1 two-dimensional facial images, and by subject and 559
image-specific metadata. 560

2.3.2. Dictionary of terms describing images 561

Images will be accompanied by one of the labels given in Table 11. Face recognition implementations submitted to FRVT 562
2012 should tolerate images of any category. 563

Table 11 – Labels describing types of images 564

 Label as C++ string Primary test
area

Meaning

1. "unknown" Either the label is unknown or unassigned.

2. "laboratory frontal controlled" 1:1 Frontal with controlled illumination

3. "laboratory frontal uncontrolled" 1:1 Any illumination
4. "laboratory nonfrontal controlled" 1:1 NOTE: There is no hyphen "-"

5. "laboratory nonfrontal uncontrolled" 1:1 Any illumination, pose is unknown and could be frontal
6. "visa" 1:N Either a member of the FRVT 2002/2006 HCINT corpus or one of similar

properties.
7. "mugshot" 1:N Either a member of the Multi-encounter law enforcement database or

one of similar properties. The image is nominally frontal - See NIST

Special Database 32
9
.

8. "profile" 1:N The image is a profile image taken from the multi-encounter law
enforcement database.

 565
 NIST intends to use “profile” images in this evaluation. 566

2.3.3. Data structures for encapsulating multiple images 567

The standardized formats for facial images are the ISO/IEC 19794-5:2005 and the ANSI/NIST ITL 1-2007 type 10 record. 568
The ISO record can store multiple images of an individual in a standalone binary file. In the ANSI/NIST realm, K images of 569
an individual are usually represented as the concatenation of one Type 1 record + K Type 10 records. The result is usually 570
stored as an EFT file. 571

An alternative method of representing K images of an individual is to define a structure containing an image filename and 572
metadata fields. Each file contains a standardized image format, e.g. PNG (lossless) or JPEG (lossy). 573

Table 12 – Structure for a single face 574

Removed fields: dob, mob, yob, day, month, year, sex, race, height, and weight 575
 C++ code fragment Remarks
1. typedef struct sface
2. {

FRVT

NIST Concept, Evaluation Plan and API Page 21 of 58

3. uint16_t image_width; Number of pixels horizontally
4. uint16_t image_height; Number of pixels vertically
5. uint16_t image_depth; Number of bits per pixel. Legal values are 8 and 24.
6. uint8_t format; Flag indicating native format of the image as supplied to NIST

0x01 = JPEG (i.e. compressed data)
0x02 = PNG (i.e. never compressed data)

7. uint8_t *data; Pointer to raster scanned data. Either RGB color or intensity.
If image_depth == 24 this points to 3WH bytes RGBRGBRGB...
If image_depth == 8 this points to WH bytes IIIIIII

8. string description; Single description of the image. The allowed values for this string
are given in Table 11.

9.
10. } ONEFACE;

Table 13 – Structure for a set of images from a single person 576

Removed fields: numfaces 577
Please note the change from struct [MBE 2010] to typedef [FRVT 2012] for this data structure. 578

 C++ code fragment Remarks
1. typedef std::vector<ONEFACE> MULTIFACE; Vector containing F pre-allocated face images of the same

person. The number of items stored in the vector is
accessible via the vector::size() function.

2.3.4. Data structure for eye coordinates 579

SDKs should return eye coordinates of each enrolled facial image. This function, while not necessary for a recognition 580
test, will assist NIST in assuring the correctness of the test database. The primary mode of use will be for NIST to inspect 581
images for which eye coordinates are not returned, or differ between developer SDKs. 582

The eye coordinates shall follow the placement semantics of the ISO/IEC 19794-5:2005 standard - the geometric 583
midpoints of the endocanthion and exocanthion (see clause 5.6.4 of the ISO standard). 584

Sense: The label "left" refers to subject's left eye (and similarly for the right eye), such that xright < xleft. 585

Table 14 – Structure for a pair of eye coordinates 586

 C++ code fragment Remarks
1. typedef struct ohos
2. {
 bool failed; If the eye coordinates have been computed and assigned successfully, this value should

be set to false, otherwise true.
3. int16_t xleft; X and Y coordinate of the center of the subject's left eye. Out-of-range values (e.g. x < 0

or x >= width) indicate the implementation believes the eye center is outside the image. 4. int16_t yleft;

5. int16_t xright; X and Y coordinate of the center of the subject's right eye. Out-of-range values (e.g. x < 0
or x >= width) indicate the implementation believes the eye center is outside the image. 6. int16_t yright;

7. } EYEPAIR;

2.3.5. Data type for similarity scores 587

Identification and verification functions shall return a measure of the similarity between the face data contained in the 588
two templates. The datatype shall be an eight byte double precision real. The legal range is [0, DBL_MAX], where the 589
DBL_MAX constant is larger than practically needed and defined in the <limits.h> include file. Larger values indicate more 590
likelihood that the two samples are from the same person. 591

Providers are cautioned that algorithms that natively produce few unique values (e.g. integers on [0,127]) will be 592
disadvantaged by the inability to set a threshold precisely, as might be required to attain a false match rate of exactly 593
0.0001, for example. 594

FRVT

NIST Concept, Evaluation Plan and API Page 22 of 58

2.4. File structures for enrolled template collection 595

An SDK converts a MULTIFACE into a template, using, for example the "convert_MULTIFACE_to_enrollment_template" 596
function of section 3.5.3. To support the class C identification functions of Table 3, NIST will concatenate enrollment 597
templates into a single large file. This file is called the EDB (for enrollment database). The EDB is a simple binary 598
concatenation of proprietary templates. There is no header. There are no delimiters. The EDB may extend to hundreds of 599
gigabytes in length 600

This file will be accompanied by a manifest; this is an ASCII text file documenting the contents of the EDB. The manifest 601
has the format shown as an example in Table 15. If the EDB contains N templates, the manifest will contain N lines. The 602
fields are space (ASCII decimal 32) delimited. There are three fields, all containing numeric integers. Strictly speaking, the 603
third column is redundant. 604

Table 15 – Enrollment dataset template manifest 605

Field name Template ID Template Length Position of first byte in EDB

Datatype required Unsigned decimal integer Unsigned decimal integer Unsigned decimal integer

Datatype length required 4 bytes 4 bytes 8 bytes

Example lines of a manifest file
appear to the right. Lines 1, 2, 3
and N appear.

90201744 1024 0

163232021 1536 1024

7456433 512 2560

...

183838 1024 307200000

 606
The EDB scheme avoids the file system overhead associated with storing millions of individual files. 607

2.5. Data structure for result of an identification search 608

All identification searches shall return a candidate list of a NIST-specified length. The list shall be sorted with the most 609
similar matching entries list first with lowest rank. The data structure shall be that of Table 16. 610

Table 16 – Structure for a candidate 611

 C++ code fragment Remarks

1. typedef struct candidate
2. {

3. bool failed; If the candidate computation failed, this value is set to true. If the candidate is valid it
should be set to false.

4. uint32_t template_id; The Template ID integer from the enrollment database manifest defined in clause 0.

5. double similarity_score; Measure of similarity between the identification template and the enrolled candidate.
Higher scores mean more likelihood that the samples are of the same person.

An algorithm is free to assign any value to a candidate. The distribution of values will have
an impact on the appearance of a plot of false-negative and false-positive identification
rates.

6. double probability; An estimate of the probability that the biometric data and candidate belong to different
persons, i.e. the probability that a score this large would be observed given that the pair of
images are from different people = P(SCORE | IMPOSTOR). This value shall be on [0:1].
This is one minus the integral of the expected impostor distribution from 0 to the similarity
score, i.e. the expected false match rate.

7. } CANDIDATE;

 612

FRVT

NIST Concept, Evaluation Plan and API Page 23 of 58

3. API Specification 613

3.1. Implementation identifiers 614

All implementations shall support the self-identification function of Table 17. This function is required to support internal 615
NIST book-keeping. The version numbers should be distinct between any versions, which offer different algorithmic 616
functionality. 617

Table 17 – Implementation identifiers 618

Prototype int32_t get_pid(

string &sdk_identifier, A developer-assigned ID. This shall be different for each submitted SDK.

string &email_address); Output

Description

This function retrieves a point-of-contact email address from the implementation under test.

Output
Parameters

sdk_identifier 4-character version ID code as hexadecimal integer. This will be used to identify the
SDK in the results reports. This value should be changed every time an SDK is
submitted to NIST. The value is developer assigned - format is not regulated by NIST.
EXAMPLE: "011A". The value cannot be the empty string.

email_address Point of contact email address. The value cannot be the empty string.

Return Value 0 Success

Other Vendor-defined failure

3.2. Maximum template size 619

All implementations shall report the maximum expected template sizes. These values will be used by the NIST test 620
harnesses to pre-allocate template data. The values should apply to a single image. For a MULTIFACE containing K 621
images, NIST will allocate K times the value returned. The function call is given in Table 18. 622

Table 18 – Implementation template size requirements 623

Prototype int32_t get_max_template_sizes(

uint32_t &max_enrollment_template_size, Output

uint32_t &max_recognition_template_size) Output

Description This function retrieves the maximum template size needed by the feature extraction routines.

Output
Parameters

max_enrollment_template_size The maximum possible size, in bytes, of the memory needed to store feature
data from a single enrollment image.

max_recognition_template_size The maximum possible size, in bytes, of the memory needed to store feature
data from a single verification or identification image.

Return Value 0 Success

Other Vendor-defined failure

3.3. Frontal reconstruction 624

3.3.1. Overview 625

The 1:1 testing will proceed in three phases: preparation of enrollment templates; preparation of verification templates; 626
and matching. These are detailed in Table 22. 627

Table 19 – Functional summary of the 1:1 application 628

Phase # Name Description Performance Metrics to be
reported by NIST

Initialization I1 Initialization Function to allow implementation to read configuration data,
if any.

None

Reconstruction R1 Serial
enrollment

Given K  1 input images of an individual, the implementation
will create L output images.

Statistics of the time needed to
produce a template.

FRVT

NIST Concept, Evaluation Plan and API Page 24 of 58

NIST requires that these operations may be executed in a loop
in a single process invocation, or as a sequence of
independent process invocations, or a mixture of both.

Utility to other face recognition
engines, typically class C.

3.3.2. API 629

3.3.2.1. Initialization 630

Before any template generation or matching calls are made, the NIST test harness will make a call to the initialization of 631
the function in Table 23. 632

Table 20 – SDK initialization 633

Prototype int32_t initialize_frontal_recon(

const string &configuration_location, Input

const std::vector<string> &descriptions Input

uint32_t &Lmax); Output

Description

This function initializes the SDK under test. It will be called by the NIST application before any reconstruction calls.
The SDK under test should set all parameters.

Input Parameters configuration_location A read-only directory containing any developer-supplied configuration parameters or run-
time data files. The name of this directory is assigned by NIST. It is not hardwired by the
provider. The names of the files here are hardwired in the SDK and are unrestricted.

descriptions A lexicon of labels one of which will be assigned to each image. EXAMPLE: The descriptions
could be {"mugshot", "visa", "frame-from-video"}.

Output
Parameters

Lmax The maximum number of images that the frontal reconstruction algorithms will output –
see below.

Return Value 0 Success

2 Vendor provided configuration files are not readable in the indicated location.

8 The descriptions are unexpected, or unusable.

Other Vendor-defined failure

3.3.2.2. Frontal reconstruction 634

The function of Table 24 maps K input faces to L frontal faces. When L = 1, the algorithm should render a frontal image as 635
close as possible to ISO/IEC 19794-5 Token image geometry [ISO]. When L > 1, the implementation should render non-636
degenerate faces around Token geometry. The non-degenerate aspect is supplier-defined, but should be intended to be 637
of utility to downstream recognition algorithms. 638

Table 21 – Template generation 639

Prototypes int32_t convert_MULTIFACE_to_recoonstructed_ MULTIFACE (

const MULTIFACE &input_faces, Input

const uint32_t Lmax, Input

MULTIFACE &output_faces, Output

uint32_t &L); Output

Description This function takes a MULTIFACE containing K images of an individual. It outputs 1 ≤ L ≤ maxL output faces in a

MULTFACE structure.

Input
Parameters

input_faces An instance of a Table 13 structure. Implementations must alter their behavior according to
the number of images contained in the structure.

Lmax The number of output faces requested by the calling application. The implementation must
support a call with Lmax == 1. This is will form a baseline result. NIST will additionally report
results with larger values 1 < Lmax ≤ 9. The upper bound here would allow the algorithm to
render left, left-up, left-down, right, right-up, right-down, frontal, up, down variants around
frontal. The implementation does not need to support values 1 < Lmax.

FRVT

NIST Concept, Evaluation Plan and API Page 25 of 58

Output
Parameters

output_faces A MULTIFACE structure with data pre-allocated for Lmax entries each of size 640 height by

480 width by 24 bits (RGB). These dimensions afford 120 pixels between the eyes for a Token
geometry output. Images smaller than this could be centered with a grey border.

This prescription of height and width allows the NIST application to allocate all memory. The
implementation should not allocate memory for the output MULTIFACE.

Implementers seeking pre-allocated sizes larger than 640x480 should contact NIST.

 L 0 <= L < Lmax The number of faces actually produced. These faces must occupy the first L
positions of the output MULTIFACE structure.
If 0 faces are rendered, the Return Value must be non-zero.

Return Value 0 Success

2 Elective refusal to process this kind of MULTIFACE

4 Involuntary failure to extract features (e.g. could not find face in the input-image)

6 Elective refusal to render any output images.

8 Cannot parse input data (i.e. assertion that input record is non-conformant)

Other Vendor-defined failure. Failure codes must be documented and communicated to NIST with
the submission of the implementation under test.

3.4. 1:1 Verification 640

3.4.1. Overview 641

The 1:1 testing will proceed in three phases: preparation of enrollment templates; preparation of verification templates; 642
and matching. These are detailed in Table 22. 643

Table 22 – Functional summary of the 1:1 application 644

Phase # Name Description Performance Metrics to be reported
by NIST

Initialization I1 Initialization Function to allow implementation to read configuration data, if
any.

None

Enrollment E1 Serial
enrollment

Given K  1 input images of an individual, the implementation
will create a proprietary enrollment template. NIST will
manage storage of these templates.

NIST requires that these operations may be executed in a loop
in a single process invocation, or as a sequence of independent
process invocations, or a mixture of both.

Statistics of the time needed to
produce a template.

Statistics of template size.

Rate of failure to produce a
template and rate of erroneous
function.

Verification V1 Serial
verification

Given K  1 input images of an individual, the implementation
will create a proprietary verification template. NIST will
manage storage of these templates.

NIST requires that these operations may be executed in a loop
in a single process invocation, or as a sequence of independent
process invocations, or a mixture of both.

Statistics of the time needed to
produce a template.

Statistics of template size.

Rate of failure to produce a
template and rate of erroneous
function.

Matching (i.e.
comparison)

C1 Serial
matching

Given one proprietary enrollment template and one
proprietary verification template, compare these and produce
a similarity score.

NIST requires that these operations may be executed in a loop
in a single process invocation, or as a sequence of independent
process invocations, or a mixture of both.

Statistics of the time taken to
compare two templates.

Accuracy measures, primarily
reported as DETs.

 645
 646

FRVT

NIST Concept, Evaluation Plan and API Page 26 of 58

Enrollment phase Verification phase

Multiface Multiface
Enrollment
template

Verification
template

Comparison
Engine

Similarity Score

SDK SDK

Figure 3 – Schematic of verification without enrollment database 647

3.4.2. API 648

3.4.2.1. Initialization 649

Before any template generation or matching calls are made, the NIST test harness will make a call to the initialization of 650
the function in Table 23. 651

Table 23 – SDK initialization 652

Removed fields: num_descriptions 653

Prototype int32_t initialize_verification(

const string &configuration_location, Input

const std::vector<string> &descriptions); Input

Description

This function initializes the SDK under test. It will be called by the NIST application before any call to the Table 24

functions convert_MULTIFACE_to_enrollment_template or convert_MULTIFACE_to_verification_template. The
SDK under test should set all parameters.

Input Parameters configuration_location A read-only directory containing any developer-supplied configuration parameters or
run-time data files. The name of this directory is assigned by NIST. It is not hardwired
by the provider. The names of the files in this directory are hardwired in the SDK and
are unrestricted.

descriptions A lexicon of labels one of which will be assigned to each image. EXAMPLE: The
descriptions could be {"mugshot", "visa", "unknown"}. These labels are provided to the
SDK so that it knows to expect images of these kinds. The number of items stored in
the vector is accessible via the vector::size() function.

Output
Parameters

none

Return Value 0 Success

2 Vendor provided configuration files are not readable in the indicated location.

8 The descriptions are unexpected, or unusable.

Other Vendor-defined failure

3.4.2.2. Template generation 654

The functions of Table 24 support role-specific generation of a template data. The format of the templates is entirely 655
proprietary. 656

Table 24 – Template generation 657

Prototypes int32_t convert_MULTIFACE_to_enrollment_template(

const MULTIFACE &input_faces, Input

uint32_t &template_size, Output

uint8_t *proprietary_template); Output

int32_t convert_MULTIFACE_to_verification_template(

FRVT

NIST Concept, Evaluation Plan and API Page 27 of 58

const MULTIFACE &input_faces, Input

uint32_t &template_size, Output

uint8_t *proprietary_template, Output

uint8_t &quality); Output

Description This function takes a MULTIFACE, and outputs a proprietary template. The memory for the output template is
allocated by the NIST test harness before the call i.e. the implementation shall not allocate memory for the result. In
all cases, even when unable to extract features, the output shall be a template record that may be passed to the
match_templates function without error. That is, this routine must internally encode "template creation failed" and
the matcher must transparently handle this.

Input
Parameters

input_faces An instance of a Table 13 structure. Implementations must alter their behavior according to
the number of images contained in the structure.

Output
Parameters

template_size The size, in bytes, of the output template

proprietary_template The output template. The format is entirely unregulated. NIST will allocate a KT byte buffer for

this template: The value K is the number of images in the MULTIFACE; the value T is output by

the maximum template size functions of Table 18.

quality An assessment of image quality. This is optional. The legal values are

 [0,100] - The value should have a monotonic decreasing relationship with false non-match
rate anticipated for this sample if it was compared with a pristine image of the same
person. So, a low value indicates high expected FNMR.

 255 - This value indicates a failed attempt to calculate a quality score.

 254 - This values indicates the value was not assigned.

Return Value 0 Success

2 Elective refusal to process this kind of MULTIFACE

4 Involuntary failure to extract features (e.g. could not find face in the input-image)

6 Elective refusal to produce a template (e.g. insufficient pixels between the eyes)

8 Cannot parse input data (i.e. assertion that input record is non-conformant)

Other Vendor-defined failure. Failure codes must be documented and communicated to NIST with
the submission of the implementation under test.

3.4.2.3. Matching 658

Matching of one enrollment against one verification template shall be implemented by the function of Table 25. 659

Table 25 – Template matching 660

Prototype int32_t match_templates(

const uint8_t *verification_template, Input

const uint32_t verification_template_size, Input

const uint8_t *enrollment_template, Input

const uint32_t enrollment_template_size, Input

double &similarity); Output

Description

This function compares two opaque proprietary templates and outputs a similarity score, which need not satisfy
the metric properties. NIST will allocate memory for this parameter before the call. When either or both of the
input templates are the result of a failed template generation (see Table 24), the similarity score shall be -1 and the
function return value shall be 2.

Input Parameters verification_template A template from convert_MULTIFACE_to_verification_template().

verification_template_size The size, in bytes, of the input verification template 0 ≤ N ≤ 2
32

 - 1

enrollment_template A template from convert_MULTIFACE_to_enrollment_template().

enrollment_template_size The size, in bytes, of the input enrollment template 0 ≤ N ≤ 2
32

 - 1

Output
Parameters

similarity A similarity score resulting from comparison of the templates, on the range
[0,DBL_MAX]. See section 2.3.5.

Return Value 0 Success

2 Either or both of the input templates were result of failed feature extraction

Other Vendor-defined failure

FRVT

NIST Concept, Evaluation Plan and API Page 28 of 58

3.5. 1:N Identification 661

3.5.1. Overview 662

The 1:N application proceeds in two phases, enrollment and identification. The identification phase includes separate 663
pre-search feature extraction stage, and a search stage. 664

The design reflects the following testing objectives for 1:N implementations. 665

 support distributed enrollment on multiple machines, with multiple processes running in parallel

 allow recovery after a fatal exception, and measure the number of occurrences

 allow NIST to copy enrollment data onto many machines to support parallel testing

 respect the black-box nature of biometric templates

 extend complete freedom to the provider to use arbitrary algorithms

 support measurement of duration of core function calls

 support measurement of template size

Table 26 – Procedural overview of the identification test 666

P
h

as
e

Name Description Performance Metrics to be reported
by NIST

En
ro

llm
en

t

E1 Initialization Give the implementation advance notice of the number of
individuals and images that will be enrolled.

Give the implementation the name of a directory where any
provider-supplied configuration data will have been placed by NIST.
This location will otherwise be empty.

The implementation is permitted read-write-delete access to the
enrollment directory during this phase. The implementation is
permitted read-only access to the configuration directory.

After enrollment, NIST may rename and relocate the enrollment
directory - the implementation should not depend on the name of
the enrollment directory.

E2 Parallel
Enrollment

For each of N individuals, pass multiple images of the individual to
the implementation for conversion to a combined template. The
implementation will return a template to the calling application.

The implementation is permitted read-only access to the enrollment
directory during this phase. NIST's calling application will be
responsible for storing all templates as binary files. These will not be
available to the implementation during this enrollment phase.

Multiple instances of the calling application may run simultaneously
or sequentially. These may be executing on different computers.
The same person will not be enrolled twice.

Statistics of the times needed to
enroll an individual.

Statistics of the sizes of created
templates.

The incidence of failed template
creations.

E3 Finalization Permanently finalize the enrollment directory. This supports, for
example, adaptation of the image-processing functions, adaptation
of the representation, writing of a manifest, indexing, and
computation of statistical information over the enrollment dataset.

The implementation is permitted read-write-delete access to the
enrollment directory during this phase.

Size of the enrollment database as a
function of population size N and
the number of images.

Duration of this operation. The time
needed to execute this function
shall be reported with the preceding
enrollment times.

FRVT

NIST Concept, Evaluation Plan and API Page 29 of 58

P
re

-s
ea

rc
h

S1 Initialization Tell the implementation the location of an enrollment directory. The

implementation could look at the enrollment data.

The implementation is permitted read-only access to the enrollment
directory during this phase. Statistics of the time needed for this
operation.

Statistics of the time needed for this
operation.

S2 Template
preparation

For each probe, create a template from a set of input images. This
operation will generally be conducted in a separate process
invocation to step S2.

The implementation is permitted no access to the enrollment
directory during this phase.

The result of this step is a search template.

Statistics of the time needed for this
operation.

Statistics of the size of the search
template.

Se
ar

ch

S3 Initialization Tell the implementation the location of an enrollment directory. The
implementation should read all or some of the enrolled data into
main memory, so that searches can commence.

The implementation is permitted read-only access to the enrollment
directory during this phase.

Statistics of the time needed for this
operation.

S4 Search A template is searched against the enrollment database.

The implementation is permitted read-only access to the enrollment
directory during this phase.

Statistics of the time needed for this
operation.

Accuracy metrics - Type I + II error
rates.

Failure rates.

3.5.2. Initialization of the enrollment session 667

Before any enrollment feature extraction calls are made, the NIST test harness will call the initialization function of Table 668
27. 669

Table 27 – Enrollment initialization 670

Removed fields: num_descriptions 671

Prototype int32_t initialize_enrollment_session(

const string &configuration_location, Input

const string &enrollment_directory, Input

const uint32_t num_persons, Input

const uint32_t num_images, Input

const std::vector<string> &descriptions); Input

Description

This function initializes the SDK under test and sets all needed parameters. This function will be called N=1 times by

the NIST application immediately before any M  1 calls to convert_MULTIFACE_to_enrollment_template. The SDK

should tolerate execution of P > 1 processes on the same machine each of which may be reading and writing to the
enrollment directory. This function may be called P times and these may be running simultaneously and in parallel.

Input
Parameters

configuration_location A read-only directory containing any developer-supplied configuration parameters or
run-time data files.

enrollment_directory The directory will be initially empty, but may have been initialized and populated by
separate invocations of the enrollment process. When this function is called, the SDK
may populate this folder in any manner it sees fit. Permissions will be read-write-delete.

num_persons The number of persons who will be enrolled 0 ≤ N ≤ 2
32

 - 1 (e.g. 1million)

num_images The total number of images that will be enrolled, summed over all identities 0 ≤ M ≤ 2
32

 -
1 (e.g. 1.8 million)

descriptions A lexicon of labels one of which will be assigned to each enrollment image. EXAMPLE:
The descriptions could be {"mugshot", "visa"}.
NOTE: The identification search images may or may not be labeled. An identification
image may carry a label not in this set of labels. The number of items stored in the
vector is accessible via the vector::size() function.

Output none

FRVT

NIST Concept, Evaluation Plan and API Page 30 of 58

Parameters

Return Value 0 Success

2 The configuration data is missing, unreadable, or in an unexpected format.

4 An operation on the enrollment directory failed (e.g. permission, space).

6 The SDK cannot support the number of persons or images.

8 The descriptions are unexpected, or unusable.

Other Vendor-defined failure

3.5.3. Enrollment 672

A MULTIFACE is converted to a single enrollment template using the function of Table 28. 673

Table 28 – Enrollment feature extraction 674

Prototypes int32_t convert_MULTIFACE_to_enrollment_template(

const MULTIFACE &input_faces, Input

std::vector<EYEPAIR> &output_eyes, Output

uint32_t &template_size, Output

uint8_t *proprietary_template); Output

Description This function takes a MULTIFACE, and outputs a proprietary template. The memory for the output template is
allocated by the NIST test harness before the call i.e. the implementation shall not allocate memory for the result.

If the function executes correctly (i.e. returns a zero exit status), the NIST calling application will store the template.
The NIST application will concatenate the templates and pass the result to the enrollment finalization function (see
section 3.5.4).

If the function gives a non-zero exit status:

 If the exit status is 8, NIST will debug, otherwise

 the test driver will ignore the output template (the template may have any size including zero)

 the event will be counted as a failure to enroll. Such an event means that this person can never be identified
correctly.

IMPORTANT. NIST's application writes the template to disk. The implementation must not attempt writes to the
enrollment directory (nor to other resources). Any data needed during subsequent searches should be included in the
template, or created from the templates during the enrollment finalization function of section 3.5.4.

Input
Parameters

input_faces An instance of a Table 13 structure. Implementations must alter their behavior according to
the number of images contained in the structure.

Output
Parameters

output_eyes For each input image in the MULTIFACE the function shall return the estimated eye centers.

The calling application will pre-allocate the correct number of EYEPAIR structures (i.e. one for

each image in the MULTIFACE).

template_size The size, in bytes, of the output template

proprietary_template The format is entirely unregulated. NIST will allocate a KT byte buffer for this template: The

value K is the number of images in the MULTIFACE; the value T is output by the maximum

enrollment template size function of Table 18.

Return Value 0 Success

2 Elective refusal to process this kind of MULTIFACE

4 Involuntary failure to extract features (e.g. could not find face in the input-image)

6 Elective refusal to produce a template (e.g. insufficient pixels between the eyes)

8 Cannot parse input data (i.e. assertion that input record is non-conformant)

Other Vendor-defined failure. Failure codes must be documented and communicated to NIST with
the submission of the implementation under test.

FRVT

NIST Concept, Evaluation Plan and API Page 31 of 58

3.5.4. Finalize enrollment 675

After all templates have been created, the function of Table 29 will be called. This freezes the enrollment data. After this 676
call the enrollment dataset will be forever read-only. This API does not support interleaved enrollment and search 677
phases. 678

The function allows the implementation to conduct, for example, statistical processing of the feature data, indexing and 679
data re-organization. The function may alter the file structure. It may increase or decrease the size of the stored data. 680
No output is expected from this function, except a return code. 681

Table 29 – Enrollment finalization 682

Prototypes int32_t finalize_enrollment (

const string &enrollment_directory, Input

const string &edb_name, Input

const string &edb_manifest_name); Input

Description This function takes the name of the top-level directory where enrollment database (EDB) and its manifest have been
stored. These are described in section 2.4. The enrollment directory permissions will be read + write.

The function supports post-enrollment developer-optional book-keeping operations and statistical processing. The
function will generally be called in a separate process after all the enrollment processes are complete.

This function should be tolerant of being called two or more times. Second and third invocations should probably do
nothing.

Input
Parameters

enrollment_directory The top-level directory in which enrollment data was placed. This variable allows an
implementation to locate any private initialization data it elected to place in the directory.

edb_name The name of a single file containing concatenated templates, i.e. the EDB of section 2.4.
While the file will have read-write-delete permission, the SDK should only alter the file if it
preserves the necessary content, in other files for example.
The file may be opened directly. It is not necessary to prepend a directory name.

edb_manifest_name The name of a single file containing the EDB manifest of section 2.4.
The file may be opened directly. It is not necessary to prepend a directory name.

Output
Parameters

None

Return Value 0 Success

2 Cannot locate the input data - the input files or names seem incorrect.

4 An operation on the enrollment directory failed (e.g. permission, space).

6 One or more template files are in an incorrect format.

Other Vendor-defined failure. Failure codes must be documented and communicated to NIST with
the submission of the implementation under test.

3.5.5. Pre-search feature extraction 683

3.5.5.1. Initialization 684

Before MULTIFACEs are sent to the identification feature extraction function, the test harness will call the initialization 685
function in Table 30. 686

Table 30 – Identification feature extraction initialization 687

Prototype int32_t initialize_feature_extraction_session(

const string &configuration_location, Input

const string &enrollment_directory); Input

Description

This function initializes the SDK under test and sets all needed parameters. This function will be called once by the

NIST application immediately before any M  1 calls to convert_MULTIFACE_to_identification_template. The

SDK should tolerate execution of P => 1 processes on the same machine each of which can read the configuration
directory. This function may be called P times and these may be running simultaneously and in parallel.

FRVT

NIST Concept, Evaluation Plan and API Page 32 of 58

The implementation has read-only access to its prior enrollment data.

Input Parameters configuration_location A read-only directory containing any developer-supplied configuration parameters or
run-time data files.

 enrollment_directory The top-level directory in which enrollment data was placed and then finalized by the
implementation. The implementation can parameterize subsequent template
production on the basis of the enrolled dataset.

Output
Parameters

none

Return Value 0 Success

2 The configuration data is missing, unreadable, or in an unexpected format.

4 An operation on the enrollment directory failed (e.g. permission).

Other Vendor-defined failure

3.5.5.2. Feature extraction 688

A MULTIFACE is converted to an atomic identification template using the function of Table 31. The result may be stored 689
by NIST, or used immediately. The SDK shall not attempt to store any data. 690

Table 31 – Identification feature extraction 691

Prototypes int32_t

convert_MULTIFACE_to_identification_template(

const MULTIFACE &input_faces, Input

std::vector<EYEPAIR> &output_eyes, Output

uint32_t &template_size, Output

uint8_t *identification_template); Output

Description This function takes a MULTIFACE, and outputs a proprietary template. The memory for the output template is allocated

by the NIST test harness before the call i.e. the implementation shall not allocate memory for the result.

If the function executes correctly, it returns a zero exit status. The NIST calling application may commit the template to
permanent storage, or may keep it only in memory (the developer implementation does not need to know). If the
function returns a non-zero exit status, the output template will be not be used in subsequent search operations.

The function shall not have access to the enrollment data, nor shall it attempt access.

Input
Parameters

input_faces An instance of a Table 13 structure. Implementations must alter their behavior according to
the number of images contained in the structure.

Output
Parameters

output_eyes For each input image in the MULTIFACE the function shall return the estimated eye centers.

The calling application will pre-allocate the correct number of EYEPAIR structures (i.e. one for

each image in the MULTIFACE).

template_size The size, in bytes, of the output template

identification_template The output template for a subsequent identification search. The format is entirely
unregulated. NIST will allocate a KT byte buffer for this template: The value K is the number of

images in the input MULTIFACE; the value T is output by the maximum enrollment template
size function of Table 18.

Return
Value

0 Success

2 Elective refusal to process this kind of MULTIFACE

4 Involuntary failure to extract features (e.g. could not find face in the input-image)

6 Elective refusal to produce a template (e.g. insufficient pixels between the eyes)

8 Cannot parse input data (i.e. assertion that input record is non-conformant)

Other Vendor-defined failure. Failure codes must be documented and communicated to NIST with
the submission of the implementation under test.

3.5.6. Initialization 692

The function of Table 32 will be called once prior to one or more calls of the searching function of Table 33. The function 693
might set static internal variables so that the enrollment database is available to the subsequent identification searches. 694

FRVT

NIST Concept, Evaluation Plan and API Page 33 of 58

Table 32 – Identification initialization 695

Prototype int32_t initialize_identification_session(

const string &configuration_location, Input

const string &enrollment_directory); Input

Description This function reads whatever content is present in the enrollment_directory, for example a manifest placed there by
the finalize_enrollment function.

Input Parameters configuration_location A read-only directory containing any developer-supplied configuration parameters or
run-time data files.

enrollment_directory The top-level directory in which enrollment data was placed.

Return Value 0 Success

Other Vendor-defined failure

3.5.7. Search 696

The function of Table 33 compares a proprietary identification template against the enrollment data and returns a 697
candidate list. 698

Table 33 – Identification search 699

Prototype int32_t identify_template(

const uint8_t *identification_template, Input

const uint32_t identification_template_size, Input

const uint32_t candidate_list_length, Input

std::vector<CANDIDATE> &candidate_list, Output

bool &decision); Output

Description

This function searches a template against the enrollment set, and outputs a list of candidates.

NIST will pre-allocate the vector with candidates before the call.

Input Parameters identification_template A template from convert_MULTIFACE_to_identification_template() - If the value

returned by that function was non-zero the contents of identification_template
will not be used and this function (i.e. identify_template) will not be called.

identification_template_size The size, in bytes, of the input identification template 0 ≤ N ≤ 2
32

 - 1

candidate_list_length The number of candidates the search should return

Output
Parameters

candidate_list A vector containing "candidate_list_length" objects of candidates. The datatype is
defined in section 2.5. Each candidate shall be populated by the implementation.
The candidates shall appear in descending order of similarity score - i.e. most
similar entries appear first.

decision A best guess at whether there is a mate within the enrollment database. If there
was a mate found, this value should be set to true, Otherwise, false. Many such
decisions allow a single point to be plotted alongside a DET

Return Value 0 Success

2 The input template was defective.

Other Vendor-defined failure

 700

NOTE: Ordinarily the calling application will set the input candidate list length to operationally typical values, say 0  L  701
200, and L << N. However, there is interest in the presence of mates much further down the candidate list. We may 702
therefore extend the candidate list length such that L approaches N. 703

FRVT

NIST Concept, Evaluation Plan and API Page 34 of 58

3.6. Pose conformance, age, gender, and expression neutrality estimation 704

The MEDS database
11

 includes many facial images for which age and gender are provided. The FERET database does 705
likewise

12
. It also includes images for which the non-frontal pose is known. A number of academic databases do likewise: 706

For example the CMU PIE databases famously include pose illumination and expression variation
13

. 707

3.6.1. Pose conformance 708

The functions of this section support testing whether a face in an image has frontal pose. This supports conformance 709
testing of, for example, the Full Frontal specification of the ISO standard [ISO]. The goal is to support a marketplace of 710
products for acquisition time assessment of pose. This is important because pose is arguably the most influential 711
covariate on face recognition error rates, and is not generally controllable by design of the acquisition system. This 712
problem has been investigated in literature

14
. 713

NIST encourages participants in this study to implement real-time video rate implementations, and also slower more 714
accurate methods. 715

The functional specification here supports a DET analysis in which false-rejection of actually frontal images can be traded 716
off against false acceptance of non-frontal images via a frontal-conformance parameter, t. This specification

15
 suggests 717

that frontality be computed as a function of the estimated pitch and yaw angles, specifically 718

NF = 1 - cos φYAW cos φPITCH 719

with properties: 720

1. that when both angles are 0 the non-frontality is 0, i.e. perfect frontality, 721

2. that when either angle is 90 the non-frontality is 1, i.e. very poor, 722

3. of symmetry i.e. NF(φ) = NF(-φ). 723

This document does not give a definition of pitch angle (e.g. vs. Frankfurt Horizon, or normal vector at nose tip) and 724
therefore implementations must estimate pitch from internal some canonical frontal definition. 725

NIST will evaluate and report performance for three cases: where only φYAW varies (φPITCH = 0), where only φPITCH varies, 726
and when both vary. We will select images where in-plane rotation φROLL is absent. We will consider the effect of non-727
zero φROLL on the above non-frontality definition.. 728

The formal ISO requirement is for five degree rotation in pitch and yaw. While the ISO standard establishes an eight 729
degree limit on roll angle, this is of less importance. NIST will not consider roll angle. 730

3.6.2. Age 731

The functions of this section support estimation of the age of a face in one or more images. The process of age 732

determination has potential application in at least the following areas: 733

 Age-based access control 734

 Age adaptive human machine interaction (e.g. marketing) 735

 Age invariant person identification 736

 Data mining and organization 737

 738

11

 The Multiple Encounter Deceased Subject Database, NIST Special Database 32, is freely available here:
http://www.nist.gov/itl/iad/ig/sd32.cfm
12

 FERET is available via a different process here: http://www.nist.gov/itl/iad/ig/feret.cfm
13

 For example, the CMU Multi-PIE Face Database – http://www.multipie.org/ and others
14

 Erik Murphy-Chutorian and Mohan Manubhai Trivedi, “Head Pose Estimation in Computer Vision: A Survey,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol 31, no. 4, pp. 607-626, 2009.
15

 Versions up to and include v.1.2 stated that "The exact meaning of the "frontality" value returned by this function is not regulated by
the NIST specification. However a reasonable implementation would embed a monotonic relationship between the output value and
non-frontal angle (i.e. compound rotation involving azimuthal head yaw and pitch)." The more specific formulation here is intended to
support formalized image quality assessment implementations.

http://www.nist.gov/itl/iad/ig/sd32.cfm
http://www.nist.gov/itl/iad/ig/feret.cfm
http://www.multipie.org/

FRVT

NIST Concept, Evaluation Plan and API Page 35 of 58

Age estimation
16

 has its own set of unique challenges when compared to other face image interpretation tasks, including 739

limited inter-age group variation especially when dealing with mature subjects, diversity of aging variation between races 740

and gender, and dependence on external factors such as health conditions, lifestyle, cosmetic surgery, etc. 741

3.6.3. Gender 742

The functions of this section support estimation of the gender
17

 of a face in one or more images. Similar to age, gender is 743
viewed as a soft biometric trait that has applications in surveillance, human-computer interaction and image retrieval 744
systems. Gender could potentially be leveraged to index biometric databases and enhance the recognition accuracy of 745
primary traits such as face. 746

3.6.4. Expression Neutrality 747

NOTE: This task has been discontinued. Please do not send implementations. If you have capability to do this please 748
contact the organizers. 749
Facial expression recognition is an important aspect in interpersonal communication and human-machine interaction, 750
having applications, for example, in building intelligent and more intuitive human-machine interfaces. ISO/IEC 19794-751
5:2005 establishes codes for facial expression. Clause 5.5.7 of that standard defines a neutral expression as “(non-smiling) 752
with both eyes open and mouth closed”. 753

3.6.5. API 754

Vendors may submit a class D SDK to evaluate performance on estimation of pose conformance, age, gender, and/or 755
expression neutrality. The SDK must define a C++ class named exactly SdkEstimator, which subclasses from the Estimator 756
class (see Table 34). At a minimum, the developer’s SdkEstimator class must override at least one of the estimation 757
functions and its corresponding initialization function from Table 34. To support those who only want to implement a 758
subset of the class D estimation functions, any functions that are not overridden by the developer’s SDK will default to the 759
behavior specified in the “Base” Estimator Class (ie. return a value indicating function is “not implemented”). 760

Table 34 – “Base” Estimator Class Structure 761

 C++ code fragment Remarks
1. #include <vector>

#include <string>

2. class Estimator {
3. public:

4. virtual ~Estimator();

5. virtual int32_t initialize_frontal_pose_estimation(

 const std::string &configuration_location);
Pose conformance estimation initialization

6. virtual int32_t estimate_frontal_pose_conformance(

 const ONEFACE &input_face,

 double &non_frontality);

Pose conformance estimation

7. virtual int32_t initialize_age_estimation(

 const std::string &configuration_location);
Age estimation initialization

8. virtual int32_t estimate_age(

 const ONEFACE &input_face,

 int32_t &age);

Age (in years) estimation, given a single
face

9. virtual int32_t estimate_age(

 const MULTIFACE &input_faces,

 int32_t &age);

Age (in years) estimation, given multiple
faces of the same person taken
contemporaneously

16

 Xin Geng, Zhi-Hua Zhou, and Kate Smith-Miles, “Automatic Age Estimation Based on Facial Aging Patterns,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol 29, no. 12, pp. 2234-2240, 2007.
17

 C.H. Ting, U.U. Sheikh, and S.A.R. Abu-Bakar, “Gender estimation based on physiological features of the face”, 10
th

 International
Conference on Information Science, ISSPA, pp. 201-204, 2010.

FRVT

NIST Concept, Evaluation Plan and API Page 36 of 58

9. virtual int32_t initialize_gender_estimation(

 const std::string &configuration_location);
Gender estimation initialization

10. virtual int32_t estimate_gender(

 const ONEFACE &input_face,

 int8_t &gender,

 double &mf);

Gender estimation, given a single face

12. virtual int32_t estimate_gender(

 const MULTIFACE &input_faces,

 int8_t &gender,

 double &mf);

Gender estimation, given multiple faces of
the same person

13. virtual int32_t initialize_expression_estimation(

 const std::string &configuration_location);
Expression neutrality estimation
initialization

14. virtual int32_t estimate_expression_neutrality(

 const ONEFACE &input_face,

 double &expression_neutrality);

Expression neutrality estimation

15. };

 762
An example of how the SdkEstimator class could be implemented is provided in Table 35 and Table 36. In the example, 763
the pose estimation function and its corresponding initialization function are implemented. In this case, during runtime, 764
the developer implementation of pose estimation will be executed. The rest of the unimplemented functions will default 765
to the behavior specified in the “Base” Estimator class (see Table 34). 766
 767

Table 35 – Example of SdkEstimator Class Declaration 768

 C++ code fragment – sdkestimator.h Remarks
1. #include <frvt2012.h>

2. class SdkEstimator : public Estimator {
3. public:

4. SdkEstimator(); Default constructor

5. ~SdkEstimator(); Default destructor

6. int32_t initialize_frontal_pose_estimation(

 const std::string &configuration_location);
Pose conformance estimation initialization

7. int32_t estimate_frontal_pose_conformance(

 const ONEFACE &input_face,

 double &non_frontality);

Pose conformance estimation

8. };

Table 36 – Example of SdkEstimator Class Definition 769

 C++ code fragment – sdkestimator.cpp Remarks
1. #include <sdkestimator.h>

2. SdkEstimator::SdkEstimator() { } Default constructor
3. SdkEstimator::~SdkEstimator() { } Default destructor

4. int32_t

SdkEstimator::initialize_frontal_pose_estimation(

 const std::string &configuration_location)

{

 return 0;

}

Override the pose conformance estimation
initialization function

5. int32_t

SdkEstimator::estimate_frontal_pose_conformance(

 const ONEFACE &input_face,

 double &non_frontality)

{

 non_frontality = 0.1;

 return 0;

}

Override the pose conformance estimation
function

6. };

FRVT

NIST Concept, Evaluation Plan and API Page 37 of 58

 770
The initialization functions of Table 37 will be called before one or more calls to the corresponding pose conformance, 771
age, gender, and expression neutrality estimation functions. In other words, initialize_frontal_pose_estimation() will be 772
called prior to estimate_frontal_pose_conformance(), initialize_age_estimation() will be called prior to estimate_age(), 773
initialize_gender_estimation() will be called prior to estimate_gender(), and initialize_expression_estimation() will be 774
called prior to estimate_expression_neutrality(). 775

Table 37 – Initialization of Pose conformance, Age, Gender, and Expression neutrality estimation 776

Prototypes int32_t initialize_frontal_pose_estimation(

const string &configuration_location); Input

int32_t initialize_age_estimation(
const string &configuration_location);

Input

int32_t initialize_gender_estimation(
const string &configuration_location);

Input

int32_t initialize_expression_estimation(
const string &configuration_location);

Input

Description

This function initializes the SDK under test. It will be called by the NIST application before any corresponding call to
the Table 38 functions. The SDK under test should set all parameters.

Input Parameters configuration_location A read-only directory containing any developer-supplied configuration parameters or
run-time data files. The name of this directory is assigned by NIST. It is not hardwired
by the provider. The names of the files in this directory are hardwired in the SDK and
are unrestricted.

Output
Parameters

none

Return Value 0 Success

2 Vendor provided configuration files are not readable in the indicated location.

Other Vendor-defined failure

 777
Table 38 provides more details on the functions for computing a pose conformance, age, gender, and expression 778
neutrality from an image. 779
 780

Table 38 – Pose conformance, Age, Gender, Expression neutrality estimation 781

 int32_t estimate_frontal_pose_conformance(

 const ONEFACE &input_face, Input

 double &non_frontality); Output

Prototypes int32_t estimate_age(

const ONEFACE &input_face, Input

int32_t &age); Output

int32_t estimate_age(
const MULTIFACE &input_faces,
int32_t &age);

Input
Output

int32_t estimate_gender(

const ONEFACE &input_face, Input

int8_t &gender Output

double &mf); Output

int32_t estimate_gender(

const MULTIFACE &input_faces, Input

int8_t &gender Output

double &mf); Output

int32_t estimate_expression_neutrality(

const ONEFACE &input_face, Input

FRVT

NIST Concept, Evaluation Plan and API Page 38 of 58

double &expression_neutrality); Output

Descriptions estimate_frontal_pose_conformance - this function takes a ONEFACE, and outputs a non-frontality value for the image.
The non-frontality value should increase with larger deviations from frontal pose.

estimate_age – this function takes a ONEFACE or MULTIFACE, and outputs an age value (in years) for the image. When
several images are present in a MULTIFACE they will be contemporaneous – typically collected within hours or days of
eachother.

estimate_gender - this function takes a ONEFACE or MULTIFACE, and outputs a gender value and a maleness-femaleness
value for the image. The use of multiple images in the MULTIFACE structure allows greater accuracy.

estimate_expression_neutrality – this function takes a ONEFACE, and an expression neutrality value for the image.

Input
Parameters

input_face An instance of a Table 12 structure.

Input_faces An instance of a Table 13 structure.

Output
Parameters

non-frontality Indication of how far from frontal the head pose is. The value should be on the range [0,1].

 age Indication of the age (in years) of the person. The value should be on the range [0,100].

gender Indication of the gender of the person. Valid values are
0: Male
1: Female
-1: Unknown

mf A real-valued measure of maleness-femaleness value on [0,1]. A value of 0 indicates certainty
that the subject is a male, and a value of 1 indicates certainty that the subject is a female.

expression_neutrality ISO/IEC 19794-5:2005 establishes codes for facial expression. Clause 5.5.7 of that standard
defines a neutral expression as “(non-smiling) with both eyes open and mouth closed”. SDKs
shall report a real-valued measure of expression neutrality on [0,1] with 0 denoting large
deviation from neutral and 1 indicating a fully neutral expression.

Return Value 0 Success

2 Elective refusal to process this kind of ONEFACE or MULTIFACE

4 Involuntary failure to extract features (e.g. could not find face in the input-image)

8 Cannot parse input data (i.e. assertion that input record is non-conformant)

Other Vendor-defined failure. Failure codes must be documented and communicated to NIST with
the submission of the implementation under test.

 782

NOTE 1 The "mf" and "non-frontality" values can be used to make DET characteristics. These would plot, 783
respectively, the "False male rate vs. False female rate" for gender, and the "False non-frontal rate vs. False frontal rate" 784
for pose. Various summary statistics can be computed also. 785

 786

787

FRVT

NIST Concept, Evaluation Plan and API Page 39 of 58

3.7. Video 788

3.7.1. Definitions 789

As shown in Table 39, the video API supports 1:N identification of video-to-video, video-to-still image, and still image-to-790
video. The following hold: 791

 A still image is a picture of one and only one person. One or more such images are presented to the implementation 792
using a MULTIFACE data structure 793

 A video is a sequence of F ≥ 1 frames containing P ≥ 0 persons. 794

 A frame is 2D still image containing P ≥ 0 persons 795

 Any person might be present in 0 ≤ f ≤ F frames, and their presence may be non-contiguous (e.g. due to occlusion) 796

 Different videos contain different numbers of frames and people. 797

 A ONEVIDEO container is used to represent a video. It contains a small header and pointers to F frames. 798

 Any person found in a video is represented by proprietary template (feature) data contained with a PERSONREP data 799
structure. A proprietary template contains information from one or more frames. Internally, it might embed multiple 800
traditional still-image templates, or it might integrate feature data by tracking a person across multiple frames. 801

 A PERSONREP structure additionally contains a trajectory indicating the location of the person in each frame. 802
 803
Please note that all of the code for the classes needed to implement the video API will be provided to implementers at 804
http://nigos.nist.gov:8080/frvt2012/. A single sample video has been made available at the same link. The sample video 805
is only approximately representative of the scene and is not an extraction from the actual video data that will be used in 806
the evaluation. It is only intended to illustrate similarities in terms of camera placement relative to the subject and people 807
behavior. It is not intended to represent the optical properties of the actual imaging systems, particularly the spatial 808
sampling rate, nor the compression characteristics. More information will be released moving forward. 809

NIST does not know the minimum and maximum numbers of persons appearing in video sequences. Moreover, NIST will 810
apply the algorithms to other databases. The maximum number of frames in a video sequence will be limited by the 811
duration of the sequence. NIST expects to use sequences whose duration extends from a few seconds to a few minutes. 812
 813
NIST does not anticipate using interlaced video. 814
 815
The frame sizes will often be 1920 x 1080 pixels. We do not anticipate using larger sizes. 816
 817
The videos are contiguous in time, without interruptions. 818
 819
Much of the video data is present at 30 frames per second. 820
 821
Some sequences exist at much higher frame rates. NIST will examine whether this offers benefit. 822
 823
Much of the data was collected using a modern proprietary video codec intended to allow inspection of faces. 824
 825
In the videos, the scenes capture people walking towards the camera. Occasionally, there are people walking in various 826
transverse directions including people walking away from the camera. The cameras have varying pitch angles ranging 827
from 0 degrees (frontal) to higher values. The depth of scene varies between the cameras such that the sizes of the faces 828
vary, with the following: 829

 Eye-to-eye distances range from approximately 40 pixels to 120 pixels 830

 Amount of time a face is fully visible in a scene can vary from approximately 0 to 5 seconds 831

 Some of the captures include non-uniform lighting due to light coming through adjacent windows. 832

Table 39 – API implementation requirements for Video 833

Function Video-to-video Still-to-video Video-to-still

Enroll Videos Videos Stills

Enrollment input datatype ONEVIDEO ONEVIDEO MULTIFACE

http://nigos.nist.gov:8080/frvt2012/

FRVT

NIST Concept, Evaluation Plan and API Page 40 of 58

Enrollment datatype PERSONREP PERSONREP PERSONREP

Search Video Still Video

Search input datatype ONEVIDEO MULTIFACE ONEVIDEO

Search datatype PERSONREP PERSONREP PERSONREP

Search result CANDIDATELIST CANDIDATELIST CANDIDATELIST

API requirements 3.7.9 + 3.7.10 +
3.7.12 + 3.7.14

3.7.9 + 3.7.10 +
3.7.20 + 3.7.14

3.7.16 + 3.7.18 +
3.7.12 + 3.7.21

3.7.1.1. Video-to-video 834

Video-to-video identification is the process of enrolling N videos and then searching the enrollment database with a 835
search video. During identification, the SDK shall return a set of indices of candidate videos that contain people who 836
appear in the search video. 837

 N templates will be generated from M enrollment videos. If no people appear in the videos, N will be 0. If may 838
people appear in each video, we'd expect N > M. 839

 The N templates will be concatenated and finalized into a proprietary enrollment data structure. 840

 A ONEVIDEO will be converted to S ≥ 0 identification template(s) based on the number of people detected in the 841
video. 842

 Each identification template generated will be searched against the enrollment database of templates generated 843
from the M input videos. 844
 845

NOTE 1 We anticipate that the same person may appear in more than one enrolled video. 846

3.7.1.2. Still image-to-video 847

Still image-to-video identification is the process of enrolling N videos and then searching the enrollment database with a 848
template produced from a MULTIFACE as follows: 849

 N templates will be generated from 1 < M ≤ N enrollment videos. 850

 The N templates will be concatenated and finalized into a proprietary enrollment data structure. 851

 A MULTIFACE (still image) will be converted to an identification template. 852

 The identification template will be searched against the enrollment database of N templates. 853
 854

NOTE 1 We anticipate that the same person may appear in more than one enrolled video. 855

 856

3.7.1.3. Video-to-still image 857

Video-to-still image identification is the process of enrolling N MULTIFACEs (see Table 13) and then searching the 858
enrollment database with templates from persons found in a video as follows 859

 N templates will be generated from N still-image MULTIFACEs. 860

 The N templates will be concatenated and finalized into a proprietary enrollment data structure. 861

 A ONEVIDEO will be converted to S ≥ 0 identification template(s) based on the number of people detected in the 862
video. 863

 Each of the S identification templates will be searched separately against the enrollment database of N templates. 864

3.7.2. Class for encapsulating a video sequence 865

Table 40 – ONEVIDEO Class 866

 C++ code fragment Remarks
1. class ONEVIDEO
2. {

private:

3. uint16_t frameWidth; Number of pixels horizontally of all frames

FRVT

NIST Concept, Evaluation Plan and API Page 41 of 58

4. uint16_t frameHeight; Number of pixels vertically of all frames
5. uint8_t frameDepth; Number of bits per pixel for all frames. Legal values are 8 and 24.
6. uint16_t framesPerSec; The frame rate of the video sequence in seconds
7. public:

 std::vector<uint8_t*> data;
Vector of pointers to data from each frame in the video sequence.
The number of frames (ie. size of the vector) can be obtained by
calling vector::size(). The i-th entry in data (ie. data[i]) points to
frame_width x frame_height pixels of data for the i-th frame.

8. //Getter and Setter Methods
9. };

3.7.3. Class representing a pair of eye coordinates 867

The data structure for reporting person locations in video appears in Table 41. The coordinates may be useful to NIST for 868
relating spatial location to recognition success during our analysis. 869

Table 41 – EYEPAIR Class 870

 C++ code fragment Remarks
1. class EYEPAIR
2. {

private:

3. bool isSet; If the eye coordinates have been computed and assigned successfully, this value
should be set to true, otherwise it should be set to false.

4. int16_t xLeft;

 int16_t yLeft;
X and Y coordinate of the center of the subject's left eye. Out-of-range values (e.g.
x < 0 or x >= width) indicate the implementation believes the eye center is outside
the image.

5. int16_t xRight;

 int16_t yRight;
X and Y coordinate of the center of the subject's right eye. Out-of-range values
(e.g. x < 0 or x >= width) indicate the implementation believes the eye center is
outside the image.

6. uint16_t frameNum For video: the frame number that corresponds to the video frame from which the
eye coordinates were generated. (ie. the i-th frame from the video sequence).
This field should not be set for eye coordinates for a single still image.

7. public:

 //getter/setter methods

8. };

3.7.4. Data type for representing a person’s trajectory via eye coordinates from a video sequence 871

Table 42 – PersonTrajectory typedef 872

 C++ code fragment Remarks
1. typedef std::vector<EYEPAIR>

PersonTrajectory;
Vector of EYEPAIR (see 3.7.3) objects for video frames where eyes were
detected. This data structure should store eye coordinates for each video
frame where eyes were detected for a particular person. For video frames
where the person’s eyes were not detected, the SDK shall not add an EYEPAIR
to this data structure.

If a face can be detected, but not the eyes, this structure could be populated
with (x,y)LEFT == (x,y)RIGHT

3.7.5. Class for representing a person from a video sequence or an image 873

Table 43 – PERSONREP Class 874

 C++ code fragment Remarks
1. class PERSONREP
2. {

private:

3. PersonTrajectory eyeCoordinates; Data structure for capturing eye coordinates

FRVT

NIST Concept, Evaluation Plan and API Page 42 of 58

4. PersonTemplate proprietaryTemplate; PersonTemplate is a wrapper to a uint8_t* for capturing
proprietary template data representing a person from a video
sequence or an image.

5. public:
6. PERSONREP(const uint64_t inSize); The constructor takes a size parameter and allocates memory of

inSize. getPersonTemplatePtr() should be called to access the
newly allocated memory for SDK manipulation. Please note that
this class will take care of all memory allocation and de-allocation
of its own memory. The SDK shall not de-allocate memory
created by this class.

7. void pushBackEyeCoord(const EYEPAIR &eyes); This function should be used to add EYEPAIRs for the video
frames or images where eye coordinates were detected.

8. uint8_t* getPersonTemplatePtr() const; This function returns a uint8_t* to the template data.
9. uint64_t getPersonTemplateSize() const; This function returns the size of the template data.
10. //… getter methods, copy constructor,

 //… assignment operator

11.
12. };

3.7.6. Class for result of an identification search 875

All identification searches shall return a candidate list of a NIST-specified length. The list shall be sorted with the most 876
similar matching entries list first with lowest rank. 877

Table 44 – CANDIDATE Class 878

 C++ code fragment Remarks

1. class CANDIDATE
2. {

private:

3. bool isSet If the candidate is valid, this should be set to true. If the candidate computation failed, this
should be set to false.

4. uint32_t templateId; The Template ID integer from the enrollment database manifest defined in clause 0.

5. double similarityScore; Measure of similarity between the identification template and the enrolled candidate.
Higher scores mean more likelihood that the samples are of the same person.

An algorithm is free to assign any value to a candidate. The distribution of values will have
an impact on the appearance of a plot of false-negative and false-positive identification
rates.

6. public:

 //getter/setter methods

7. };

3.7.7. Data type for representing a list of results of an identification search 879

Table 45 – CANDIDATELIST typedef 880

 C++ code fragment Remarks
1. typedef std::vector<CANDIDATE> CANDIDATELIST; A vector containing objects of CANDIDATEs. The

CANDIDATE class is defined in section 3.7.6.

 881

3.7.8. Class representing return code values 882

Table 46 – ReturnCode class 883

 C++ code fragment Remarks
 class ReturnCode {

public:

1. enum Status

FRVT

NIST Concept, Evaluation Plan and API Page 43 of 58

2. {
3. Success=0, Success
4. MissingConfig=1, The configuration data is missing or unreadable
5. EnrollDirFailed=2, An operation on the enrollment directory failed
6. InitNumData=3, The SDK can’t support the number of images or videos
7. InitBadDesc=4, The image descriptions are unexpected or unusable
8. RefuseInput=5, Elective refusal to process this kind of input (ONEVIDEO or

MULTIFACE)
9. FailExtract=6, Involuntary failure to extract features
10. FailTempl=7, Elective refusal to produce a template
11. FailParse=8, Cannot parse input data
12. FinInputData=9, Cannot locate input data
13. FinTemplFormat=10, One or more template files are in an incorrect format
14. IdBadTempl=11, The input template was defective
15. Vendor=88 Vendor-defined failure
16. };
17. ReturnCode(const Status inStatus); Constructor that takes an input parameter of a Status enum value.

All of the functions that need to be implemented for the Video API
return an instantiation of a ReturnCode object with a valid status
value passed in as a parameter.

18. Status getStatus() const; Getter method to return status value
19. private:
20. Status status; Member variable for storing status
21. };

3.7.9. The VideoEnrollment Interface 884

The abstract class VideoEnrollment must be implemented by the SDK developer in a class named exactly 885
SdkVideoEnrollment. The processing that takes place during each phase of the test is done via calls to the methods 886
declared in the interface as pure virtual, and therefore is to be implemented by the SDK. The test driver will call these 887
methods, handling all return values. 888

 C++ code fragment Remarks
1. class VideoEnrollment
2. {

public:

3. virtual ReturnCode getPid(

 string &sdkId, string &email) = 0;
Return the sdk identifier and email

4. virtual ReturnCode initialize(

 const string &configDir,

 const string &enrollDir,

 const uint32_t numVideos) = 0 ;

Initialize the enrollment session.

5. virtual ReturnCode generateEnrollmentTemplate(

 const ONEVIDEO &inputVideo,

 vector<PERSONREP> &enrollTemplates) = 0;

Generate enrollment template(s) for the persons detected in
the input video. This function takes an ONEVIDEO (see
3.7.2) as input and populates a vector of PERSONREP (see
3.7.5) with the number of persons detected from the video
sequence. The implementation could call vector::push_back
to insert into the vector.

6. // Destructor
7. };

3.7.9.1. Implementation identifier 889

Table 47 – VideoEnrollment::getPid 890

Prototype ReturnCode getPid(

string &sdkId, A developer-assigned ID. This shall be different for each submitted SDK.

FRVT

NIST Concept, Evaluation Plan and API Page 44 of 58

string &email); Output

Description

This function retrieves a point-of-contact email address from the implementation under test.

Output
Parameters

sdkId 4-character version ID code as hexadecimal integer. This will be used to
identify the SDK in the results reports. This value should be changed every
time an SDK is submitted to NIST. The value is developer assigned - format
is not regulated by NIST. EXAMPLE: "011A". The value cannot be the
empty string.

email Point of contact email address. The value cannot be the empty string.

ReturnCode Success Success

Vendor Vendor-defined failure

3.7.9.2. Initialization of the video enrollment session 891

Before any enrollment feature extraction calls are made, the NIST test harness will call the initialization below for video-892
to-video and still image-to-video. 893

Table 48 – VideoEnrollment::initialize 894

Prototype ReturnCode initialize(

const string &configDir, Input

const string &enrollDir, Input

const uint32_t numVideos); Input

Description

This function initializes the SDK under test and sets all needed parameters. This function will be called N=1 times

by the NIST application immediately before any M  1 calls to generateEnrollmentTemplate. The SDK should
tolerate execution of P > 1 processes on the same machine each of which may be reading and writing to the
enrollment directory. This function may be called P times and these may be running simultaneously and in parallel.

Input Parameters configDir A read-only directory containing any developer-supplied configuration parameters or run-time
data files.

enrollDir The directory will be initially empty, but may have been initialized and populated by separate
invocations of the enrollment process. When this function is called, the SDK may populate this
folder in any manner it sees fit. Permissions will be read-write-delete.

numVideos The total number of videos that will be passed to the SDK for enrollment.

Output
Parameters

none

ReturnCode Success Success

MissingConfig The configuration data is missing, unreadable, or in an unexpected format.

EnrollDirFailed An operation on the enrollment directory failed (e.g. permission, space).

InitNumData The SDK cannot support the number of videos.

Vendor Vendor-defined failure

3.7.9.3. Video enrollment 895

An ONEVIDEO is converted to enrollment template(s) for each person detected in the ONEVIDEO using the function 896
below. 897

Table 49 – VideoEnrollment::generateEnrollmentTemplate 898

Prototypes ReturnCode generateEnrollmentTemplate(

const ONEVIDEO &inputVideo, Input

std::vector<PERSONREP> &enrollTemplates); Output

Description This function takes an ONEVIDEO, and outputs a vector of PERSONREP objects. If the function executes correctly
(i.e. returns a ReturnCode::Success exit status), the NIST calling application will store the template. The NIST
application will concatenate the templates and pass the result to the enrollment finalization function. For a video in
which no persons appear, a valid output is an empty vector (i.e. size() == 0).

If the function gives a non-zero exit status:

FRVT

NIST Concept, Evaluation Plan and API Page 45 of 58

 If the exit status is ReturnCode::FailParse, NIST will debug, otherwise

 the test driver will ignore the output template (the template may have any size including zero)

 the event will be counted as a failure to enroll. Such an event means that this person can never be identified
correctly.

IMPORTANT. NIST's application writes the template to disk. The implementation must not attempt writes to the
enrollment directory (nor to other resources). Any data needed during subsequent searches should be included in
the template, or created from the templates during the enrollment finalization function.

Input
Parameters

inputVideo An instance of a Table 40 class.

Output
Parameters

enrollTemplates For each person detected in the ONEVIDEO, the function shall identify the person’s
estimated eye centers for each video frame where the person’s eye coordinates can be
calculated. The eye coordinates shall be captured in the PERSONREP.eyeCoordinates
variable, which is a vector of EYEPAIR objects. The frame number from the video of where
the eye coordinates were detected shall be captured in the EYEPAIR.frameNum variable for
each pair of eye coordinates. In the event the eye centers cannot be calculated (ie. the
person becomes out of sight for a few frames in the video), the SDK shall not store an
EYEPAIR for those frames.

ReturnCode Success Success

RefuseInput Elective refusal to process this kind of ONEVIDEO

FailExtract Involuntary failure to extract features (e.g. could not find face in the input-image)

FailTempl Elective refusal to produce a template (e.g. insufficient pixels between the eyes)

FailParse Cannot parse input data (i.e. assertion that input record is non-conformant)

Vendor Vendor-defined failure. Failure codes must be documented and communicated to NIST with
the submission of the implementation under test.

3.7.10. The VideoFinalize Interface 899

The abstract class VideoFinalize must be implemented by the SDK developer in a class named exactly SdkVideoFinalize. 900
The finalize function in this class takes the name of the top-level directory where enrollment database (EDB) and its 901
manifest have been stored. These are described in section 2.4. The enrollment directory permissions will be read + 902
write. 903

 C++ code fragment Remarks
1. class VideoFinalize
2. {

public:

3. virtual ReturnCode finalize(

 const string &enrollDir,

 const string &edbName,

 const string &edbManifest) = 0;

This function supports post-enrollment developer-optional book-
keeping operations and statistical processing. The function will
generally be called in a separate process after all the enrollment
processes are complete.

4. // Destructor
5. };

3.7.11. Finalize video enrollment 904

After all templates have been created, the function of Table 50 will be called. This freezes the enrollment data. After this 905
call the enrollment dataset will be forever read-only. This API does not support interleaved enrollment and search 906
phases. 907

The function allows the implementation to conduct, for example, statistical processing of the feature data, indexing and 908
data re-organization. The function may alter the file structure. It may increase or decrease the size of the stored data. 909
No output is expected from this function, except a return code. 910

Table 50 – VideoFinalize::finalize 911

Prototypes ReturnCode finalize (

const string &enrollDir, Input

FRVT

NIST Concept, Evaluation Plan and API Page 46 of 58

const string &edbName, Input

const string &edbManifest); Input

Description This function takes the name of the top-level directory where enrollment database (EDB) and its manifest have been
stored. These are described in section 2.4. The enrollment directory permissions will be read + write.

The function supports post-enrollment developer-optional book-keeping operations and statistical processing. The
function will generally be called in a separate process after all the enrollment processes are complete.

This function should be tolerant of being called two or more times. Second and third invocations should probably
do nothing.

Input
Parameters

enrollDir The top-level directory in which enrollment data was placed. This variable allows an
implementation to locate any private initialization data it elected to place in the directory.

edbName The name of a single file containing concatenated templates, i.e. the EDB of section 2.4.
While the file will have read-write-delete permission, the SDK should only alter the file if it
preserves the necessary content, in other files for example.
The file may be opened directly. It is not necessary to prepend a directory name.

edbManifest The name of a single file containing the EDB manifest of section 2.4.
The file may be opened directly. It is not necessary to prepend a directory name.

Output
Parameters

None

ReturnCode Success Success

FinInputData Cannot locate the input data - the input files or names seem incorrect.

EnrollDirFailed An operation on the enrollment directory failed (e.g. permission, space).

FinTemplFormat One or more template files are in an incorrect format.

Vendor Vendor-defined failure. Failure codes must be documented and communicated to NIST
with the submission of the implementation under test.

3.7.12. The VideoFeatureExtraction Interface 912

The abstract class VideoFeatureExtraction must be implemented by the SDK developer in a class named exactly 913
SdkVideoFeatureExtraction. 914

 C++ code fragment Remarks
1. class VideoFeatureExtraction
2. {

public:

3. virtual ReturnCode initialize(

 const string &configDir,

 const string &enrollDir) = 0;

Initialize the feature extraction session.

4. virtual ReturnCode generateIdTemplate(

 const ONEVIDEO &inputVideo,

 vector<PERSONREP> &idTemplates) = 0;

Generate identification template(s) for the persons
detected in the input video. This function takes an
ONEVIDEO (see 3.7.2) as input and populates a vector
of PERSONREP (see 3.7.5) with the number of persons
detected from the video sequence. The
implementation could call vector::push_back to insert
into the vector.

5. // Destructor
6. };

3.7.13. Video feature extraction initialization 915

Before one or more ONEVIDEOs are sent to the identification feature extraction function, the test harness will call the 916
initialization function below. 917

Table 51 – VideoFeatureExtraction::initialize 918

Prototype ReturnCode initialize(

const string &configDir, Input

FRVT

NIST Concept, Evaluation Plan and API Page 47 of 58

const string &enrollDir); Input

Description

This function initializes the SDK under test and sets all needed parameters. This function will be called once by the

NIST application immediately before any M  1 calls to generateIdTemplate. The SDK should tolerate execution of P
=> 1 processes on the same machine each of which can read the configuration directory. This function may be called
P times and these may be running simultaneously and in parallel.

The implementation has read-only access to its prior enrollment data.

Input
Parameters

configDir A read-only directory containing any developer-supplied configuration parameters
or run-time data files.

 enrollDir The top-level directory in which enrollment data was placed and then finalized by
the implementation. The implementation can parameterize subsequent template
production on the basis of the enrolled dataset.

Output
Parameters

none

ReturnCode Success Success

MissingConfig The configuration data is missing, unreadable, or in an unexpected format.

EnrollDirFailed An operation on the enrollment directory failed (e.g. permission).

Vendor Vendor-defined failure

3.7.13.1. Video feature extraction 919

An ONEVIDEO is converted to one or more identification templates using the function below. The result may be stored by 920
NIST, or used immediately. The SDK shall not attempt to store any data. 921

Table 52 – VideoFeatureExtraction::generateIdTemplate 922

Prototypes ReturnCode generateIdTemplate(

const ONEVIDEO &inputVideo, Input

std::vector<PERSONREP> &idTemplates); Output

Description This function takes an ONEVIDEO (see 3.7.2) as input and populates a vector of PERSONREP (see 3.7.5) with the
number of persons detected from the video sequence. The implementation could call vector::push_back to insert
into the vector.

If the function executes correctly, it returns a zero exit status. The NIST calling application may commit the template
to permanent storage, or may keep it only in memory (the implementation does not need to know). If the function
returns a non-zero exit status, the output template will be not be used in subsequent search operations.

The function shall not have access to the enrollment data, nor shall it attempt access.

Input
Parameters

InputVideo An instance of a section 3.7.2 class. Implementations must alter their behavior according to
the people detected in the video sequence.

Output
Parameters

IdTemplates For each person detected in the video, the function shall create a PERSONREP (see section
3.7.5) object, populate it with a template and eye coordinates for each frame where eyes
were detected, and add it to the vector.

ReturnCode Success Success

RefuseInput Elective refusal to process this kind of ONEVIDEO

FailExtract Involuntary failure to extract features (e.g. could not find face in the input-image)

FailTempl Elective refusal to produce a template (e.g. insufficient pixels between the eyes)

FailParse Cannot parse input data (i.e. assertion that input record is non-conformant)

Vendor Vendor-defined failure. Failure codes must be documented and communicated to NIST
with the submission of the implementation under test.

3.7.14. The VideoSearch Interface 923

The abstract class VideoSearch must be implemented by the SDK developer in a class named exactly SdkVideoSearch. 924

 C++ code fragment Remarks
1. class VideoSearch

FRVT

NIST Concept, Evaluation Plan and API Page 48 of 58

2. {

public:

3. virtual ReturnCode initialize(

 const string &configDir,

 const string &enrollDir) = 0;

Initialize the search session.

4. virtual ReturnCode identifyVideo(

 const PERSONREP &idVideoTemplate,

 const uint32_t candListLength,

 CANDIDATELIST &candList) = 0;

For video-to-video identification

This function searches a template generated from an
ONEVIDEO against the enrollment set, and outputs a
vector containing candListLength objects of Candidates
(see section 3.7.7).

5. virtual ReturnCode identifyImage(

 const PERSONREP &idImageTemplate,

 const uint32_t candListLength,

 CANDIDATELIST &candList) = 0;

For still-to-video identification

This function searches a template generated from a
MULTIFACE against the enrollment set, and outputs a
vector containing candListLength objects of Candidates.

6. // Destructor
7. };

3.7.14.1. Video identification initialization 925

The function below will be called once prior to one or more calls of the searching function of Table 54. The function might 926
set static internal variables so that the enrollment database is available to the subsequent identification searches. 927

Table 53 – VideoSearch::initialize 928

Prototype ReturnCode initialize(

const string &configDir, Input

const string &enrollDir); Input

Description This function reads whatever content is present in the enrollment_directory, for example a manifest placed there by the
VideoFinalize::finalize function.

Input
Parameters

configDir A read-only directory containing any developer-supplied configuration parameters or
run-time data files.

enrollDir The top-level directory in which enrollment data was placed.

ReturnCode Success Success

MissingConfig The configuration data is missing, unreadable, or in an unexpected format.

EnrollDirFailed An operation on the enrollment directory failed (e.g. permission).

Vendor Vendor-defined failure

3.7.15. Video identification search 929

The function below compares a proprietary identification template against the enrollment data and returns a candidate 930
list. 931

Table 54 – VideoSearch::identifyVideo and VideoSearch::identifyImage 932

Prototype ReturnCode identifyVideo(Searches a template generated from a ONEVIDEO
against the enrollment set (video-to-video)

 const PERSONREP &idVideoTemplate, Input

 const uint32_t candListLength, Input

 CANDIDATELIST &candList); Output

 ReturnCode identifyImage(Searches a template generated from a MULTIFACE
against the enrollment set (still-to-video)

const PERSONREP &idImageTemplate, Input

const uint32_t candListLength, Input

CANDIDATELIST &candList); Output

Description

This function searches an identification template against the enrollment set, and outputs a vector containing
candListLength Candidates (see section 3.7.7). Each candidate shall be populated by the implementation and added

FRVT

NIST Concept, Evaluation Plan and API Page 49 of 58

to candList. Note that candList will be an empty vector when passed into this function. The candidates shall appear
in descending order of similarity score - i.e. most similar entries appear first.

Input
Parameters

idTemplate A template from generateIdTemplate() - If the value returned by that function was non-zero the
contents of idTemplate will not be used and this function (i.e. identifyVideo) will not be called.

candListLength The number of candidates the search should return

Output
Parameters

candList A vector containing candListLength objects of Candidates. The datatype is defined in section
3.7.7. Each candidate shall be populated by the implementation and added to this vector. The
candidates shall appear in descending order of similarity score - i.e. most similar entries appear
first.

ReturnCode Success Success

IdBadTempl The input template was defective.

Vendor Vendor-defined failure

3.7.16. The ImageEnrollment Interface 933

The abstract class ImageEnrollment must be implemented by the SDK developer in a class named exactly 934
SdkImageEnrollment. 935

 C++ code fragment Remarks
1. class ImageEnrollment
2. {

public:

3. virtual ReturnCode getPid(

 string &sdkId, string &email) = 0;
Return the sdk identifier and email

4. virtual ReturnCode initialize(

 const string &configDir,

 const string &enrollDir,

 const uint32_t numPersons,

 const uint32_t numImages,

 const vector<string> &descriptions) = 0 ;

Initialize the enrollment session.

5. virtual ReturnCode generateEnrollmentTemplate(

 const MULTIFACE &inputFaces,

 PERSONREP &outputTemplate) = 0;

This function takes a MULTIFACE (see
2.3.3) as input and outputs a proprietary
template represented by a PERSONREP
(see 3.7.5).

For each input image in the MULTIFACE,
the function shall return the estimated
eye centers by setting
PERSONREP.eyeCoordinates.

6. // Destructor
7. };

3.7.17. Implementation identifier 936

Table 55 – ImageEnrollment::getPid 937

Prototype ReturnCode getPid(

string &sdkId, A developer-assigned ID. This shall be different for each submitted SDK.

string &email); Output

Description

This function retrieves a point-of-contact email address from the implementation under test.

Output
Parameters

sdkId 4-character version ID code as hexadecimal integer. This will be used to
identify the SDK in the results reports. This value should be changed every
time an SDK is submitted to NIST. The value is developer assigned - format
is not regulated by NIST. EXAMPLE: "011A". The value cannot be the
empty string.

email Point of contact email address. The value cannot be the empty string.

ReturnCode Success Success

FRVT

NIST Concept, Evaluation Plan and API Page 50 of 58

Vendor Vendor-defined failure

3.7.17.1. Initialization of the image enrollment session 938

Before any enrollment feature extraction calls are made, the NIST test harness will call the initialization below for video-939
to-still. 940

Table 56 – ImageEnrollment::initialize 941

Prototype ReturnCode initialize(

const string &configDir, Input

const string &enrollDir, Input

const uint32_t numPersons, Input

const uint32_t numImages, Input

const std::vector<string> &descriptions); Input

Description

This function initializes the SDK under test and sets all needed parameters. This function will be called N=1

times by the NIST application immediately before any M  1 calls to generateEnrollmentTemplate. The SDK
should tolerate execution of P > 1 processes on the same machine each of which may be reading and writing to
the enrollment directory. This function may be called P times and these may be running simultaneously and in
parallel.

Input Parameters configDir A read-only directory containing any developer-supplied configuration parameters or run-
time data files.

 enrollDir The directory will be initially empty, but may have been initialized and populated by separate
invocations of the enrollment process. When this function is called, the SDK may populate
this folder in any manner it sees fit. Permissions will be read-write-delete.

 numPersons The number of persons who will be enrolled.

numImages The total number of images that will be enrolled, summed over all identities.

descriptions A lexicon of labels one of which will be assigned to each enrollment image. EXAMPLE: The
descriptions could be {"mugshot", "visa"}.
NOTE: The identification search images may or may not be labeled. An identification image
may carry a label not in this set of labels. The number of items stored in the vector is
accessible via the vector::size() function.

Output
Parameters

none

ReturnCode Success Success

MissingConfig The configuration data is missing, unreadable, or in an unexpected format.

EnrollDirFailed An operation on the enrollment directory failed (e.g. permission, space).

InitNumData The SDK cannot support the number of videos.

InitBadDesc The descriptions are unexpected, or unusable.

Vendor Vendor-defined failure

3.7.17.2. Image enrollment 942

A MULTIFACE (see Table 13) is converted to a single enrollment template using the function below. 943

Table 57 – ImageEnrollment::generateEnrollmentTemplate 944

Prototypes ReturnCode generateEnrollmentTemplate(

const MULTIFACE &inputFaces, Input

PERSONREP &outputTemplate); Output

Description This function takes a MULTIFACE, and outputs a proprietary template in the form of a PERSONREP object. If the
function executes correctly (i.e. returns a ReturnCode::Success exit status), the NIST calling application will store
the template. The NIST application will concatenate the templates and pass the result to the enrollment
finalization function.

If the function gives a non-zero exit status:

 If the exit status is ReturnCode::FailParse, NIST will debug, otherwise

FRVT

NIST Concept, Evaluation Plan and API Page 51 of 58

 the test driver will ignore the output template (the template may have any size including zero)

 the event will be counted as a failure to enroll. Such an event means that this person can never be identified
correctly.

IMPORTANT. NIST's application writes the template to disk. The implementation must not attempt writes to the
enrollment directory (nor to other resources). Any data needed during subsequent searches should be included in
the template, or created from the templates during the enrollment finalization function.

Input
Parameters

inputFaces An instance of a Table 13 structure.

Output
Parameters

outputTemplate An instance of a section 3.7.5 class, which stores proprietary template data and eye
coordinates. The function shall identify the person’s estimated eye centers for each image
in the MULTIFACE. The eye coordinates shall be captured in the
PERSONREP.eyeCoordinates variable, which is a vector of EYEPAIR objects. In the event
the eye centers cannot be calculated, the SDK shall store an EYEPAIR and set EYEPAIR.isSet
to false to indicate there was a failure in generating eye coordinates. In other words, for N
images in the MULTIFACE.

ReturnCode Success Success

RefuseInput Elective refusal to process this kind of ONEVIDEO

FailExtract Involuntary failure to extract features (e.g. could not find face in the input-image)

FailTempl Elective refusal to produce a template (e.g. insufficient pixels between the eyes)

FailParse Cannot parse input data (i.e. assertion that input record is non-conformant)

Vendor Vendor-defined failure. Failure codes must be documented and communicated to NIST
with the submission of the implementation under test.

3.7.18. The ImageFinalize Interface 945

The abstract class ImageFinalize must be implemented by the SDK developer in a class named exactly SdkImageFinalize. 946
The finalize function in this class takes the name of the top-level directory where enrollment database (EDB) and its 947
manifest have been stored. These are described in section 2.4. The enrollment directory permissions will be read + 948
write. 949

 C++ code fragment Remarks
1. class ImageFinalize
2. {

public:

3. virtual ReturnCode finalize(

 const string &enrollDir,

 const string &edbName,

 const string &edbManifest) = 0;

This function supports post-enrollment developer-optional
book-keeping operations and statistical processing. The
function will generally be called in a separate process after all
the enrollment processes are complete.

4. // Destructor
5. };

3.7.19. Finalize image enrollment 950

After all templates have been created, the function of Table 58 will be called. This freezes the enrollment data. After this 951
call the enrollment dataset will be forever read-only. This API does not support interleaved enrollment and search 952
phases. 953

The function allows the implementation to conduct, for example, statistical processing of the feature data, indexing and 954
data re-organization. The function may alter the file structure. It may increase or decrease the size of the stored data. 955
No output is expected from this function, except a return code. 956

Table 58 – ImageFinalize::finalize 957

Prototypes ReturnCode finalize(

const string &enrollDir, Input

const string &edbName, Input

const string &edbManifest); Input

FRVT

NIST Concept, Evaluation Plan and API Page 52 of 58

Description This function takes the name of the top-level directory where enrollment database (EDB) and its manifest have
been stored. These are described in section 2.4. The enrollment directory permissions will be read + write.

The function supports post-enrollment developer-optional book-keeping operations and statistical processing.
The function will generally be called in a separate process after all the enrollment processes are complete.

This function should be tolerant of being called two or more times. Second and third invocations should

probably do nothing.

Input
Parameters

enrollDir The top-level directory in which enrollment data was placed. This variable allows an
implementation to locate any private initialization data it elected to place in the
directory.

edbName The name of a single file containing concatenated templates, i.e. the EDB of section 2.4.
While the file will have read-write-delete permission, the SDK should only alter the file if
it preserves the necessary content, in other files for example.
The file may be opened directly. It is not necessary to prepend a directory name.

edbManifest The name of a single file containing the EDB manifest of section 2.4.
The file may be opened directly. It is not necessary to prepend a directory name.

Output
Parameters

None

ReturnCode Success Success

FinInputData Cannot locate the input data - the input files or names seem incorrect.

EnrollDirFailed An operation on the enrollment directory failed (e.g. permission, space).

FinTemplFormat One or more template files are in an incorrect format.

Vendor Vendor-defined failure. Failure codes must be documented and communicated to NIST
with the submission of the implementation under test.

3.7.20. The ImageFeatureExtraction Interface 958

The abstract class ImageFeatureExtraction must be implemented by the SDK developer in a class named exactly 959
SdkImageFeatureExtraction. 960

 C++ code fragment Remarks
1. class ImageFeatureExtraction
2. {

public:

3. virtual ReturnCode initialize(

 const string &configDir,

 const string &enrollDir) = 0;

Initialize the feature extraction session.

4. virtual ReturnCode generateIdTemplate(

 const MULTIFACE &inputFaces,

 PERSONREP &outputTemplate) = 0;

This function takes a MULTIFACE (see 2.3.3) as
input and outputs a proprietary template
represented by a PERSONREP (see 3.7.5).

For each input image in the MULTIFACE, the
function shall return the estimated eye centers by
setting PERSONREP.eyeCoordinates.

5. // Destructor
6. };

3.7.20.1. Image feature extraction initialization 961

Before one or more MULTIFACEs are sent to the identification feature extraction function, the test harness will call the 962
initialization function below. 963

Table 59 – ImageFeatureExtraction::initialize 964

Prototype ReturnCode initialize(

const string &configDir, Input

const string &enrollDir); Input

Description This function initializes the SDK under test and sets all needed parameters. This function will be called once by

FRVT

NIST Concept, Evaluation Plan and API Page 53 of 58

 the NIST application immediately before M  1 calls to generateIdTemplate. The SDK should tolerate
execution of P ≥ 1 processes on the same machine each of which can read the configuration directory. This
function may be called P times and these may be running simultaneously and in parallel.

The implementation has read-only access to its prior enrollment data.

Input Parameters configDir A read-only directory containing any developer-supplied configuration parameters
or run-time data files.

 enrollDir The top-level directory in which enrollment data was placed and then finalized by
the implementation. The implementation can parameterize subsequent template
production on the basis of the enrolled dataset.

Output
Parameters

none

ReturnCode Success Success

MissingConfig The configuration data is missing, unreadable, or in an unexpected format.

EnrollDirFailed An operation on the enrollment directory failed (e.g. permission).

Vendor Vendor-defined failure

3.7.20.2. Image feature extraction 965

A MULTIFACE is converted to one identification template using the function below. The result may be stored by NIST, or 966
used immediately. The SDK shall not attempt to store any data. 967

Table 60 – ImageFeatureExtraction::generateIdTemplate 968

Prototypes ReturnCode generateIdTemplate(

const MULTIFACE &inputFaces, Input

PERSONREP &outputTemplate); Output

Description This function takes a MULTIFACE (see 2.3.3) as input and populates a PERSONREP (see 3.7.5) with a proprietary
template and eye coordinates.

If the function executes correctly, it returns a zero exit status. The NIST calling application may commit the template
to permanent storage, or may keep it only in memory (the developer implementation does not need to know). If the
function returns a non-zero exit status, the output template will be not be used in subsequent search operations.

The function shall not have access to the enrollment data, nor shall it attempt access.

Input
Parameters

inputFaces An instance of a Table 13 structure.

Output
Parameters

outputTemplate An instance of a section 3.7.5 class, which stores proprietary template data and eye
coordinates. The function shall identify the person’s estimated eye centers for each image
in the MULTIFACE. The eye coordinates shall be captured in the
PERSONREP.eyeCoordinates variable, which is a vector of EYEPAIR objects. In the event
the eye centers cannot be calculated, the SDK shall store an EYEPAIR and set EYEPAIR.isSet
to false to indicate there was a failure in generating eye coordinates. In other words, for N
images in the MULTIFACE.

ReturnCode Success Success

RefuseInput Elective refusal to process this kind of ONEVIDEO

FailExtract Involuntary failure to extract features (e.g. could not find face in the input-image)

FailTempl Elective refusal to produce a template (e.g. insufficient pixels between the eyes)

FailParse Cannot parse input data (i.e. assertion that input record is non-conformant)

Vendor Vendor-defined failure. Failure codes must be documented and communicated to NIST
with the submission of the implementation under test.

3.7.21. The ImageSearch Interface 969

The abstract class ImageSearch must be implemented by the SDK developer in a class named exactly SdkImageSearch. 970

 C++ code fragment Remarks
1. class VideoFeatureExtraction

FRVT

NIST Concept, Evaluation Plan and API Page 54 of 58

2. {

public:

3. virtual ReturnCode initialize(

 const string &configDir,

 const string &enrollDir) = 0;

Initialize the search session.

4. virtual ReturnCode identifyVideo(

 const PERSONREP &idTemplate,

 const uint32_t candListLength,

 CANDIDATELIST &candList) = 0;

For video-to-still identification

This function searches a template generated from an
ONEVIDEO against the enrollment set, and outputs a
vector containing candListLength objects of Candidates
(see section 3.7.7). Each candidate shall be populated by
the implementation and added to candList. The
candidates shall appear in descending order of similarity
score - i.e. most similar entries appear first.

5. // Destructor
6. };

3.7.21.1. Image identification initialization 971

The function below will be called once prior to one or more calls of the searching function of Table 62. The function might 972
set static internal variables so that the enrollment database is available to the subsequent identification searches. 973

Table 61 – ImageSearch::initialize 974

Prototype ReturnCode initialize(

const string &configDir, Input

const string &enrollDir); Input

Description This function reads whatever content is present in the enrollment_directory, for example a manifest placed there by
the ImageFinalize::finalize function.

Input Parameters configDir A read-only directory containing any developer-supplied configuration parameters or run-time
data files.

enrollDir The top-level directory in which enrollment data was placed.

ReturnCode Success Success

MissingConfig The configuration data is missing, unreadable, or in an unexpected format.

EnrollDirFailed An operation on the enrollment directory failed (e.g. permission).

Vendor Vendor-defined failure

3.7.22. Image identification search 975

The function below performs a video-to-still identification and compares a proprietary identification template generated 976
from a video against the enrollment data and returns a candidate list. 977

Table 62 – ImageSearch::identifyVideo 978

Prototype ReturnCode identifyVideo(Searches a template generated from a ONEVIDEO against the enrollment
set (video-to-still)

 const PERSONREP &idVideoTemplate, Input

 const uint32_t candListLength, Input

 CANDIDATELIST &candList); Output

Description

This function searches an identification template against the enrollment set, and outputs a vector containing
candListLength objects of Candidates (see section 3.7.7). Each candidate shall be populated by the implementation
and added to candList. Note that candList will be an empty vector when passed into this function. The candidates
shall appear in descending order of similarity score - i.e. most similar entries appear first.

Input Parameters idTemplate A template from VideoFeatureExtraction::generateIdTemplate() - If the value
returned by that function was non-zero the contents of idTemplate will not be
used and this function (i.e. identifyVideo) will not be called.

candListLength The number of candidates the search should return

FRVT

NIST Concept, Evaluation Plan and API Page 55 of 58

Output
Parameters

candList A vector containing candListLength objects of Candidates. The datatype is defined
in section 3.7.7. Each candidate shall be populated by the implementation and
added to this vector. The candidates shall appear in descending order of similarity
score - i.e. most similar entries appear first.

ReturnCode Success Success

IdBadTempl The input template was defective.

Vendor Vendor-defined failure

 979

FRVT

NIST Concept, Evaluation Plan and API Page 56 of 58

4. References 980

FRVT 2002 Face Recognition Vendor Test 2002: Evaluation Report, NIST Interagency Report 6965, P. Jonathon Phillips, Patrick Grother,
Ross J. Micheals, Duane M. Blackburn, Elham Tabassi, Mike Bone

FRVT 2002b Face Recognition Vendor Test 2002: Supplemental Report, NIST Interagency Report 7083, Patrick Grother

FRVT 2006 P. Jonathon Phillips, W. Todd Scruggs, Alice J. O’Toole, Patrick J. Flynn, Kevin W. Bowyer, Cathy L. Schott, and Matthew
Sharpe. "FRVT 2006 and ICE 2006 Large-Scale Results." NISTIR 7408, March 2007.

AN27 NIST Special Publication 500-271: American National Standard for Information Systems — Data Format for the Interchange
of Fingerprint, Facial, & Other Biometric Information – Part 1. (ANSI/NIST ITL 1-2007). Approved April 20, 2007.

IREX III P. Grother, G.W. Quinn, J. Matey, M. Ngan, W. Salamon, G. Fiumara, C. Watson, Iris Exchange III, Performance of Iris
Identification Algorithms, NIST Interagency Report 7836, Released April 9, 2012. http://iris.nist.gov/irex

MBE P. Grother, G .W. Quinn, and P. J. Phillips, Multiple-Biometric Evaluation (MBE) 2010, Report on the Evaluation of 2D Still
Image Face Recognition Algorithms, NIST Interagency Report 7709, Released June 22, 2010. Revised August 23, 2010.

http://face.nist.gov/mbe

MINEX P. Grother et al., Performance and Interoperability of the INCITS 378 Template, NIST IR 7296
http://fingerprint.nist.gov/minex04/minex_report.pdf

MOC P. Grother and W. Salamon, MINEX II - An Assessment of ISO/IEC 7816 Card-Based Match-on-Card Capabilities

http://fingerprint.nist.gov/minex/minexII/NIST_MOC_ISO_CC_interop_test_plan_1102.pdf

PERFSTD

INTEROP

ISO/IEC 19795-4 — Biometric Performance Testing and Reporting — Part 4: Interoperability Performance Testing. Posted
as document 37N2370. The standard was published in 2007. It can be purchased from ANSI at http://webstore.ansi.org/.

ISO

STD05

ISO/IEC 19794-5:2005 — Information technology — Biometric data interchange formats — Part 5: Face image data. The
standard was published in 2005, and can be purchased from ANSI at http://webstore.ansi.org/

Multipart standard of "Biometric data interchange formats". This standard was published in 2005. It was amended twice to
include guidance to photographers, and then to include 3D information. Two corrigenda were published. All these changes
and new material is currently being incorporated in revision of the standard. Publication is likely in early 2011. The
documentary history is as follows.

ISO/IEC 19794-5: Information technology — Biometric data interchange formats — Part 5:Face image data. First edition:
2005-06-15.

International Standard ISO/IEC 19794-5:2005 Technical Corrigendum 1: Published 2008-07-01

International Standard ISO/IEC 19794-5:2005 Technical Corrigendum 2: Published 2008-07-01

Information technology — Biometric data interchange formats — Part 5: Face image data AMENDMENT 1: Conditions for
taking photographs for face image data. Published 2007-12-15

Information technology — Biometric data interchange formats — Part 5: Face image data AMENDMENT 2: Three
dimensional image data.

JTC 1/SC37/N3303. FCD text of the second edition. Contact pgrother AT nist DOT gov for more information.

 981

http://iris.nist.gov/irex
http://face.nist.gov/mbe
http://fingerprint.nist.gov/minex04/minex_report.pdf
http://fingerprint.nist.gov/minex/minexII/NIST_MOC_ISO_CC_interop_test_plan_1102.pdf
http://isotc.iso.org/livelink/livelink/6993846/JTC001-SC37-N-2370.pdf?func=doc.Fetch&nodeid=6993846
http://webstore.ansi.org/
http://webstore.ansi.org/

FRVT

NIST Concept, Evaluation Plan and API Page 57 of 58

Annex A 982

Submission of Implementations to the FRVT 2012 983

A.1 Submission of implementations to NIST 984

NIST requires that all software, data and configuration files submitted by the participants be signed and encrypted. 985
Signing is done with the participant's private key, and encryption is done with the NIST public key. The detailed 986
commands for signing and encrypting are given here: http://www.nist.gov/itl/iad/ig/encrypt.cfm 987

NIST will validate all submitted materials using the participant's public key, and the authenticity of that key will be verified 988
using the key fingerprint. This fingerprint must be submitted to NIST by writing it on the signed participation agreement. 989

By encrypting the submissions, we ensure privacy; by signing the submission, we ensure authenticity (the software 990
actually belongs to the submitter). NIST will reject any submission that is not signed and encrypted. NIST accepts no 991
responsibility for anything that is transmitted to NIST that is not signed and encrypted with the NIST public key. 992

A.2 How to participate 993

Those wishing to participate in FRVT 2012 testing must do all of the following, on the schedule listed on Page 2. 994

― IMPORTANT: Follow the instructions for cryptographic protection of your SDK and data here. 995
http://www.nist.gov/itl/iad/ig/encrypt.cfm 996

― Send a signed and fully completed copy of the Application to Participate in the Face Recognition Vendor Test (FRVT) 997
2012. This is available at http://www.nist.gov/itl/iad/ig/frvt-2012.cfm. This must identify, and include signatures 998
from, the Responsible Parties as defined in the application. The properly signed FRVT 2012 Application to Participate 999
shall be sent to NIST as a PDF. 1000

― Provide an SDK (Software Development Kit) library which complies with the API (Application Programmer Interface) 1001
specified in this document. 1002

 Encrypted data and SDKs below 20MB can be emailed to NIST at frvt2012@nist.gov 1003

 Encrypted data and SDKS above 20MB shall be 1004

EITHER 1005

 Split into sections AFTER the encryption step. Use the unix "split" commands to make 9MB chunks, 1006
and then rename to include the filename extension need for passage through the NIST firewall. 1007

 you% split –a 3 –d –b 9000000 libFRVT2012_enron_A_02.tgz.gpg 1008

 you% ls -1 x??? | xargs –iQ mv Q libFRVT2012_enron_A_02_Q.tgz.gpg 1009

 Email each part in a separate email. Upon receipt NIST will 1010

 nist% cat frvt2012_enron_A02_*.tgz.gpg > libFRVT2012_enron_A_02.tgz.gpg 1011

OR 1012

 Made available as a file.zip.gpg or file.zip.asc download from a generic http webserver
18

, 1013

OR 1014

 Mailed as a file.zip.gpg or file.zip.asc on CD / DVD to NIST at this address: 1015

FRVT 2012 Test Liaison (A203)
100 Bureau Drive
A203/Tech225/Stop 8940
NIST
Gaithersburg, MD 20899-8940
USA

In cases where a courier needs a phone number, please
use NIST shipping and handling on: 301 -- 975 -- 6296.

18

 NIST will not register, or establish any kind of membership, on the provided website.

http://www.nist.gov/itl/iad/ig/encrypt.cfm
http://www.nist.gov/itl/iad/ig/encrypt.cfm
http://www.nist.gov/itl/iad/ig/frvt-2012.cfm
mailto:frvt2012@nist.gov

FRVT

NIST Concept, Evaluation Plan and API Page 58 of 58

A.3 Implementation validation 1016

Registered Participants will be provided with a small validation dataset and test program available on the website 1017

http://www.nist.gov/itl/iad/ig/frvt-2012.cfm shortly after the final evaluation plan is released. 1018

The validation test programs shall be compiled by the provider. The output of these programs shall be submitted to NIST. 1019

Prior to submission of the SDK and validation data, the Participant must verify that their software executes on the 1020
validation images, and produces correct similarity scores and templates. 1021

Software submitted shall implement the FRVT 2012 API Specification as detailed in the body of this document. 1022

Upon receipt of the SDK and validation output, NIST will attempt to reproduce the same output by executing the SDK on 1023
the validation imagery, using a NIST computer. In the event of disagreement in the output, or other difficulties, the 1024
Participant will be notified. 1025

http://www.nist.gov/itl/iad/ig/frvt-2012.cfm

	Structure Bookmarks
	Face Recognition Vendor Test (FRVT)
	Face Recognition Vendor Test (FRVT)
	 Still Face Image and Video Concept, Evaluation Plan and API Version 1.4
	Image Group
	Information Access Division
	Information Technology Laboratory
	July 10, 2013
	Figure
	 14
	 15
	Patrick Grother, George W. Quinn, and Mei Ngan 16
	 17
	 18
	 19
	 20
	Status of this Document 21
	This document amends the version 1.1 of this document released in Aug 2012 which regulated the still and video parts 22 of the FRVT. This amendment adds a new class of participation (class F) for frontal reconstruction, and updates some 23 milestones and dates.
	This document amends the version 1.1 of this document released in Aug 2012 which regulated the still and video parts 22 of the FRVT. This amendment adds a new class of participation (class F) for frontal reconstruction, and updates some 23 milestones and dates.
	frvt2012@nist.gov
	frvt2012@nist.gov

	. 24

	 25
	Timeline of the FRVT Evaluation 26
	Table
	TR
	TD
	Span
	Phase 2, 3 (Class V only)

	TD
	Span
	To be determined

	TD
	Span
	

	Span

	TR
	TD
	Span
	Phase 1
	(Class F only)

	TD
	Span
	September 12 2013

	TD
	Span
	Closing of Phase 1

	Span

	TR
	TD
	Span
	July 25 2013

	TD
	Span
	Opening of Phase 1

	Span

	TR
	TD
	Span
	Phase 3

	TD
	Span
	October 4 2013

	TD
	Span
	Final deadline for Class A, C, D Participation.

	Span

	TR
	TD
	Span
	July 25 2013

	TD
	Span
	Opening of Phase 3

	Span

	TR
	TD
	Span
	Phase 2
	Feb-Mar 2013

	TD
	Span
	March 2013

	TD
	Span
	Deadline for submission of algorithms to Phase 2.

	Span

	TR
	TD
	Span
	February 2013

	TD
	Span
	Open of Phase 3

	Span

	Phase 1
	Phase 1
	Phase 1
	July to Sept 2012

	January 24 2013
	January 24 2013

	First interim report card released to submitting participants.
	First interim report card released to submitting participants.

	Span

	TR
	August 28 2012
	August 28 2012

	Deadline for submission for inclusion of results in first interim report card.
	Deadline for submission for inclusion of results in first interim report card.

	Span

	Phase 0
	Phase 0
	Phase 0
	April to July 2012

	July 25 2012
	July 25 2012

	Open submission period begins.
	Open submission period begins.

	Span

	TR
	June 27 2012
	June 27 2012

	Final evaluation plan.
	Final evaluation plan.

	Span

	 27
	 January 2013
	 January 2013
	 January 2013
	 January 2013
	Su Mo Tu We Th Fr Sa
	 1 2 3 4 5
	 6 7 8 9 10 11 12
	13 14 15 16 17 18 19
	20 21 22 23 24 25 26
	27 28 29 30 31

	 February 2013
	 February 2013
	Su Mo Tu We Th Fr Sa
	 1 2
	 3 4 5 6 7 8 9
	10 11 12 13 14 15 16
	17 18 19 20 21 22 23
	24 25 26 27 28

	 March 2013
	 March 2013
	Su Mo Tu We Th Fr Sa
	 1 2
	 3 4 5 6 7 8 9
	10 11 12 13 14 15 16
	17 18 19 20 21 22 23
	24 25 26 27 28 29 30
	31

	 April 2013
	 April 2013
	Su Mo Tu We Th Fr Sa
	 1 2 3 4 5 6
	 7 8 9 10 11 12 13
	14 15 16 17 18 19 20
	21 22 23 24 25 26 27
	28 29 30

	 May 2013
	 May 2013
	Su Mo Tu We Th Fr Sa
	 1 2 3 4
	 5 6 7 8 9 10 11
	12 13 14 15 16 17 18
	19 20 21 22 23 24 25
	26 27 28 29 30 31

	 June 2013
	 June 2013
	Su Mo Tu We Th Fr Sa
	 1
	 2 3 4 5 6 7 8
	 9 10 11 12 13 14 15
	16 17 18 19 20 21 22
	23 24 25 26 27 28 29
	30

	Span

	 28
	Major Changes since MBE 2010 29
	Please note that this document is derived from the MBE-STILL 2010 API document for continuity and to aid implementers 30 of the FRVT 2012 API. 31
	― For this test, Windows machines will not be used. Windows-compiled libraries are not permitted. All software must 32 run under Linux (see section
	― For this test, Windows machines will not be used. Windows-compiled libraries are not permitted. All software must 32 run under Linux (see section
	― For this test, Windows machines will not be used. Windows-compiled libraries are not permitted. All software must 32 run under Linux (see section
	― For this test, Windows machines will not be used. Windows-compiled libraries are not permitted. All software must 32 run under Linux (see section
	1.21
	1.21

). 33

	― The FRVT 2012 API is written in the C++ language. Participants are required to provide their library in a format that is 34 linkable using g++ (see
	― The FRVT 2012 API is written in the C++ language. Participants are required to provide their library in a format that is 34 linkable using g++ (see
	― The FRVT 2012 API is written in the C++ language. Participants are required to provide their library in a format that is 34 linkable using g++ (see
	1.21
	1.21

). 35

	― This evaluation contains new focus areas, which include: 36
	― This evaluation contains new focus areas, which include: 36

	 Age, gender, and expression neutrality estimation for still images (see section
	 Age, gender, and expression neutrality estimation for still images (see section
	 Age, gender, and expression neutrality estimation for still images (see section
	 Age, gender, and expression neutrality estimation for still images (see section
	1.8
	1.8

) 37

	 Dedicated API for video data (see section
	 Dedicated API for video data (see section
	 Dedicated API for video data (see section
	3.7
	3.7

) 38

	 Reporting minimum cost recognition (see section
	 Reporting minimum cost recognition (see section
	 Reporting minimum cost recognition (see section
	1.16
	1.16

) 39

	― New datasets will be used for FRVT 2012 and will contain individuals spanning a full age range. 40
	― New datasets will be used for FRVT 2012 and will contain individuals spanning a full age range. 40

	― The header/source files for the API will be made available to implementers at
	― The header/source files for the API will be made available to implementers at
	― The header/source files for the API will be made available to implementers at
	http://nigos.nist.gov:8080/frvt2012/
	http://nigos.nist.gov:8080/frvt2012/

	. 41

	42
	Table of Contents 43
	Table of Contents 43
	1. FRVT .. 7
	1. FRVT .. 7
	1. FRVT .. 7

	 44

	1.1. Scope... 7
	1.1. Scope... 7
	1.1. Scope... 7

	 45

	1.2. Audience ... 7
	1.2. Audience ... 7
	1.2. Audience ... 7

	 46

	1.3. Market drivers .. 7
	1.3. Market drivers .. 7
	1.3. Market drivers .. 7

	 47

	1.4. Offline testing ... 8
	1.4. Offline testing ... 8
	1.4. Offline testing ... 8

	 48

	1.5. Phased testing ... 8
	1.5. Phased testing ... 8
	1.5. Phased testing ... 8

	 49

	1.6. Interim reports .. 8
	1.6. Interim reports .. 8
	1.6. Interim reports .. 8

	 50

	1.7. Final reports .. 8
	1.7. Final reports .. 8
	1.7. Final reports .. 8

	 51

	1.8. Application scenarios .. 9
	1.8. Application scenarios .. 9
	1.8. Application scenarios .. 9

	 52

	1.9. Image source labels .. 10
	1.9. Image source labels .. 10
	1.9. Image source labels .. 10

	 53

	1.10. Options for participation .. 10
	1.10. Options for participation .. 10
	1.10. Options for participation .. 10

	 54

	1.11. Number and schedule of submissions .. 11
	1.11. Number and schedule of submissions .. 11
	1.11. Number and schedule of submissions .. 11

	 55

	1.12. Use of multiple images per person ... 11
	1.12. Use of multiple images per person ... 11
	1.12. Use of multiple images per person ... 11

	 56

	1.13. Provision of photograph date information to the implementation.. 12
	1.13. Provision of photograph date information to the implementation.. 12
	1.13. Provision of photograph date information to the implementation.. 12

	 57

	1.14. Core accuracy metrics ... 12
	1.14. Core accuracy metrics ... 12
	1.14. Core accuracy metrics ... 12

	 58

	1.15. Generalized accuracy metrics ... 12
	1.15. Generalized accuracy metrics ... 12
	1.15. Generalized accuracy metrics ... 12

	 59

	1.16. Reporting minimum cost recognition ... 13
	1.16. Reporting minimum cost recognition ... 13
	1.16. Reporting minimum cost recognition ... 13

	 60

	1.17. Reporting template size .. 14
	1.17. Reporting template size .. 14
	1.17. Reporting template size .. 14

	 61

	1.18. Reporting computational efficiency.. 14
	1.18. Reporting computational efficiency.. 14
	1.18. Reporting computational efficiency.. 14

	 62

	1.19. Exploring the accuracy-speed trade-space ... 14
	1.19. Exploring the accuracy-speed trade-space ... 14
	1.19. Exploring the accuracy-speed trade-space ... 14

	 63

	1.20. Hardware specification ... 14
	1.20. Hardware specification ... 14
	1.20. Hardware specification ... 14

	 64

	1.21. Operating system, compilation, and linking environment ... 15
	1.21. Operating system, compilation, and linking environment ... 15
	1.21. Operating system, compilation, and linking environment ... 15

	 65

	1.22. Software and Documentation ... 15
	1.22. Software and Documentation ... 15
	1.22. Software and Documentation ... 15

	 66

	1.23. Runtime behavior ... 17
	1.23. Runtime behavior ... 17
	1.23. Runtime behavior ... 17

	 67

	1.24. Threaded computations .. 17
	1.24. Threaded computations .. 17
	1.24. Threaded computations .. 17

	 68

	1.25. Time limits... 18
	1.25. Time limits... 18
	1.25. Time limits... 18

	 69

	1.26. Test datasets ... 18
	1.26. Test datasets ... 18
	1.26. Test datasets ... 18

	 70

	1.27. Quality analysis ... 19
	1.27. Quality analysis ... 19
	1.27. Quality analysis ... 19

	 71

	1.28. Ground truth integrity .. 19
	1.28. Ground truth integrity .. 19
	1.28. Ground truth integrity .. 19

	 72

	2. Data structures supporting the API .. 20
	2. Data structures supporting the API .. 20
	2. Data structures supporting the API .. 20

	 73

	2.1. Overview ... 20
	2.1. Overview ... 20
	2.1. Overview ... 20

	 74

	2.2. Requirement ... 20
	2.2. Requirement ... 20
	2.2. Requirement ... 20

	 75

	2.3. File formats and data structures ... 20
	2.3. File formats and data structures ... 20
	2.3. File formats and data structures ... 20

	 76

	2.4. File structures for enrolled template collection ... 22
	2.4. File structures for enrolled template collection ... 22
	2.4. File structures for enrolled template collection ... 22

	 77

	2.5. Data structure for result of an identification search .. 22
	2.5. Data structure for result of an identification search .. 22
	2.5. Data structure for result of an identification search .. 22

	 78

	3. API Specification ... 23
	3. API Specification ... 23
	3. API Specification ... 23

	 79

	3.1. Implementation identifiers ... 23
	3.1. Implementation identifiers ... 23
	3.1. Implementation identifiers ... 23

	 80

	3.2. Maximum template size ... 23
	3.2. Maximum template size ... 23
	3.2. Maximum template size ... 23

	 81

	3.3. 1:1 Verification .. 23
	3.3. 1:1 Verification .. 23
	3.3. 1:1 Verification .. 23

	 82

	3.4. 1:N Identification .. 28
	3.4. 1:N Identification .. 28
	3.4. 1:N Identification .. 28

	 83

	3.5. Pose conformance, age, gender, and expression neutrality estimation .. 34
	3.5. Pose conformance, age, gender, and expression neutrality estimation .. 34
	3.5. Pose conformance, age, gender, and expression neutrality estimation .. 34

	 84

	3.6. Video ... 39
	3.6. Video ... 39
	3.6. Video ... 39

	 85

	4. References .. 56
	4. References .. 56
	4. References .. 56

	 86

	Annex A Submission of Implementations to the FRVT 2012 .. 57
	Annex A Submission of Implementations to the FRVT 2012 .. 57
	Annex A Submission of Implementations to the FRVT 2012 .. 57

	 87

	A.1 Submission of implementations to NIST ... 57
	A.1 Submission of implementations to NIST ... 57
	A.1 Submission of implementations to NIST ... 57

	 88

	A.2 How to participate .. 57
	A.2 How to participate .. 57
	A.2 How to participate .. 57

	 89

	A.3 Implementation validation ... 58
	A.3 Implementation validation ... 58
	A.3 Implementation validation ... 58

	 90

	 91

	 92
	 93
	 94
	 95
	List of Figures 96
	List of Figures 96
	Figure 1 – Organization and documentation of the FRVT 2012 ... 7
	Figure 1 – Organization and documentation of the FRVT 2012 ... 7
	Figure 1 – Organization and documentation of the FRVT 2012 ... 7

	 97

	Figure 2 – Notional DETs targeted by two different cost models .. 14
	Figure 2 – Notional DETs targeted by two different cost models .. 14
	Figure 2 – Notional DETs targeted by two different cost models .. 14

	 98

	Figure 3 – Schematic of verification without enrollment database ... 26
	Figure 3 – Schematic of verification without enrollment database ... 26
	Figure 3 – Schematic of verification without enrollment database ... 26

	 99

	 100
	List of Tables 101
	Table 1 – Abbreviations .. 6
	Table 1 – Abbreviations .. 6
	Table 1 – Abbreviations .. 6

	 102

	Table 2 – Subtests supported under the FRVT 2012 Still Image activity .. 9
	Table 2 – Subtests supported under the FRVT 2012 Still Image activity .. 9
	Table 2 – Subtests supported under the FRVT 2012 Still Image activity .. 9

	 103

	Table 3 – FRVT 2012 classes of participation ... 10
	Table 3 – FRVT 2012 classes of participation ... 10
	Table 3 – FRVT 2012 classes of participation ... 10

	 104

	Table 4 – Cumulative total number of algorithms, by class ... 11
	Table 4 – Cumulative total number of algorithms, by class ... 11
	Table 4 – Cumulative total number of algorithms, by class ... 11

	 105

	Table 5 – Summary of accuracy metrics ... 12
	Table 5 – Summary of accuracy metrics ... 12
	Table 5 – Summary of accuracy metrics ... 12

	 106

	Table 6 – Cost parameters for both submission types ... 13
	Table 6 – Cost parameters for both submission types ... 13
	Table 6 – Cost parameters for both submission types ... 13

	 107

	Table 7 – Implementation library filename convention ... 16
	Table 7 – Implementation library filename convention ... 16
	Table 7 – Implementation library filename convention ... 16

	 108

	Table 8 – Number of threads allowed for each application ... 17
	Table 8 – Number of threads allowed for each application ... 17
	Table 8 – Number of threads allowed for each application ... 17

	 109

	Table 9 – Processing time limits in milliseconds .. 18
	Table 9 – Processing time limits in milliseconds .. 18
	Table 9 – Processing time limits in milliseconds .. 18

	 110

	Table 10 – Main image corpora (others will be used) .. 18
	Table 10 – Main image corpora (others will be used) .. 18
	Table 10 – Main image corpora (others will be used) .. 18

	 111

	Table 11 – Labels describing types of images... 20
	Table 11 – Labels describing types of images... 20
	Table 11 – Labels describing types of images... 20

	 112

	Table 12 – Structure for a single face ... 20
	Table 12 – Structure for a single face ... 20
	Table 12 – Structure for a single face ... 20

	 113

	Table 13 – Structure for a set of images from a single person ... 21
	Table 13 – Structure for a set of images from a single person ... 21
	Table 13 – Structure for a set of images from a single person ... 21

	 114

	Table 14 – Structure for a pair of eye coordinates ... 21
	Table 14 – Structure for a pair of eye coordinates ... 21
	Table 14 – Structure for a pair of eye coordinates ... 21

	 115

	Table 15 – Enrollment dataset template manifest ... 22
	Table 15 – Enrollment dataset template manifest ... 22
	Table 15 – Enrollment dataset template manifest ... 22

	 116

	Table 16 – Structure for a candidate .. 22
	Table 16 – Structure for a candidate .. 22
	Table 16 – Structure for a candidate .. 22

	 117

	Table 17 – Implementation identifiers ... 23
	Table 17 – Implementation identifiers ... 23
	Table 17 – Implementation identifiers ... 23

	 118

	Table 18 – Implementation template size requirements ... 23
	Table 18 – Implementation template size requirements ... 23
	Table 18 – Implementation template size requirements ... 23

	 119

	Table 19 – Functional summary of the 1:1 application .. 25
	Table 19 – Functional summary of the 1:1 application .. 25
	Table 19 – Functional summary of the 1:1 application .. 25

	 120

	Table 20 – SDK initialization ... 26
	Table 20 – SDK initialization ... 26
	Table 20 – SDK initialization ... 26

	 121

	Table 21 – Template generation .. 26
	Table 21 – Template generation .. 26
	Table 21 – Template generation .. 26

	 122

	Table 22 – Template matching ... 27
	Table 22 – Template matching ... 27
	Table 22 – Template matching ... 27

	 123

	Table 23 – Procedural overview of the identification test ... 28
	Table 23 – Procedural overview of the identification test ... 28
	Table 23 – Procedural overview of the identification test ... 28

	 124

	Table 24 – Enrollment initialization .. 29
	Table 24 – Enrollment initialization .. 29
	Table 24 – Enrollment initialization .. 29

	 125

	Table 25 – Enrollment feature extraction .. 30
	Table 25 – Enrollment feature extraction .. 30
	Table 25 – Enrollment feature extraction .. 30

	 126

	Table 26 – Enrollment finalization .. 31
	Table 26 – Enrollment finalization .. 31
	Table 26 – Enrollment finalization .. 31

	 127

	Table 27 – Identification feature extraction initialization .. 31
	Table 27 – Identification feature extraction initialization .. 31
	Table 27 – Identification feature extraction initialization .. 31

	 128

	Table 28 – Identification feature extraction ... 32
	Table 28 – Identification feature extraction ... 32
	Table 28 – Identification feature extraction ... 32

	 129

	Table 29 – Identification initialization .. 33
	Table 29 – Identification initialization .. 33
	Table 29 – Identification initialization .. 33

	 130

	Table 30 – Identification search ... 33
	Table 30 – Identification search ... 33
	Table 30 – Identification search ... 33

	 131

	Table 31 – “Base” Estimator Class Structure .. 35
	Table 31 – “Base” Estimator Class Structure .. 35
	Table 31 – “Base” Estimator Class Structure .. 35

	 132

	Table 32 – Example of SdkEstimator Class Declaration .. 36
	Table 32 – Example of SdkEstimator Class Declaration .. 36
	Table 32 – Example of SdkEstimator Class Declaration .. 36

	 133

	Table 33 – Example of SdkEstimator Class Definition .. 36
	Table 33 – Example of SdkEstimator Class Definition .. 36
	Table 33 – Example of SdkEstimator Class Definition .. 36

	 134

	Table 34 – Initialization of Pose conformance, Age, Gender, and Expression neutrality estimation 37
	Table 34 – Initialization of Pose conformance, Age, Gender, and Expression neutrality estimation 37
	Table 34 – Initialization of Pose conformance, Age, Gender, and Expression neutrality estimation 37

	 135

	Table 35 – Pose conformance, Age, Gender, Expression neutrality estimation .. 37
	Table 35 – Pose conformance, Age, Gender, Expression neutrality estimation .. 37
	Table 35 – Pose conformance, Age, Gender, Expression neutrality estimation .. 37

	 136

	Table 36 – API implementation requirements for Video ... 39
	Table 36 – API implementation requirements for Video ... 39
	Table 36 – API implementation requirements for Video ... 39

	 137

	Table 37 – ONEVIDEO Class .. 40
	Table 37 – ONEVIDEO Class .. 40
	Table 37 – ONEVIDEO Class .. 40

	 138

	Table 38 – EYEPAIR Class .. 41
	Table 38 – EYEPAIR Class .. 41
	Table 38 – EYEPAIR Class .. 41

	 139

	Table 39 – PersonTrajectory typedef ... 41
	Table 39 – PersonTrajectory typedef ... 41
	Table 39 – PersonTrajectory typedef ... 41

	 140

	Table 40 – PERSONREP Class .. 41
	Table 40 – PERSONREP Class .. 41
	Table 40 – PERSONREP Class .. 41

	 141

	Table 41 – CANDIDATE Class .. 42
	Table 41 – CANDIDATE Class .. 42
	Table 41 – CANDIDATE Class .. 42

	 142

	Table 42 – CANDIDATELIST typedef ... 42
	Table 42 – CANDIDATELIST typedef ... 42
	Table 42 – CANDIDATELIST typedef ... 42

	 143

	Table 43 – ReturnCode class .. 42
	Table 43 – ReturnCode class .. 42
	Table 43 – ReturnCode class .. 42

	 144

	Table 44 – VideoEnrollment::getPid ... 43
	Table 44 – VideoEnrollment::getPid ... 43
	Table 44 – VideoEnrollment::getPid ... 43

	 145

	Table 45 – VideoEnrollment::initialize ... 44
	Table 45 – VideoEnrollment::initialize ... 44
	Table 45 – VideoEnrollment::initialize ... 44

	 146

	Table 46 – VideoEnrollment::generateEnrollmentTemplate ... 44
	Table 46 – VideoEnrollment::generateEnrollmentTemplate ... 44
	Table 46 – VideoEnrollment::generateEnrollmentTemplate ... 44

	 147

	Table 47 – VideoFinalize::finalize ... 45
	Table 47 – VideoFinalize::finalize ... 45
	Table 47 – VideoFinalize::finalize ... 45
	Table 47 – VideoFinalize::finalize ... 45

	 148

	Table 48 – VideoFeatureExtraction::initialize .. 46
	Table 48 – VideoFeatureExtraction::initialize .. 46
	Table 48 – VideoFeatureExtraction::initialize .. 46

	 149

	Table 49 – VideoFeatureExtraction::generateIdTemplate ... 47
	Table 49 – VideoFeatureExtraction::generateIdTemplate ... 47
	Table 49 – VideoFeatureExtraction::generateIdTemplate ... 47

	 150

	Table 50 – VideoSearch::initialize .. 48
	Table 50 – VideoSearch::initialize .. 48
	Table 50 – VideoSearch::initialize .. 48

	 151

	Table 51 – VideoSearch::identifyVideo and VideoSearch::identifyImage .. 48
	Table 51 – VideoSearch::identifyVideo and VideoSearch::identifyImage .. 48
	Table 51 – VideoSearch::identifyVideo and VideoSearch::identifyImage .. 48

	 152

	Table 52 – ImageEnrollment::getPid .. 49
	Table 52 – ImageEnrollment::getPid .. 49
	Table 52 – ImageEnrollment::getPid .. 49

	 153

	Table 53 – ImageEnrollment::initialize ... 50
	Table 53 – ImageEnrollment::initialize ... 50
	Table 53 – ImageEnrollment::initialize ... 50

	 154

	Table 54 – ImageEnrollment::generateEnrollmentTemplate ... 50
	Table 54 – ImageEnrollment::generateEnrollmentTemplate ... 50
	Table 54 – ImageEnrollment::generateEnrollmentTemplate ... 50

	 155

	Table 55 – ImageFinalize::finalize ... 51
	Table 55 – ImageFinalize::finalize ... 51
	Table 55 – ImageFinalize::finalize ... 51

	 156

	Table 56 – ImageFeatureExtraction::initialize .. 52
	Table 56 – ImageFeatureExtraction::initialize .. 52
	Table 56 – ImageFeatureExtraction::initialize .. 52

	 157

	Table 57 – ImageFeatureExtraction::generateIdTemplate .. 53
	Table 57 – ImageFeatureExtraction::generateIdTemplate .. 53
	Table 57 – ImageFeatureExtraction::generateIdTemplate .. 53

	 158

	Table 58 – ImageSearch::initialize .. 54
	Table 58 – ImageSearch::initialize .. 54
	Table 58 – ImageSearch::initialize .. 54

	 159

	Table 59 – ImageSearch::identifyVideo .. 54
	Table 59 – ImageSearch::identifyVideo .. 54
	Table 59 – ImageSearch::identifyVideo .. 54

	 160

	 161

	162
	Acknowledgements 163
	― The authors are grateful to the experts who made extensive comments on the first version of this document. 164
	― The authors are grateful to the experts who made extensive comments on the first version of this document. 164
	― The authors are grateful to the experts who made extensive comments on the first version of this document. 164

	Project History 165
	― March 2, 2012 – Addition of Class F for frontal reconstruction. 166
	― March 2, 2012 – Addition of Class F for frontal reconstruction. 166
	― March 2, 2012 – Addition of Class F for frontal reconstruction. 166

	― Aug 18, 2012 – Release with updated "number of allowed algorithm submissions" information, v1.1 167
	― Aug 18, 2012 – Release with updated "number of allowed algorithm submissions" information, v1.1 167

	― July 31, 2012 – Release of additional information as API, v1.0 168
	― July 31, 2012 – Release of additional information as API, v1.0 168

	― April 17, 2012 - Release of first public draft of the Face Recognition Vendor Test (FRVT) 2012 – Concept, Evaluation 169 Plan and API v0.5. 170
	― April 17, 2012 - Release of first public draft of the Face Recognition Vendor Test (FRVT) 2012 – Concept, Evaluation 169 Plan and API v0.5. 170

	― June 17, 2010 – Published public report of MBE-STILL 2010 test (NISTIR 7709 – Report on the Evaluation of 2D Still-171 Image Face Recognition Algorithms) linked from
	― June 17, 2010 – Published public report of MBE-STILL 2010 test (NISTIR 7709 – Report on the Evaluation of 2D Still-171 Image Face Recognition Algorithms) linked from
	― June 17, 2010 – Published public report of MBE-STILL 2010 test (NISTIR 7709 – Report on the Evaluation of 2D Still-171 Image Face Recognition Algorithms) linked from
	http://face.nist.gov/mbe
	http://face.nist.gov/mbe

	. 172

	― August 2009 - Briefed large scale 1:N proposal to U. S. Government sponsors 173
	― August 2009 - Briefed large scale 1:N proposal to U. S. Government sponsors 173

	Terms and definitions 174
	The abbreviations and acronyms of
	The abbreviations and acronyms of
	Table 1
	Table 1

	 are used in many parts of this document. 175

	Table 1 – Abbreviations 176
	FNIR
	FNIR
	FNIR
	FNIR

	False negative identification rate
	False negative identification rate

	Span

	FPIR
	FPIR
	FPIR

	False positive identification rate
	False positive identification rate

	Span

	FMR
	FMR
	FMR

	False match rate
	False match rate

	Span

	FNMR
	FNMR
	FNMR

	False non-match rate
	False non-match rate

	Span

	FRVT
	FRVT
	FRVT

	NIST’s Face Recognition Vendor Test program
	NIST’s Face Recognition Vendor Test program

	Span

	FTS
	FTS
	FTS

	Failure to Search
	Failure to Search

	Span

	FTX
	FTX
	FTX

	Failure to extract features from an enrollment image
	Failure to extract features from an enrollment image

	Span

	GFAR
	GFAR
	GFAR

	Generalized false accept rate
	Generalized false accept rate

	Span

	GFRR
	GFRR
	GFRR

	Generalized false reject rate
	Generalized false reject rate

	Span

	DET
	DET
	DET

	Detection error tradeoff characteristic: For verification this is a plot of FNMR vs. FMR (sometimes as normal deviates, sometimes on log-scales). For identification this is a plot of FNIR vs. FPIR.
	Detection error tradeoff characteristic: For verification this is a plot of FNMR vs. FMR (sometimes as normal deviates, sometimes on log-scales). For identification this is a plot of FNIR vs. FPIR.

	Span

	INCITS
	INCITS
	INCITS

	InterNational Committee on Information Technology Standards
	InterNational Committee on Information Technology Standards

	Span

	ISO/IEC 19794
	ISO/IEC 19794
	ISO/IEC 19794

	ISO/IEC 19794-5: Information technology — Biometric data interchange formats — Part 5:Face image data. First edition: 2005-06-15. (See Bibliography entry).
	ISO/IEC 19794-5: Information technology — Biometric data interchange formats — Part 5:Face image data. First edition: 2005-06-15. (See Bibliography entry).

	Span

	MBE
	MBE
	MBE

	NIST's Multiple Biometric Evaluation program
	NIST's Multiple Biometric Evaluation program

	Span

	NIST
	NIST
	NIST

	National Institute of Standards and Technology
	National Institute of Standards and Technology

	Span

	SDK
	SDK
	SDK

	The term Software Development Kit refers to any library software submitted to NIST. This is used synonymously with the terms "implementation" and "implementation under test".
	The term Software Development Kit refers to any library software submitted to NIST. This is used synonymously with the terms "implementation" and "implementation under test".

	Span

	177
	1. FRVT 178
	1.1. Scope 179
	This document establishes a concept of operations and an application programming interface (API) for evaluation of face 180 recognition implementations submitted to NIST's Face Recognition Vendor Test 2012. See 181
	http://www.nist.gov/itl/iad/ig/frvt-2012.cfm
	http://www.nist.gov/itl/iad/ig/frvt-2012.cfm
	http://www.nist.gov/itl/iad/ig/frvt-2012.cfm

	 for all FRVT 2012 documentation.
	 Face Recognition Vendor Test (FRVT) 2012 Still Face Image(s) Video 1:N identification 1:1 Verification 1:N Identification Gender, Age, Expression Neutrality, and Pose Estimation Video-to-video Still-to-video Video-to-still API and Concept of Operations are defined in this document Reconstruction of frontal image(s)
	182

	Figure 1 – Organization and documentation of the FRVT 2012 183
	1.2. Audience 184
	Universities and commercial entities with capabilities in any of the following areas are invited to participate in the FRVT 185 2012 Face test. 186
	― Identity verification with face recognition algorithms. 187
	― Identity verification with face recognition algorithms. 187
	― Identity verification with face recognition algorithms. 187

	― Large scale identification implementations. 188
	― Large scale identification implementations. 188

	― Profile view recognition. 189
	― Profile view recognition. 189

	― Those with a capability to assess age, gender, expression neutrality, and/or pose orientation of a face in an image. 190
	― Those with a capability to assess age, gender, expression neutrality, and/or pose orientation of a face in an image. 190

	― Face recognition in video capability 191
	― Face recognition in video capability 191

	Organizations will need to implement the API defined in this document. Participation is open worldwide. There is no 192 charge for participation. While NIST intends to evaluate technologies that could be readily made operational, the test is 193 also open to experimental, prototype and other technologies. 194
	1.3. Market drivers 195
	This test is intended to support a plural marketplace of face recognition systems. While the dominant application, in 196 terms of revenue, has been one-to-many search for driving licenses and visa issuance, the deployment of one-to-one face 197 recognition has re-emerged with the advent of the e-Passport verification projects1. In addition, there remains 198 considerable activity in the use of FR for surveillance applications. 199
	1 These match images acquired from a person crossing a border against the ISO/IEC 19794-5 facial image stored on the embedded ISO/IEC 7816 + ISO/IEC ISO 14443 chips.
	1 These match images acquired from a person crossing a border against the ISO/IEC 19794-5 facial image stored on the embedded ISO/IEC 7816 + ISO/IEC ISO 14443 chips.

	These applications are differentiated by the population size (and other variables). In the driving license duplicate 200 detection application, the enrollment database might exceed 107 people. In the surveillance application, the watchlist 201 size can readily extend to 104. 202
	1.4. Offline testing 203
	While this set of tests is intended as much as possible to mimic operational reality, this remains an offline test executed 204 on databases of images. The intent is to assess the core algorithmic capability of face recognition algorithms. This test will 205 be conducted purely offline - it does not include a live human-presents-to-camera component. Offline testing is attractive 206 because it allows uniform, fair, repeatable, and efficient evaluation of the underlying technologies. Testing of 207 implem
	1.5. Phased testing 209
	To support research and development efforts, this testing activity will embed multiple rounds of testing. These test 210 rounds are intended to support improved performance. Once the test commences, NIST will evaluate implementations 211 on a first-come-first-served basis and will return results to providers as expeditiously as possible. Providers may submit 212 revised SDKs to NIST only after NIST provides results for the prior SDK and invites further submission. The frequency with 213 which a provider
	For the schedule and number of SDKs of each class that may be submitted, see sections
	For the schedule and number of SDKs of each class that may be submitted, see sections
	1.10
	1.10

	 and
	1.11
	1.11

	. 216

	1.6. Interim reports 217
	The performance of each SDK will be reported in a "score-card". This will be provided to the participant. While the score 218 cards may be used by the provider for arbitrary purposes, they are intended to facilitate development. Score cards will 219
	 be machine generated (i.e. scripted), 220
	 be machine generated (i.e. scripted), 220
	 be machine generated (i.e. scripted), 220

	 be provided to participants with identification of their implementation, 221
	 be provided to participants with identification of their implementation, 221

	 include timing, accuracy and other performance results, 222
	 include timing, accuracy and other performance results, 222

	 include results from other implementations, but will not identify the other providers, 223
	 include results from other implementations, but will not identify the other providers, 223

	 be expanded and modified as revised implementations are tested, and as analyses are implemented, 224
	 be expanded and modified as revised implementations are tested, and as analyses are implemented, 224

	 be generated and released asynchronously with SDK submissions, 225
	 be generated and released asynchronously with SDK submissions, 225

	 be produced independently of the other status of other providers’ implementations, 226
	 be produced independently of the other status of other providers’ implementations, 226

	 be regenerated on-the-fly, usually whenever any implementation completes testing, or when new analysis is added. 227
	 be regenerated on-the-fly, usually whenever any implementation completes testing, or when new analysis is added. 227

	NIST does not intend to release these test reports publicly. NIST may release such information to the U.S. Government 228 test sponsors. While these reports are not intended to be made public, NIST can only request that agencies not release 229 this content. 230
	1.7. Final reports 231
	NIST will publish one or more final public reports. NIST may also 232
	 publish additional supplementary reports (typically as numbered NIST Interagency Reports), 233
	 publish additional supplementary reports (typically as numbered NIST Interagency Reports), 233
	 publish additional supplementary reports (typically as numbered NIST Interagency Reports), 233

	 publish in other academic journals, 234
	 publish in other academic journals, 234

	 present results at conferences and workshops (typically PowerPoint). 235
	 present results at conferences and workshops (typically PowerPoint). 235

	Our intention is that the final test reports will publish results for the best-performing implementation from each 236 participant. Because “best” is ill-defined (accuracy vs. time vs. template size, for example), the published reports may 237 include results for other implementations. The intention is to report results for the most capable implementations (see 238 section
	Our intention is that the final test reports will publish results for the best-performing implementation from each 236 participant. Because “best” is ill-defined (accuracy vs. time vs. template size, for example), the published reports may 237 include results for other implementations. The intention is to report results for the most capable implementations (see 238 section
	1.14
	1.14

	, on metrics). Other results may be included (e.g. in appendices) to show, for example, examples of progress 239 or tradeoffs. IMPORTANT: Results will be attributed to the providers. 240

	1.8. Application scenarios 241
	The test will include one-to-one verification tests and one-to-many identification tests
	The test will include one-to-one verification tests and one-to-many identification tests
	6
	6

	 [MBE 2010, IREX III] for still 242 images. It will also include one-to-many identification tests for video sequences. As described in
	Table 2
	Table 2

	, the test is 243 intended to represent: 244

	― Close-to-operational use of face recognition technologies in identification applications in which the enrolled dataset 245 could contain images from up to three million persons. 246
	― Close-to-operational use of face recognition technologies in identification applications in which the enrolled dataset 245 could contain images from up to three million persons. 246
	― Close-to-operational use of face recognition technologies in identification applications in which the enrolled dataset 245 could contain images from up to three million persons. 246

	― Verification scenarios in which still images are compared. 247
	― Verification scenarios in which still images are compared. 247

	― Pose, age, gender, and expression neutrality estimation. 248
	― Pose, age, gender, and expression neutrality estimation. 248

	― Identification applications for face recognition in video 249
	― Identification applications for face recognition in video 249

	Table 2 – Subtests supported under the FRVT 2012 Still Image activity 250
	#
	#
	#
	#

	TD
	Span
	

	TD
	Span
	A

	TD
	Span
	B

	TD
	Span
	C

	TD
	Span
	D

	TD
	Span
	V

	Span

	1.
	1.
	1.

	Aspect
	Aspect

	1:1 verification
	1:1 verification

	1:1 verification with enrollment database – Not Supported
	1:1 verification with enrollment database – Not Supported

	1:N identification
	1:N identification

	Pose Conformance, Age, Gender, and Expression neutrality Estimation
	Pose Conformance, Age, Gender, and Expression neutrality Estimation

	Video-video, Still-video, video-still
	Video-video, Still-video, video-still

	Span

	2.
	2.
	2.

	Enrollment dataset
	Enrollment dataset

	None, application to single images
	None, application to single images

	In MBE 2010, this class supported 1:1 verification with an enrollment database.
	In MBE 2010, this class supported 1:1 verification with an enrollment database.
	
	This will not be supported for FRVT 2012.

	N enrolled subjects
	N enrolled subjects

	None, application to single images.
	None, application to single images.
	
	Images will primarily be frontal controlled images (visa + mugshot) for which ground truth is known.

	N enrolled sequences or N enrolled stills
	N enrolled sequences or N enrolled stills

	Span

	3.
	3.
	3.

	Prior NIST test references
	Prior NIST test references

	Equivalent to 1 to 1 matching in [MBE 2010]
	Equivalent to 1 to 1 matching in [MBE 2010]

	Equivalent to 1 to N matching in [MBE 2010]
	Equivalent to 1 to N matching in [MBE 2010]

	
	

	
	

	Span

	4.
	4.
	4.

	Example application
	Example application

	Verification of e-Passport facial image against a live border-crossing image.
	Verification of e-Passport facial image against a live border-crossing image.

	Open-set identification of an image against a central database, e.g. a search of a mugshot against a database of known criminals.
	Open-set identification of an image against a central database, e.g. a search of a mugshot against a database of known criminals.

	For sex and age: Digital signage for marketing.
	For sex and age: Digital signage for marketing.
	
	For pose and expression: Conformance to ISO/IEC 19794-5 requirements.

	Open-set identification against a central database, e.g. a search of a wanted criminal through a live-video surveillance system at an airport who may attempt to flee the country
	Open-set identification against a central database, e.g. a search of a wanted criminal through a live-video surveillance system at an airport who may attempt to flee the country

	Span

	5.
	5.
	5.

	Score or feature space normalization support
	Score or feature space normalization support

	Vendor uses normalization techniques over SDK- internal datasets
	Vendor uses normalization techniques over SDK- internal datasets

	Any score or feature based statistical normalization techniques-are applied against enrollment database
	Any score or feature based statistical normalization techniques-are applied against enrollment database

	
	

	Any score or feature based statistical normalization techniques-are applied against enrollment database
	Any score or feature based statistical normalization techniques-are applied against enrollment database

	Span

	6.
	6.
	6.

	Intended number of subjects
	Intended number of subjects

	Up to O(105)
	Up to O(105)

	Up to O(107) but dependence on N will be computed. From O(102) upwards.
	Up to O(107) but dependence on N will be computed. From O(102) upwards.

	Expected O(103)
	Expected O(103)

	Expected O(103)
	Expected O(103)

	Span

	7.
	7.
	7.

	Number of images per individual
	Number of images per individual

	Variable, see section
	Variable, see section
	Variable, see section
	1.12
	1.12

	.

	Variable, see section
	Variable, see section
	Variable, see section
	1.12
	1.12

	.

	1
	1

	Variable
	Variable

	Span

	 251
	NOTE 1: The vast majority of images are color. The API supports both color and greyscale images. 252
	NOTE 2: For the operational datasets, it is not known what processing was applied to the images before they were 253 archived. So, for example, we do not know whether gamma correction was applied. NIST considers that best practice, 254 standards and operational activity in the area of image preparation remains weak. 255
	1.9. Image source labels 256
	NIST may mix images from different source in an enrollment set. For example, NIST could combine N/2 mugshot images 257 and N/2 visa images into a single enrollment dataset. For this reason, in the data structure defined in clause
	NIST may mix images from different source in an enrollment set. For example, NIST could combine N/2 mugshot images 257 and N/2 visa images into a single enrollment dataset. For this reason, in the data structure defined in clause
	2.3.3
	2.3.3

	, each 258 image is accompanied by a "label" which identifies the set-membership images. Legal values for labels are in clause
	2.3.2
	2.3.2

	. 259

	1.10. Options for participation 260
	The following rules apply: 261
	― A participant must properly follow, complete and submit the Annex A Participation Agreement. This must be done 262 once, not before July 18, 2012. It is not necessary to do this for each submitted SDK. 263
	― A participant must properly follow, complete and submit the Annex A Participation Agreement. This must be done 262 once, not before July 18, 2012. It is not necessary to do this for each submitted SDK. 263
	― A participant must properly follow, complete and submit the Annex A Participation Agreement. This must be done 262 once, not before July 18, 2012. It is not necessary to do this for each submitted SDK. 263

	― All participants shall submit at least one class A SDK, or one class D SDK, or one class V SDK. 264
	― All participants shall submit at least one class A SDK, or one class D SDK, or one class V SDK. 264

	― A class A SDK shall be sent before, or concurrently with, any class C SDK. 265
	― A class A SDK shall be sent before, or concurrently with, any class C SDK. 265

	― A class D SDK may be submitted without submission of a class A SDK. 266
	― A class D SDK may be submitted without submission of a class A SDK. 266

	― A class V SDK may be submitted without submission of a class A SDK. 267
	― A class V SDK may be submitted without submission of a class A SDK. 267

	― Any SDK shall implement exactly one of the functionalities defined in
	― Any SDK shall implement exactly one of the functionalities defined in
	― Any SDK shall implement exactly one of the functionalities defined in
	Table 3
	Table 3

	. So, for example, the 1:1 functionality 268 of a class A SDK shall not be merged with that of a class C SDK. 269

	Table 3 – FRVT 2012 classes of participation 270
	Table
	TR
	TD
	Span
	Function

	TD
	Span
	1:1 verification

	TD
	Span
	1:1 verification with enrollment database

	TD
	Span
	1:N identification

	TD
	Span
	Pose conformance, Age, Gender, and Expression neutrality estimation

	TD
	Span
	Frontal Reconstruction

	TD
	Span
	Video

	Span

	Class label
	Class label
	Class label

	A
	A

	B
	B

	C [CP & CN,
	C [CP & CN,
	see
	see
	Table 6
	Table 6

]

	D
	D

	TD
	Span
	F

	V
	V

	Span

	Co-requisite class SDK
	Co-requisite class SDK
	Co-requisite class SDK

	None
	None

	Not Supported
	Not Supported

	A
	A

	None
	None

	TD
	Span
	None

	None
	None

	Span

	API requirements
	API requirements
	API requirements

	3.1
	3.1
	3.1
	3.1

	 +
	3.2
	3.2

	 +
	3.3
	3.3

	

	Not Supported
	Not Supported

	3.1
	3.1
	3.1
	3.1

	 +
	3.2
	3.2

	 +
	3.5
	3.5

	

	3.1
	3.1
	3.1
	3.1

	 +
	3.6
	3.6

	

	TD
	Span
	P
	Span
	3.3
	3.3

	

	3.7
	3.7
	3.7
	3.7

	

	Span

	Class A might be preferred by academic institutions because the API is simple, supporting just the elemental hypothesis 271 test: "are the images from the same person or not?" 272
	 273
	 274
	 275
	 276
	 277
	 278
	 279
	 280
	 281
	1.11. Number and schedule of submissions 282
	The test is conducted in three phases, as scheduled on page
	The test is conducted in three phases, as scheduled on page
	2
	2

	. The maximum total (i.e. cumulative) number of 283 submissions is regulated in
	Table 4
	Table 4

	. 284

	Table 4 – Cumulative total number of algorithms, by class 285
	Table
	TR
	TD
	Span
	#

	TD
	Span
	Phase 1

	TD
	Span
	Total over Phases 1 + 2

	TD
	Span
	Total over Phases 1 + 2 + 3

	Span

	Cumulative total number of class A submissions
	Cumulative total number of class A submissions
	Cumulative total number of class A submissions

	2
	2

	3
	3

	4 if at least 1 was successfully executed by end Phase 2
	4 if at least 1 was successfully executed by end Phase 2
	2 if zero had been successfully executed by end Phase 2

	Span

	Cumulative total number of class C submissions
	Cumulative total number of class C submissions
	Cumulative total number of class C submissions

	3 = 2CN + 1CP see sec.
	3 = 2CN + 1CP see sec.
	3 = 2CN + 1CP see sec.
	1.16
	1.16

	

	4 = 3CN + 1CP (see sec
	4 = 3CN + 1CP (see sec
	4 = 3CN + 1CP (see sec
	1.16
	1.16

)

	7 = 5CN + 2CP if at least 1 CN or CP was successfully executed by end Phase 2
	7 = 5CN + 2CP if at least 1 CN or CP was successfully executed by end Phase 2
	3 = 2CN + 1CP if 0 had been successfully executed by end Phase 2

	Span

	Cumulative total number of class D submissions
	Cumulative total number of class D submissions
	Cumulative total number of class D submissions

	1
	1

	2
	2

	3
	3

	Span

	TR
	TD
	Span
	Cumulative total number of class F submissions

	TD
	Span
	1

	TD
	Span
	1

	TD
	Span
	2

	Span

	Cumulative total number of class V submissions
	Cumulative total number of class V submissions
	Cumulative total number of class V submissions

	2
	2

	2
	2

	4 if at least 1 was successfully executed by end Phase 2
	4 if at least 1 was successfully executed by end Phase 2
	2 if zero had been successfully executed by end Phase 2

	Span

	The numbers above may be increased as resources allow. 286
	NIST cannot conduct surveys over runtime parameters - NIST must limit the extent to which participants are able to train 287 on the test data. 288
	1.12. Use of multiple images per person 289
	Some of the proposed datasets includes K > 2 images per person for some persons. This affords the possibility to model a 290 recognition scenario in which a new image of a person is compared against all prior images2. Use of multiple images per 291 person has been shown to elevate accuracy over a single image [FRVT2002b, MBE 2010]. 292
	2 For example, if a banned driver applies for a driving license under a new name, and the local driving license authority maintains a driving license system in which all previous driving license photographs are enrolled, then the fraudulent application might be detected if the new image matched any of the prior images. This example implies one (elemental) method of using the image history.
	2 For example, if a banned driver applies for a driving license under a new name, and the local driving license authority maintains a driving license system in which all previous driving license photographs are enrolled, then the fraudulent application might be detected if the new image matched any of the prior images. This example implies one (elemental) method of using the image history.
	3 To mimic operational reality, NIST intends to maintain a causal relationship between probe and enrolled images. This means that the enrolled images of a person will be acquired before all the images that comprise a probe.
	4 For example, a person might skip applying for a passport for one cycle (letting it expire). In addition, a person might submit identical images (from the same photography session) to consecutive passport applications at five year intervals.

	For still-face recognition in this test, NIST will enroll K  1 images under each identity. Normally the probe will consist of a 293 single image, but NIST may examine the case that it could consist of multiple images. Ordinarily, the probe images will be 294 captured after the enrolled images of a person3. The method by which the face recognition implementation exploits 295 multiple images is not regulated: The test seeks to evaluate developer provided technology for multi-presentation fusion. 296 This
	This document defines a template to be the result of applying feature extraction to a set of K  1 images. That is, a 299 template contains the features extracted from one or more images, not generally just one. An SDK might internally fuse K 300 feature sets into a single representation or maintain them separately - In any case the resulting proprietary template is 301 contained in a contiguous block of data. All verification and identification functions operate on such multi-image 302 templates. 303
	The number of images per person will depend on the application area: 304
	― In civil identity credentialing (e.g. passports, driving licenses) the images will be acquired approximately uniformly 305 over time (e.g. five years for a Canadian passport). While the distribution of dates for such images of a person might 306 be assumed uniform, a number of factors might undermine this assumption4. 307
	― In civil identity credentialing (e.g. passports, driving licenses) the images will be acquired approximately uniformly 305 over time (e.g. five years for a Canadian passport). While the distribution of dates for such images of a person might 306 be assumed uniform, a number of factors might undermine this assumption4. 307
	― In civil identity credentialing (e.g. passports, driving licenses) the images will be acquired approximately uniformly 305 over time (e.g. five years for a Canadian passport). While the distribution of dates for such images of a person might 306 be assumed uniform, a number of factors might undermine this assumption4. 307

	― In criminal applications the number of images would depend on the number of arrests5. The distribution of dates for 308 arrest records for a person (i.e. the recidivism distribution) has been modeled using the exponential distribution, but 309 is recognized to be more complicated. NIST currently estimates that the number of images will never exceed 100. 310
	― In criminal applications the number of images would depend on the number of arrests5. The distribution of dates for 308 arrest records for a person (i.e. the recidivism distribution) has been modeled using the exponential distribution, but 309 is recognized to be more complicated. NIST currently estimates that the number of images will never exceed 100. 310
	― In criminal applications the number of images would depend on the number of arrests5. The distribution of dates for 308 arrest records for a person (i.e. the recidivism distribution) has been modeled using the exponential distribution, but 309 is recognized to be more complicated. NIST currently estimates that the number of images will never exceed 100. 310

	5 A number of distributions have been considered to model recidivism, see ``Random parameter stochastic process models of criminal careers.'' In Blumstein, Cohen, Roth & Visher (Eds.), Criminal Careers and Career Criminals, Washington, D.C.: National Academy of Sciences Press, 1986.
	5 A number of distributions have been considered to model recidivism, see ``Random parameter stochastic process models of criminal careers.'' In Blumstein, Cohen, Roth & Visher (Eds.), Criminal Careers and Career Criminals, Washington, D.C.: National Academy of Sciences Press, 1986.

	1.13. Provision of photograph date information to the implementation 311
	Due to face ageing effects, the utility of any particular enrollment image is dependent on the time elapsed between it and 312 the probe image. In FRVT 2012, NIST intends to use the most recent image as the probe image, and to use one or more of 313 the remaining prior images under a single enrolled identity. 314
	1.14. Core accuracy metrics 315
	Notionally the error rates for verification applications will be false match and false non-match error rates, FMR and FNMR. 316
	For identification testing, the test will target open-universe applications such as benefits-fraud and watch-lists. It will not 317 address the closed-set task because it is operationally uncommon. 318
	While some one-to-many applications operate with purely rank-based metrics, this test will primarily target score-based 319 identification metrics. Metrics are defined in
	While some one-to-many applications operate with purely rank-based metrics, this test will primarily target score-based 319 identification metrics. Metrics are defined in
	Table 5
	Table 5

	. The analysis will survey over various rank and thresholds. Plots of 320 the two error rates, parametric on threshold, will be the primary reporting mechanism. 321

	Table 5 – Summary of accuracy metrics 322
	Table
	TR
	TD
	Span
	

	TD
	Span
	Application

	TD
	Span
	Metric

	Span

	A
	A
	A

	1:1 Verification
	1:1 Verification

	FMR
	FMR

	=
	=

	Fraction of impostor comparisons that produce a similarity score greater than or equal to a threshold value
	Fraction of impostor comparisons that produce a similarity score greater than or equal to a threshold value

	Span

	TR
	FNMR
	FNMR

	=
	=

	Fraction of genuine comparisons that produce a similarity score less than some threshold value
	Fraction of genuine comparisons that produce a similarity score less than some threshold value

	Span

	B
	B
	B

	1:N Identification
	1:N Identification
	Primary identification metric

	FPIR
	FPIR

	=
	=

	Fraction of searches that do not have an enrolled mate for which one or more candidate list entries is at or above a threshold
	Fraction of searches that do not have an enrolled mate for which one or more candidate list entries is at or above a threshold

	Span

	TR
	FNIR
	FNIR

	=
	=

	Fraction of searches that have an enrolled mate for which the mate is below a threshold
	Fraction of searches that have an enrolled mate for which the mate is below a threshold

	Span

	C
	C
	C

	1:N Identification (with rank criteria)
	1:N Identification (with rank criteria)
	Secondary identification metric

	FPIR
	FPIR

	=
	=

	Fraction of searches that do not have an enrolled mate for which one or more candidate list entries is at or above a threshold
	Fraction of searches that do not have an enrolled mate for which one or more candidate list entries is at or above a threshold

	Span

	TR
	FNIR
	FNIR

	=
	=

	Fraction of searches that have an enrolled mate for which the mate is not in the best R ranks and at or above a threshold
	Fraction of searches that have an enrolled mate for which the mate is not in the best R ranks and at or above a threshold

	Span

	 323
	NOTE: The metric on line B is a special case of the metric on line C: the rank condition is relaxed (R  N). Metric B is the 324 primary metric of interest because the target application does not include a rank criterion. 325
	FPIR will be estimated using probe images for which there is no enrolled mate. 326
	NIST will extend the analysis in other areas, with other metrics, and in response to the experimental data and results. 327
	1.15. Generalized accuracy metrics 328
	Under the ISO/IEC 19795-1 biometric testing and reporting standard, a test must account for "failure to acquire" (FTA) 329 and "failure to enroll" (FTE) events (e.g. elective refusal to make a template, or fatal errors). The way these are treated is 330 application-dependent. 331
	For verification, the appropriate metrics reported in FRVT 2012 will be generalized error rates (GFAR, GFRR). When single 332 images are compared, (GFAR,GFRR) and (FMR,FNMR) will be equivalent if no failures are observed. 333
	Similarly for identification, generalized error rates will be reported. 334
	1.16. Reporting minimum cost recognition 335
	This evaluation will investigate the use of cost parameters for application-specific algorithm optimization. The goal is to 336 determine if matching algorithms can be modified to improve performance when the costs of errors are known in 337 advance. The following cost model will be used as an evaluation metric for recognition performance: 338
	 339
	E[Cost(τ)] = (1−PMated)FPIR(τ)CP + PMated FNIR(τ)CN 340
	 341
	where PMated is the a priori probability that the user is mated, CP is the cost of a false positive, CN is the cost of a false 342 negative, FPIR(τ) is the false positive identification rate, FNIR(τ) is the false negative identification rate, and τ is the 343 operating threshold. The model estimates the expected cost per user attempt, which could be a measure of time, 344 workload, money, etc. The participant is tasked with minimizing the cost for a predetermined and fixed set of cost 345 parameters (CP,
	Cost parameters are often chosen to correspond to a specific application. Consider a biometric system that provides bank 347 vault access to specific individuals. One might reasonably set the cost of a false positive to be the monetary value of 348 whatever is in the vault, and the cost of a false negative to a value that reflects the amount of inconvenience incurred 349 from having to open the vault by some other method. Setting PMated to 0.1 assumes that one out of every ten access 350 attempts is by a
	NIST recommends each participant to submit instances of the class C SDK, each corresponding to a different set of cost 352 parameters. These parameters are defined in the table below. Class CP implementations penalize false positives heavily 353 and false negatives lightly. Class CN implementations assign comparatively greater penalty to false negatives. For this 354 class of implementations, suppression of false positives is less important. 355
	Table 6 – Cost parameters for both submission types 356
	Table
	TR
	TD
	Span
	Implementation Class

	TD
	Span
	CN

	TD
	Span
	CP

	TD
	Span
	PMated

	Span

	Class CP
	Class CP
	Class CP

	1
	1

	1000
	1000

	0.6
	0.6

	Span

	Class CN
	Class CN
	Class CN

	250
	250

	1
	1

	0.001
	0.001

	Span

	 357
	Additionally, failures to extract (FTXs) and failures to search (FTSs) will be treated differently depending on the 358 implementation class. 359
	― For Class CP implementations, both will be treated as failures in a positive recognition system (e.g. access control). 360 This is the way NIST has handled FTXs and FTSs in prior evaluations. 361
	― For Class CP implementations, both will be treated as failures in a positive recognition system (e.g. access control). 360 This is the way NIST has handled FTXs and FTSs in prior evaluations. 361
	― For Class CP implementations, both will be treated as failures in a positive recognition system (e.g. access control). 360 This is the way NIST has handled FTXs and FTSs in prior evaluations. 361

	― For Class CN implementations, FTXs and FTSs will be treated like failures in a negative recognition system (e.g. a 362 watchlist). Failures in a negative recognition system increase the FPIR when they occur for non-mated searches, but 363 do not increase the FNIR when they occur for mated searches. This differs from the way NIST has traditionally 364 handled these types of failure. 365
	― For Class CN implementations, FTXs and FTSs will be treated like failures in a negative recognition system (e.g. a 362 watchlist). Failures in a negative recognition system increase the FPIR when they occur for non-mated searches, but 363 do not increase the FNIR when they occur for mated searches. This differs from the way NIST has traditionally 364 handled these types of failure. 365

	The motivation for participants to submit two implementations is to see if it is possible to change the shape of a DET to 366 reduce cost for a specific set of cost parameters.
	The motivation for participants to submit two implementations is to see if it is possible to change the shape of a DET to 366 reduce cost for a specific set of cost parameters.
	Figure 2
	Figure 2

	 plots standard DET curves for two identification algorithms. 367 The two curves cross one another, making it impossible to state which is more accurate in any absolute sense. Since class 368 CN implementations are penalized heavily for false negatives, and only lightly for false positives, both algorithms are 369 expected to achieve their lowest cost toward the right end of the figure, where the blue curve performs better. 370 Conversely, class CP implementations are penalized heavily for false positive

	 374
	 375
	Figure 2 – Notional DETs targeted by two different cost models 376
	1.17. Reporting template size 377
	Because template size is influential on storage requirements and computational efficiency, this API supports 378 measurement of template size. NIST will report statistics on the actual sizes of templates produced by face recognition 379 implementations submitted to FRVT 2012. NIST may report statistics on runtime memory usage. Template sizes were 380 reported in the IREX III test6 and the MBE-STILL 2010 test7. 381
	Footnote
	Figure
	6 See the IREX III test report: NIST Interagency Report 7836, linked from
	6 See the IREX III test report: NIST Interagency Report 7836, linked from
	http://iris.nist.gov/irex
	http://iris.nist.gov/irex

	

	7 See the MBE-STILL 2010 test report, NIST Interagency Report 7709, linked from
	7 See the MBE-STILL 2010 test report, NIST Interagency Report 7709, linked from
	http://face.nist.gov/mbe
	http://face.nist.gov/mbe

	

	8 cat /proc/cpuinfo returns fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm 3wext 3dnow constant_tsc nonstop_tsc pni cx16 popcnt lahf_lm cmp_legacy svm extapic cr8_legacy altmovcr8 abm sse4a misalignsse 3dnowprefetch osvw

	1.18. Reporting computational efficiency 382
	As with other tests, NIST will compute and report recognition accuracy. In addition, NIST will also report timing statistics 383 for all core functions of the submitted SDK implementations. This includes feature extraction, 1:1 and 1:N recognition, 384 and age, gender, pose frontality and expression neutrality estimation. For an example of how efficiency can be reported, 385 see the final report of the IREX III test
	As with other tests, NIST will compute and report recognition accuracy. In addition, NIST will also report timing statistics 383 for all core functions of the submitted SDK implementations. This includes feature extraction, 1:1 and 1:N recognition, 384 and age, gender, pose frontality and expression neutrality estimation. For an example of how efficiency can be reported, 385 see the final report of the IREX III test
	6
	6

	 and the MBE-STILL 2010 test
	7
	7

	. 386

	Note that face recognition applications optimized for pipelined 1:N searches may not demonstrate their efficiency in pure 387 1:1 comparison applications. 388
	1.19. Exploring the accuracy-speed trade-space 389
	NIST will explore the accuracy vs. speed tradeoff for face recognition algorithms running on a fixed platform. NIST will 390 report both accuracy and speed of the implementations tested. While NIST cannot force submission of "fast vs. slow" 391 variants, participants may choose to submit variants on some other axis (e.g. "experimental vs. mature") 392 implementations. NIST encourages “fast-less-accurate vs. slow-more-accurate” with a factor of three between the speed 393 of the fast and slow versions. 39
	1.20. Hardware specification 395
	NIST intends to support high performance by specifying the runtime hardware beforehand. There are several types of 396 computer blades that may be used in the testing. The blades are labeled as Dell M905, M910, M605, and M610. The 397 following list gives some details about the hardware of each blade type: 398
	 Dell M605 - Dual Intel Xeon E5405 2 GHz CPUs (4 cores each) 399
	 Dell M605 - Dual Intel Xeon E5405 2 GHz CPUs (4 cores each) 399
	 Dell M605 - Dual Intel Xeon E5405 2 GHz CPUs (4 cores each) 399

	 Dell M610 - Dual Intel Xeon X5680 3.3 GHz CPUs (6 cores each) 400
	 Dell M610 - Dual Intel Xeon X5680 3.3 GHz CPUs (6 cores each) 400

	 Dell M905 - Quad AMD Opteron 8376HE 2 GHz CPUs8 (4 cores each) 401
	 Dell M905 - Quad AMD Opteron 8376HE 2 GHz CPUs8 (4 cores each) 401

	 Dell M910 - Dual Intel Xeon X7560 2.3 GHz CPUs (8 cores each) 402
	 Dell M910 - Dual Intel Xeon X7560 2.3 GHz CPUs (8 cores each) 402
	 Dell M910 - Dual Intel Xeon X7560 2.3 GHz CPUs (8 cores each) 402

	Each CPU has 512K cache. The bus runs at 667 Mhz. The main memory is 192 GB Memory as 24 8GB modules. We 403 anticipate that 16 processes can be run without time slicing. 404
	NIST is requiring use of 64 bit implementations throughout. This will support large memory allocation to support 1:N 405 identification task with image counts in the millions. For still images, if all templates were to be held in memory, the 406 192GB capacity implies a limit of ~19KB per template, for a 10 million image enrollment. For video, given the data 407 expectations and the occurrence of faces in the imagery, we anticipate the developers will have sufficient memory for 408 video templates. Note
	Some of the section
	Some of the section
	3
	3

	 API calls allow the implementation to write persistent data to hard disk. The amount of data shall 411 not exceed 200 kilobytes per enrolled image. NIST will respond to prospective participants' questions on the hardware, 412 by amending this section. 413

	1.21. Operating system, compilation, and linking environment 414
	The operating system that the submitted implementations shall run on will be released as a downloadable file accessible 415 from http://nigos.nist.gov:8080/evaluations/ which is the 64-bit version of CentOS 6.2 running Linux kernel 2.6.32-220. 416
	For this test, Windows machines will not be used. Windows-compiled libraries are not permitted. All software must run 417 under Linux. 418
	NIST will link the provided library file(s) to our C++ language test drivers. Participants are required to provide their library 419 in a format that is linkable using g++ version 4.4.6. The standard libraries are: 420
	/usr/lib64/libstdc++.so.6.0.13 lib64/libc.so.6 -> libc-2.12.so lib64/libm.so.6 -> libm-2.12.so 421
	A typical link line might be 422
	g++ -I. -Wall -m64 -o frvt12test frvt12test.cpp -L. –lfrvt2012_Enron_A_07 423
	The Standard C++ library should be used for development of the SDKs. The prototypes from the still image API portion of 424 this document will be written to a file "frvt2012.h" which will be included via 425
	#include <frvt2012.h>
	#include <frvt2012.h>
	#include <frvt2012.h>
	#include <frvt2012.h>

	Span

	The prototypes from the video API portion of this document will be written to a file "frvt2012Video.h" which will be 426 included via 427
	#include <frvt2012Video.h>
	#include <frvt2012Video.h>
	#include <frvt2012Video.h>
	#include <frvt2012Video.h>

	Span

	The header files will be made available to implementers at
	The header files will be made available to implementers at
	http://nigos.nist.gov:8080/frvt2012/
	http://nigos.nist.gov:8080/frvt2012/

	. 428

	NIST will handle all input of images via the JPEG and PNG libraries, sourced, respectively from
	NIST will handle all input of images via the JPEG and PNG libraries, sourced, respectively from
	http://www.ijg.org/
	http://www.ijg.org/

	 and see 429
	http://libpng.org
	http://libpng.org

	. 430

	All compilation and testing will be performed on x86 platforms. Thus, participants are strongly advised to verify library-431 level compatibility with g++ (on an equivalent platform) prior to submitting their software to NIST to avoid linkage 432 problems later on (e.g. symbol name and calling convention mismatches, incorrect binary file formats, etc.). 433
	Dependencies on external dynamic/shared libraries such as compiler-specific development environment libraries are 434 discouraged. If absolutely necessary, external libraries must be provided to NIST upon prior approval by the Test Liaison. 435
	1.22. Software and Documentation 436
	1.22.1. SDK Library and Platform Requirements 437
	Participants shall provide NIST with binary code only (i.e. no source code). Header files (“.h”) are allowed, but these shall 438 not contain intellectual property of the company nor any material that is otherwise proprietary. It is preferred that the 439 SDK be submitted in the form of a single static library file. However, dynamically linked shared library files are permitted. 440
	The core library shall be named according to
	The core library shall be named according to
	Table 7
	Table 7

	. Additional shared object library files may be submitted that support 441 this “core” library file (i.e. the “core” library file may have dependencies implemented in these other libraries). 442

	Intel Integrated Performance Primitives (IPP) libraries are permitted if they are delivered as a part of the developer-443 supplied library package. It is the provider’s responsibility to establish proper licensing of all libraries. The use of IPP 444 libraries shall not inhibit the SDK’s ability to run on CPUs that do not support IPP. Please take note that some IPP 445 functions are multithreaded and threaded implementations may complicate comparative timing. 446
	Access to any GPUs is not permitted. 447
	Table 7 – Implementation library filename convention 448
	Table
	TR
	TD
	Span
	Form

	libFRVT2012_provider_class_sequence.ending
	libFRVT2012_provider_class_sequence.ending

	Span

	TR
	TD
	Span
	Underscore delimited parts of the filename

	libFRVT2012
	libFRVT2012

	provider
	provider

	class
	class

	sequence
	sequence

	ending
	ending

	Span

	TR
	TD
	Span
	Description

	First part of the name, required to be this.
	First part of the name, required to be this.

	Single word name of the main provider EXAMPLE: Acme
	Single word name of the main provider EXAMPLE: Acme

	Function classes supported in
	Function classes supported in
	Function classes supported in
	Table 3
	Table 3

	.

	EXAMPLE: C

	A two digit decimal identifier to start at 00 and increment by 1 every time any SDK is sent to NIST. EXAMPLE: 07
	A two digit decimal identifier to start at 00 and increment by 1 every time any SDK is sent to NIST. EXAMPLE: 07

	Either .so or .a
	Either .so or .a

	Span

	TR
	TD
	Span
	Example

	libFRVT2012_Acme_C_07.a
	libFRVT2012_Acme_C_07.a

	Span

	 449
	NIST will report the size of the supplied libraries. 450
	1.22.2. Configuration and developer-defined data 451
	The implementation under test may be supplied with configuration files and supporting data files. The total size of the 452 SDK, that is all libraries, include files, data files and initialization files shall be less than or equal to 1 073 741 824 bytes = 453 10243 bytes. 454
	NIST will report the size of the supplied configuration files. 455
	1.22.3. Installation and Usage 456
	The SDK must install easily (i.e. one installation step with no participant interaction required) to be tested, and shall be 457 executable on any number of machines without requiring additional machine-specific license control procedures or 458 activation. 459
	The SDK shall be installable using simple file copy methods. It shall not require the use of a separate installation program. 460
	The SDK shall neither implement nor enforce any usage controls or limits based on licenses, number of executions, 461 presence of temporary files, etc. The SDKs shall remain operable until April 30 2013. 462
	Hardware (e.g. USB) activation dongles are not acceptable. 463
	1.22.4. Hard disk space 464
	FRVT 2012 participants should inform NIST if their implementations require more than 100K of persistent storage, per 465 enrolled image on average. 466
	1.22.5. Documentation 467
	Participants shall provide complete documentation of the SDK and detail any additional functionality or behavior beyond 468 that specified here. The documentation must define all (non-zero) developer-defined error or warning return codes. 469
	1.22.6. Modes of operation 470
	Individual SDKs provided shall not include multiple “modes” of operation, or algorithm variations. No switches or options 471 will be tolerated within one library. For example, the use of two different “coders” by a feature extractor must be split 472 across two separate SDK libraries, and two separate submissions. 473
	1.22.7. Watermarking of images 474
	The SDK functions shall not watermark or otherwise steganographically mark up the images. 475
	1.23. Runtime behavior 476
	1.23.1. Interactive behavior 477
	The SDK will be tested in non-interactive “batch” mode (i.e. without terminal support). Thus, the submitted library shall 478 not use any interactive functions such as graphical user interface (GUI) calls, or any other calls which require terminal 479 interaction e.g. reads from “standard input”. 480
	1.23.2. Error codes and status messages 481
	The SDK will be tested in non-interactive “batch” mode, without terminal support. Thus, the submitted library shall run 482 quietly, i.e. it should not write messages to "standard error" and shall not write to “standard output”. An SDK may write 483 debugging messages to a log file - the name of the file must be declared in documentation. 484
	1.23.3. Exception Handling 485
	The application should include error/exception handling so that in the case of a fatal error, the return code is still 486 provided to the calling application. 487
	1.23.4. External communication 488
	Processes running on NIST hosts shall not side-effect the runtime environment in any manner, except for memory 489 allocation and release. Implementations shall not write any data to external resource (e.g. server, file, connection, or 490 other process), nor read from such. If detected, NIST will take appropriate steps, including but not limited to, cessation of 491 evaluation of all implementations from the supplier, notification to the provider, and documentation of the activity in 492 published reports
	1.23.5. Stateless behavior 494
	All components in this test shall be stateless, except as noted. This applies to face detection, feature extraction and 495 matching. Thus, all functions should give identical output, for a given input, independent of the runtime history. NIST 496 will institute appropriate tests to detect stateful behavior. If detected, NIST will take appropriate steps, including but not 497 limited to, cessation of evaluation of all implementations from the supplier, notification to the provider, and 498 documentatio
	1.24. Threaded computations 500
	Table 8
	Table 8
	Table 8

	 shows the limits on the numbers of threads a face recognition implementation may use. In many cases threading 501 is not permitted (i.e. T=1) because NIST will parallelize the test by dividing the workload across many cores and many 502 machines. For the functions where we allow multi-threading, e.g. in the 1:N test, NIST requires the provider to disclose 503 the maximum number of threads to us. If that number is T, NIST will run the largest integer number of processes, P, in 504 parallel such that TP 

	Table 8 – Number of threads allowed for each application 506
	
	
	
	

	A
	A

	C
	C

	D
	D

	F
	F

	V
	V

	Span

	TR
	TD
	Span
	Function

	TD
	Span
	1:1 verification

	TD
	Span
	1:N identification

	TD
	Span
	Pose conformance, Age, Gender, Expression neutrality estimation

	TD
	Span
	Frontal Reconstruction

	TD
	Span
	Video

	Span

	Feature extraction
	Feature extraction
	Feature extraction
	Feature extraction

	1
	1

	1
	1

	1
	1

	TD
	Span
	1

	1
	1

	Span

	Verification
	Verification
	Verification

	1
	1

	NA
	NA

	NA
	NA

	Span

	Finalize enrollment (before 1:1 or 1:N)
	Finalize enrollment (before 1:1 or 1:N)
	Finalize enrollment (before 1:1 or 1:N)

	NA
	NA

	1  T  16
	1  T  16

	1  T  16
	1  T  16

	Span

	Identification
	Identification
	Identification

	NA
	NA

	1  T  16
	1  T  16

	1  T  16
	1  T  16

	Span

	For comparative timing, the IREX III
	For comparative timing, the IREX III
	6
	6

	 test report estimated a factor by which the speed of threaded algorithms would be 507 adjusted. Non-threaded implementations will eliminate the need for NIST to apply such techniques [IREX III]. 508

	NIST will not run an implementation from participant X and an implementation from participant Y on the same machine at 509 the same time. 510
	To expedite testing, for single-threaded libraries, NIST will run up to P = 16 processes concurrently. NIST's calling 511 applications are single-threaded. 512
	1.25. Time limits 513
	The elemental functions of the implementations shall execute under the time constraints of
	The elemental functions of the implementations shall execute under the time constraints of
	Table 9
	Table 9

	. These time limits 514 apply to the function call invocations defined in section
	3
	3

	. Assuming the times are random variables, NIST cannot regulate 515 the maximum value, so the time limits are 90-th percentiles. This means that 90% of all operations should take less than 516 the identified duration. 517

	The time limits apply per image. When K images of a person are present, the time limits shall be increased by a factor K. 518
	Table 9 – Processing time limits in milliseconds 519
	
	
	
	

	A
	A

	C
	C

	D
	D

	TD
	Span
	F

	V
	V

	Span

	TR
	TD
	Span
	Function

	TD
	Span
	1:1 verification without enrollment database

	TD
	Span
	1:N identification

	TD
	Span
	Pose conformance, Age, Gender, and Expression neutrality estimation

	TD
	Span
	Frontal reconstruction

	TD
	Span
	Video

	Span

	Feature extraction enrollment
	Feature extraction enrollment
	Feature extraction enrollment

	1000 (1 core)
	1000 (1 core)
	600x480 pixels

	1000 (1 core)
	1000 (1 core)
	600x480 pixels

	500 (1 core)
	500 (1 core)

	TD
	Span
	800K + 200L for K input images, L outputs

	5 * class C per video frame
	5 * class C per video frame

	Span

	Feature extraction for verification or identification
	Feature extraction for verification or identification
	Feature extraction for verification or identification

	1000 (1 core)
	1000 (1 core)
	600x480 pixels

	1000 (1 core)
	1000 (1 core)
	600x480 pixels

	TD
	Span
	NA

	5 * class C per video frame
	5 * class C per video frame

	Span

	Verification
	Verification
	Verification

	5 (1 core)
	5 (1 core)

	NA
	NA

	TD
	Span
	NA

	NA
	NA

	Span

	Identification of one search image against 1,000,000 single-image MULTIFACE records.
	Identification of one search image against 1,000,000 single-image MULTIFACE records.
	Identification of one search image against 1,000,000 single-image MULTIFACE records.

	NA
	NA

	10000 (16 cores)
	10000 (16 cores)
	or 160000 (1 core)

	TD
	Span
	NA

	NA
	NA

	Span

	For video: the multiple of 5 is a notional average of the number of persons expected in any given frame. This figure is 520 highly unreliable for any given sample. 521
	In addition the enrollment finalization procedure is subject to a time limit, as follows. For an enrollment of one million 522 single-image MULTIFACEs, the total time shall be less than 7200 seconds. The implementation can use up to 16 cores. 523 This limit includes disk IO time. 524
	1.26. Test datasets 525
	This section is under development. The data has, in some cases, been estimated from initial small partitions. The 526 completion of this section depends on further work. The information is subject to change. We intend to update this 527 section as fully as possible. 528
	NIST is likely to use other datasets, in addition. Information for video data is given in section
	NIST is likely to use other datasets, in addition. Information for video data is given in section
	3.7
	3.7

	. 529

	Table 10 – Main image corpora (others will be used) 530
	Table
	TR
	TD
	Span
	

	TD
	Span
	Laboratory

	TD
	Span
	FRVT 2002+2006 / HCINT

	TD
	Span
	New Dataset

	TD
	Span
	Multiple Encounter Database (MEDS)

	Span

	Collection, environment
	Collection, environment
	Collection, environment

	See FRVT 2006 Report, Phillips
	See FRVT 2006 Report, Phillips

	Visa application process
	Visa application process

	Visa application process
	Visa application process

	Law enforcement booking
	Law enforcement booking

	Span

	Live scan, Paper
	Live scan, Paper
	Live scan, Paper

	Live
	Live

	Live
	Live

	Live, few paper
	Live, few paper

	Span

	Documentation
	Documentation
	Documentation
	Documentation

	et al.
	et al.
	NIST IR 7408.

	See NIST IR 6965 [FRVT2002]
	See NIST IR 6965 [FRVT2002]

	New
	New

	See NIST Special Database 32 Volume 1 (MEDS-I) and Volume 2 (MEDS-II)9.
	See NIST Special Database 32 Volume 1 (MEDS-I) and Volume 2 (MEDS-II)9.

	Span

	Compression from [MBE 2010]10
	Compression from [MBE 2010]10
	Compression from [MBE 2010]10

	JPEG mean size 9467 bytes. See [FRVT2002b]
	JPEG mean size 9467 bytes. See [FRVT2002b]

	JPEG mean size 17 kilobytes
	JPEG mean size 17 kilobytes

	JPEG ~ 20:1
	JPEG ~ 20:1

	Span

	Maximum image size
	Maximum image size
	Maximum image size

	300 x 252
	300 x 252

	300 x 252
	300 x 252

	Mixed, some are 640x480 others are 768x960, some are smaller.
	Mixed, some are 640x480 others are 768x960, some are smaller.

	Span

	Minimum image size
	Minimum image size
	Minimum image size

	300 x 252
	300 x 252

	300 x 252
	300 x 252

	
	

	Span

	Eye to eye distance
	Eye to eye distance
	Eye to eye distance

	Median = 71 pixels
	Median = 71 pixels

	Median = 71 pixels
	Median = 71 pixels

	mean=156, sd=46
	mean=156, sd=46

	Span

	Frontal
	Frontal
	Frontal

	Yes, well controlled
	Yes, well controlled

	
	

	Moderately well controlled
	Moderately well controlled
	Profile images will be included and labeled as such.

	Span

	Full frontal geometry
	Full frontal geometry
	Full frontal geometry

	
	

	Yes, in most cases. Faces may have small background than ISO FF requires.
	Yes, in most cases. Faces may have small background than ISO FF requires.

	Yes, in most cases. Faces may have small background than ISO FF requires.
	Yes, in most cases. Faces may have small background than ISO FF requires.

	Mostly not. Varying amounts of the torso are visible.
	Mostly not. Varying amounts of the torso are visible.

	Span

	Intended use
	Intended use
	Intended use

	1:1
	1:1

	1:1 and 1:N
	1:1 and 1:N

	
	

	1:N
	1:N

	Span

	Age
	Age
	Age

	University population
	University population

	18 years and above
	18 years and above

	0 years and above
	0 years and above

	18 years and above
	18 years and above

	Span

	9 NIST Special Database 32, Volume 1 and Volume 2 are available at:
	9 NIST Special Database 32, Volume 1 and Volume 2 are available at:
	9 NIST Special Database 32, Volume 1 and Volume 2 are available at:
	http://www.nist.gov/itl/iad/ig/sd32.cfm
	http://www.nist.gov/itl/iad/ig/sd32.cfm

	. MEDS-II is an update to MEDS-I and was published in February 2011. Note that NIST does not provide "training" data per se - this differs from the paradigm often used in academic research where a model is trained, tested and validated. Instead FRVT 2012 follows operational reality: software is typically shipped "as is" with a fixed internal representation that is designed to be usable "off the shelf" without training and with only minimal configuration.

	10 Compression effects were studied under MBE 2010 in NIST Interagency Report 7830, linked from
	10 Compression effects were studied under MBE 2010 in NIST Interagency Report 7830, linked from
	http://face.nist.gov/mbe
	http://face.nist.gov/mbe

	

	1.27. Quality analysis 531
	NIST will examine the effectiveness of quality scores in predicting recognition accuracy. A quality score is computed from 532 an input record during feature extraction. The default method of analysis will be the error vs. reject analysis document in 533 P. Grother and E. Tabassi, Performance of biometric quality measures, IEEE Trans. PAMI, 29:531–543, 2007. 534
	The default use-case is that the enrollment image is assumed to be pristine (in conformance with the ISO standard, for 535 example), and quality is being used during a verification or identification transaction to select the image most likely to 536 match the reference image. The reference image is assumed to be unavailable for matching during the collection. 537
	For reasons of operational realism, metadata, such as a date of birth, will not be provided to the quality computation. 538
	Analyses other than for the default case may be conducted. 539
	1.28. Ground truth integrity 540
	Some of the test databases will be derived from operational systems. They may contain ground truth errors in which 541
	― a single person is present under two different identifiers, or 542
	― a single person is present under two different identifiers, or 542
	― a single person is present under two different identifiers, or 542

	― two persons are present under one identifier, or 543
	― two persons are present under one identifier, or 543

	― in which a face is not present in the image. 544
	― in which a face is not present in the image. 544

	If these errors are detected, they will be removed. NIST will use aberrant scores (high impostor scores, low genuine 545 scores) to detect such errors. This process will be imperfect, and residual errors are likely. For comparative testing, 546 identical datasets will be used and the presence of errors should give an additive increment to all error rates. For very 547 accurate implementations this will dominate the error rate. NIST intends to attach appropriate caveats to the accuracy 548 results. Fo
	2. Data structures supporting the API 550
	2.1. Overview 551
	This section describes separate APIs for the core face recognition applications described in section
	This section describes separate APIs for the core face recognition applications described in section
	1.8
	1.8

	. All SDK's 552 submitted to FRVT 2012 shall implement the functions required by the rules for participation listed before
	Table 3
	Table 3

	. 553

	2.2. Requirement 554
	FRVT 2012 participants shall submit an SDK which implements the relevant C++ prototyped interfaces of clause
	FRVT 2012 participants shall submit an SDK which implements the relevant C++ prototyped interfaces of clause
	3
	3

	. C++ 555 was chosen in order to make use of some object-oriented features. 556

	2.3. File formats and data structures 557
	2.3.1. Overview 558
	In this face recognition test, an individual is represented by K  1 two-dimensional facial images, and by subject and 559 image-specific metadata. 560
	2.3.2. Dictionary of terms describing images 561
	Images will be accompanied by one of the labels given in
	Images will be accompanied by one of the labels given in
	Table 11
	Table 11

	. Face recognition implementations submitted to FRVT 562 2012 should tolerate images of any category. 563

	Table 11 – Labels describing types of images 564
	Table
	TR
	TD
	Span
	

	TD
	Span
	Label as C++ string

	TD
	Span
	Primary test area

	TD
	Span
	Meaning

	Span

	1.
	1.
	1.

	"unknown"
	"unknown"

	
	

	Either the label is unknown or unassigned.
	Either the label is unknown or unassigned.

	Span

	2.
	2.
	2.

	"laboratory frontal controlled"
	"laboratory frontal controlled"

	1:1
	1:1

	Frontal with controlled illumination
	Frontal with controlled illumination

	Span

	3.
	3.
	3.

	"laboratory frontal uncontrolled"
	"laboratory frontal uncontrolled"

	1:1
	1:1

	Any illumination
	Any illumination

	Span

	4.
	4.
	4.

	"laboratory nonfrontal controlled"
	"laboratory nonfrontal controlled"

	1:1
	1:1

	NOTE: There is no hyphen "-"
	NOTE: There is no hyphen "-"

	Span

	5.
	5.
	5.

	"laboratory nonfrontal uncontrolled"
	"laboratory nonfrontal uncontrolled"

	1:1
	1:1

	Any illumination, pose is unknown and could be frontal
	Any illumination, pose is unknown and could be frontal

	Span

	6.
	6.
	6.

	"visa"
	"visa"

	1:N
	1:N

	Either a member of the FRVT 2002/2006 HCINT corpus or one of similar properties.
	Either a member of the FRVT 2002/2006 HCINT corpus or one of similar properties.

	Span

	7.
	7.
	7.

	"mugshot"
	"mugshot"

	1:N
	1:N

	Either a member of the Multi-encounter law enforcement database or one of similar properties. The image is nominally frontal - See NIST Special Database 32
	Either a member of the Multi-encounter law enforcement database or one of similar properties. The image is nominally frontal - See NIST Special Database 32
	Either a member of the Multi-encounter law enforcement database or one of similar properties. The image is nominally frontal - See NIST Special Database 32
	9
	9

	.

	Span

	8.
	8.
	8.

	"profile"
	"profile"

	1:N
	1:N

	The image is a profile image taken from the multi-encounter law enforcement database.
	The image is a profile image taken from the multi-encounter law enforcement database.

	Span

	 565
	 NIST intends to use “profile” images in this evaluation. 566
	2.3.3. Data structures for encapsulating multiple images 567
	The standardized formats for facial images are the ISO/IEC 19794-5:2005 and the ANSI/NIST ITL 1-2007 type 10 record. 568 The ISO record can store multiple images of an individual in a standalone binary file. In the ANSI/NIST realm, K images of 569 an individual are usually represented as the concatenation of one Type 1 record + K Type 10 records. The result is usually 570 stored as an EFT file. 571
	An alternative method of representing K images of an individual is to define a structure containing an image filename and 572 metadata fields. Each file contains a standardized image format, e.g. PNG (lossless) or JPEG (lossy). 573
	Table 12 – Structure for a single face 574
	Removed fields: dob, mob, yob, day, month, year, sex, race, height, and weight 575
	Table
	TR
	TD
	Span
	

	TD
	Span
	C++ code fragment

	TD
	Span
	Remarks

	Span

	1.
	1.
	1.

	typedef struct sface
	typedef struct sface

	
	

	Span

	2.
	2.
	2.

	{
	{

	
	

	Span

	3.
	3.
	3.
	3.

	 uint16_t image_width;
	 uint16_t image_width;

	Number of pixels horizontally
	Number of pixels horizontally

	Span

	4.
	4.
	4.

	 uint16_t image_height;
	 uint16_t image_height;

	Number of pixels vertically
	Number of pixels vertically

	Span

	5.
	5.
	5.

	 uint16_t image_depth;
	 uint16_t image_depth;

	Number of bits per pixel. Legal values are 8 and 24.
	Number of bits per pixel. Legal values are 8 and 24.

	Span

	6.
	6.
	6.

	 uint8_t format;
	 uint8_t format;

	Flag indicating native format of the image as supplied to NIST
	Flag indicating native format of the image as supplied to NIST
	0x01 = JPEG (i.e. compressed data)
	0x02 = PNG (i.e. never compressed data)

	Span

	7.
	7.
	7.

	 uint8_t *data;
	 uint8_t *data;

	Pointer to raster scanned data. Either RGB color or intensity.
	Pointer to raster scanned data. Either RGB color or intensity.
	If image_depth == 24 this points to 3WH bytes RGBRGBRGB...
	If image_depth == 8 this points to WH bytes IIIIIII

	Span

	8.
	8.
	8.

	 string description;
	 string description;

	Single description of the image. The allowed values for this string are given in
	Single description of the image. The allowed values for this string are given in
	Single description of the image. The allowed values for this string are given in
	Table 11
	Table 11

	.

	Span

	9.
	9.
	9.

	
	

	
	

	Span

	10.
	10.
	10.

	} ONEFACE;
	} ONEFACE;

	
	

	Span

	Table 13 – Structure for a set of images from a single person 576
	Removed fields: numfaces 577
	Please note the change from struct [MBE 2010] to typedef [FRVT 2012] for this data structure. 578
	Table
	TR
	TD
	Span
	

	TD
	Span
	C++ code fragment

	TD
	Span
	Remarks

	Span

	1.
	1.
	1.

	typedef std::vector<ONEFACE> MULTIFACE;
	typedef std::vector<ONEFACE> MULTIFACE;

	Vector containing F pre-allocated face images of the same person. The number of items stored in the vector is accessible via the vector::size() function.
	Vector containing F pre-allocated face images of the same person. The number of items stored in the vector is accessible via the vector::size() function.

	Span

	2.3.4. Data structure for eye coordinates 579
	SDKs should return eye coordinates of each enrolled facial image. This function, while not necessary for a recognition 580 test, will assist NIST in assuring the correctness of the test database. The primary mode of use will be for NIST to inspect 581 images for which eye coordinates are not returned, or differ between developer SDKs. 582
	The eye coordinates shall follow the placement semantics of the ISO/IEC 19794-5:2005 standard - the geometric 583 midpoints of the endocanthion and exocanthion (see clause 5.6.4 of the ISO standard). 584
	Sense: The label "left" refers to subject's left eye (and similarly for the right eye), such that xright < xleft. 585
	Table 14 – Structure for a pair of eye coordinates 586
	Table
	TR
	TD
	Span
	

	TD
	Span
	C++ code fragment

	TD
	Span
	Remarks

	Span

	1.
	1.
	1.

	typedef struct ohos
	typedef struct ohos

	
	

	Span

	2.
	2.
	2.

	{
	{

	
	

	Span

	
	
	

	 bool failed;
	 bool failed;

	If the eye coordinates have been computed and assigned successfully, this value should be set to false, otherwise true.
	If the eye coordinates have been computed and assigned successfully, this value should be set to false, otherwise true.

	Span

	3.
	3.
	3.

	 int16_t xleft;
	 int16_t xleft;

	X and Y coordinate of the center of the subject's left eye. Out-of-range values (e.g. x < 0 or x >= width) indicate the implementation believes the eye center is outside the image.
	X and Y coordinate of the center of the subject's left eye. Out-of-range values (e.g. x < 0 or x >= width) indicate the implementation believes the eye center is outside the image.

	Span

	4.
	4.
	4.

	 int16_t yleft;
	 int16_t yleft;

	Span

	5.
	5.
	5.

	 int16_t xright;
	 int16_t xright;

	X and Y coordinate of the center of the subject's right eye. Out-of-range values (e.g. x < 0 or x >= width) indicate the implementation believes the eye center is outside the image.
	X and Y coordinate of the center of the subject's right eye. Out-of-range values (e.g. x < 0 or x >= width) indicate the implementation believes the eye center is outside the image.

	Span

	6.
	6.
	6.

	 int16_t yright;
	 int16_t yright;

	Span

	7.
	7.
	7.

	} EYEPAIR;
	} EYEPAIR;

	
	

	Span

	2.3.5. Data type for similarity scores 587
	Identification and verification functions shall return a measure of the similarity between the face data contained in the 588 two templates. The datatype shall be an eight byte double precision real. The legal range is [0, DBL_MAX], where the 589 DBL_MAX constant is larger than practically needed and defined in the <limits.h> include file. Larger values indicate more 590 likelihood that the two samples are from the same person. 591
	Providers are cautioned that algorithms that natively produce few unique values (e.g. integers on [0,127]) will be 592 disadvantaged by the inability to set a threshold precisely, as might be required to attain a false match rate of exactly 593 0.0001, for example. 594
	2.4. File structures for enrolled template collection 595
	An SDK converts a MULTIFACE into a template, using, for example the "convert_MULTIFACE_to_enrollment_template" 596 function of section
	An SDK converts a MULTIFACE into a template, using, for example the "convert_MULTIFACE_to_enrollment_template" 596 function of section
	3.5.3
	3.5.3

	. To support the class C identification functions of
	Table 3
	Table 3

	, NIST will concatenate enrollment 597 templates into a single large file. This file is called the EDB (for enrollment database). The EDB is a simple binary 598 concatenation of proprietary templates. There is no header. There are no delimiters. The EDB may extend to hundreds of 599 gigabytes in length 600

	This file will be accompanied by a manifest; this is an ASCII text file documenting the contents of the EDB. The manifest 601 has the format shown as an example in
	This file will be accompanied by a manifest; this is an ASCII text file documenting the contents of the EDB. The manifest 601 has the format shown as an example in
	Table 15
	Table 15

	. If the EDB contains N templates, the manifest will contain N lines. The 602 fields are space (ASCII decimal 32) delimited. There are three fields, all containing numeric integers. Strictly speaking, the 603 third column is redundant. 604

	Table 15 – Enrollment dataset template manifest 605
	Table
	TR
	TD
	Span
	Field name

	TD
	Span
	Template ID

	TD
	Span
	Template Length

	TD
	Span
	Position of first byte in EDB

	Span

	TR
	TD
	Span
	Datatype required

	TD
	Span
	Unsigned decimal integer

	TD
	Span
	Unsigned decimal integer

	TD
	Span
	Unsigned decimal integer

	Span

	TR
	TD
	Span
	Datatype length required

	TD
	Span
	4 bytes

	TD
	Span
	4 bytes

	TD
	Span
	8 bytes

	Span

	TR
	TD
	Span
	Example lines of a manifest file appear to the right. Lines 1, 2, 3 and N appear.

	90201744
	90201744

	1024
	1024

	0
	0

	Span

	TR
	163232021
	163232021

	1536
	1536

	1024
	1024

	Span

	TR
	7456433
	7456433

	512
	512

	2560
	2560

	Span

	TR
	...
	...

	
	

	
	

	Span

	TR
	183838
	183838

	1024
	1024

	307200000
	307200000

	Span

	 606
	The EDB scheme avoids the file system overhead associated with storing millions of individual files. 607
	2.5. Data structure for result of an identification search 608
	All identification searches shall return a candidate list of a NIST-specified length. The list shall be sorted with the most 609 similar matching entries list first with lowest rank. The data structure shall be that of
	All identification searches shall return a candidate list of a NIST-specified length. The list shall be sorted with the most 609 similar matching entries list first with lowest rank. The data structure shall be that of
	Table 16
	Table 16

	. 610

	Table 16 – Structure for a candidate 611
	Table
	TR
	TD
	Span
	

	TD
	Span
	C++ code fragment

	TD
	Span
	Remarks

	Span

	1.
	1.
	1.

	typedef struct candidate
	typedef struct candidate

	
	

	Span

	2.
	2.
	2.

	{
	{

	
	

	Span

	3.
	3.
	3.

	 bool failed;
	 bool failed;

	If the candidate computation failed, this value is set to true. If the candidate is valid it should be set to false.
	If the candidate computation failed, this value is set to true. If the candidate is valid it should be set to false.

	Span

	4.
	4.
	4.

	 uint32_t template_id;
	 uint32_t template_id;

	The Template ID integer from the enrollment database manifest defined in clause
	The Template ID integer from the enrollment database manifest defined in clause
	The Template ID integer from the enrollment database manifest defined in clause
	0
	0

	.

	Span

	5.
	5.
	5.

	 double similarity_score;
	 double similarity_score;

	Measure of similarity between the identification template and the enrolled candidate. Higher scores mean more likelihood that the samples are of the same person.
	Measure of similarity between the identification template and the enrolled candidate. Higher scores mean more likelihood that the samples are of the same person.
	An algorithm is free to assign any value to a candidate. The distribution of values will have an impact on the appearance of a plot of false-negative and false-positive identification rates.

	Span

	6.
	6.
	6.

	 double probability;
	 double probability;

	An estimate of the probability that the biometric data and candidate belong to different persons, i.e. the probability that a score this large would be observed given that the pair of images are from different people = P(SCORE | IMPOSTOR). This value shall be on [0:1]. This is one minus the integral of the expected impostor distribution from 0 to the similarity score, i.e. the expected false match rate.
	An estimate of the probability that the biometric data and candidate belong to different persons, i.e. the probability that a score this large would be observed given that the pair of images are from different people = P(SCORE | IMPOSTOR). This value shall be on [0:1]. This is one minus the integral of the expected impostor distribution from 0 to the similarity score, i.e. the expected false match rate.

	Span

	7.
	7.
	7.

	} CANDIDATE;
	} CANDIDATE;

	
	

	Span

	 612
	3. API Specification 613
	3.1. Implementation identifiers 614
	All implementations shall support the self-identification function of
	All implementations shall support the self-identification function of
	Table 17
	Table 17

	. This function is required to support internal 615 NIST book-keeping. The version numbers should be distinct between any versions, which offer different algorithmic 616 functionality. 617

	Table 17 – Implementation identifiers 618
	Prototype
	Prototype
	Prototype
	Prototype

	int32_t get_pid(
	int32_t get_pid(

	
	

	Span

	TR
	string &sdk_identifier,
	string &sdk_identifier,

	A developer-assigned ID. This shall be different for each submitted SDK.
	A developer-assigned ID. This shall be different for each submitted SDK.

	Span

	TR
	string &email_address);
	string &email_address);

	Output
	Output

	Span

	Description
	Description
	Description
	

	This function retrieves a point-of-contact email address from the implementation under test.
	This function retrieves a point-of-contact email address from the implementation under test.

	Span

	Output Parameters
	Output Parameters
	Output Parameters

	sdk_identifier
	sdk_identifier

	4-character version ID code as hexadecimal integer. This will be used to identify the SDK in the results reports. This value should be changed every time an SDK is submitted to NIST. The value is developer assigned - format is not regulated by NIST. EXAMPLE: "011A". The value cannot be the empty string.
	4-character version ID code as hexadecimal integer. This will be used to identify the SDK in the results reports. This value should be changed every time an SDK is submitted to NIST. The value is developer assigned - format is not regulated by NIST. EXAMPLE: "011A". The value cannot be the empty string.

	Span

	TR
	email_address
	email_address

	Point of contact email address. The value cannot be the empty string.
	Point of contact email address. The value cannot be the empty string.

	Span

	Return Value
	Return Value
	Return Value

	0
	0

	Success
	Success

	Span

	TR
	Other
	Other

	Vendor-defined failure
	Vendor-defined failure

	Span

	3.2. Maximum template size 619
	All implementations shall report the maximum expected template sizes. These values will be used by the NIST test 620 harnesses to pre-allocate template data. The values should apply to a single image. For a MULTIFACE containing K 621 images, NIST will allocate K times the value returned. The function call is given in
	All implementations shall report the maximum expected template sizes. These values will be used by the NIST test 620 harnesses to pre-allocate template data. The values should apply to a single image. For a MULTIFACE containing K 621 images, NIST will allocate K times the value returned. The function call is given in
	Table 18
	Table 18

	. 622

	Table 18 – Implementation template size requirements 623
	Prototype
	Prototype
	Prototype
	Prototype

	int32_t get_max_template_sizes(
	int32_t get_max_template_sizes(

	
	

	Span

	TR
	uint32_t &max_enrollment_template_size,
	uint32_t &max_enrollment_template_size,

	Output
	Output

	Span

	TR
	uint32_t &max_recognition_template_size)
	uint32_t &max_recognition_template_size)

	Output
	Output

	Span

	Description
	Description
	Description

	This function retrieves the maximum template size needed by the feature extraction routines.
	This function retrieves the maximum template size needed by the feature extraction routines.

	Span

	Output
	Output
	Output
	Parameters

	max_enrollment_template_size
	max_enrollment_template_size

	The maximum possible size, in bytes, of the memory needed to store feature data from a single enrollment image.
	The maximum possible size, in bytes, of the memory needed to store feature data from a single enrollment image.

	Span

	TR
	max_recognition_template_size
	max_recognition_template_size

	The maximum possible size, in bytes, of the memory needed to store feature data from a single verification or identification image.
	The maximum possible size, in bytes, of the memory needed to store feature data from a single verification or identification image.

	Span

	Return Value
	Return Value
	Return Value

	0
	0

	Success
	Success

	Span

	TR
	Other
	Other

	Vendor-defined failure
	Vendor-defined failure

	Span

	3.3. Frontal reconstruction 624
	3.3.1. Overview 625
	P
	Span
	The 1:1 testing will proceed in three phases: preparation of enrollment templates; preparation of v
	erification templates;
	626
	
	and matching. These are detailed in
	Table 22
	Table 22

	. 627

	Table 19 – Functional summary of the 1:1 application 628
	Table
	TR
	TD
	Span
	Phase

	TD
	Span
	#

	TD
	Span
	Name

	TD
	Span
	Description

	TD
	Span
	Performance Metrics to be reported by NIST

	Span

	Initialization
	Initialization
	Initialization

	I1
	I1

	Initialization
	Initialization

	Function to allow implementation to read configuration data, if any.
	Function to allow implementation to read configuration data, if any.

	None
	None

	Span

	Reconstruction
	Reconstruction
	Reconstruction

	R1
	R1

	Serial enrollment
	Serial enrollment

	Given K  1 input images of an individual, the implementation will create L output images.
	Given K  1 input images of an individual, the implementation will create L output images.

	Statistics of the time needed to produce a template.
	Statistics of the time needed to produce a template.

	Span

	Table
	TR
	
	
	NIST requires that these operations may be executed in a loop in a single process invocation, or as a sequence of independent process invocations, or a mixture of both.

	
	
	Utility to other face recognition engines, typically class C.
	

	Span

	3.3.2. API 629
	3.3.2.1. Initialization 630
	P
	Span
	Before any template generation or matching calls are made, the NIST test harness will make a call to the initialization of
	631
	
	the function in
	Table 23
	Table 23

	. 632

	Table 20 – SDK initialization 633
	Prototype
	Prototype
	Prototype
	Prototype

	int32_t initialize_frontal_recon(
	int32_t initialize_frontal_recon(

	
	

	Span

	TR
	const string &configuration_location,
	const string &configuration_location,

	Input
	Input

	Span

	TR
	const std::vector<string> &descriptions
	const std::vector<string> &descriptions

	Input
	Input

	Span

	TR
	uint32_t &Lmax);
	uint32_t &Lmax);

	Output
	Output

	Span

	Description
	Description
	Description
	

	This function initializes the SDK under test. It will be called by the NIST application before any reconstruction calls. The SDK under test should set all parameters.
	This function initializes the SDK under test. It will be called by the NIST application before any reconstruction calls. The SDK under test should set all parameters.

	Span

	Input Parameters
	Input Parameters
	Input Parameters

	configuration_location
	configuration_location

	A read-only directory containing any developer-supplied configuration parameters or run-time data files. The name of this directory is assigned by NIST. It is not hardwired by the provider. The names of the files here are hardwired in the SDK and are unrestricted.
	A read-only directory containing any developer-supplied configuration parameters or run-time data files. The name of this directory is assigned by NIST. It is not hardwired by the provider. The names of the files here are hardwired in the SDK and are unrestricted.

	Span

	TR
	descriptions
	descriptions

	A lexicon of labels one of which will be assigned to each image. EXAMPLE: The descriptions could be {"mugshot", "visa", "frame-from-video"}.
	A lexicon of labels one of which will be assigned to each image. EXAMPLE: The descriptions could be {"mugshot", "visa", "frame-from-video"}.

	Span

	Output
	Output
	Output
	Parameters

	Lmax
	Lmax

	The maximum number of images that the frontal reconstruction algorithms will output –see below.
	The maximum number of images that the frontal reconstruction algorithms will output –see below.

	Span

	Return Value
	Return Value
	Return Value

	0
	0

	Success
	Success

	Span

	TR
	2
	2

	Vendor provided configuration files are not readable in the indicated location.
	Vendor provided configuration files are not readable in the indicated location.

	Span

	TR
	8
	8

	The descriptions are unexpected, or unusable.
	The descriptions are unexpected, or unusable.

	Span

	TR
	Other
	Other

	Vendor-defined failure
	Vendor-defined failure

	Span

	3.3.2.2. Frontal reconstruction 634
	P
	Span
	The function
	
	of
	Table 24
	Table 24

	 maps K input faces to L frontal faces. When L = 1, the algorithm should render a frontal image as 635 close as possible to ISO/IEC 19794-5 Token image geometry [ISO]. When L > 1, the implementation should render non-636 degenerate faces around Token geometry. The non-degenerate aspect is supplier-defined, but should be intended to be 637 of utility to downstream recognition algorithms. 638

	Table 21 – Template generation 639
	Prototypes
	Prototypes
	Prototypes
	Prototypes

	int32_t convert_MULTIFACE_to_recoonstructed_ MULTIFACE (
	int32_t convert_MULTIFACE_to_recoonstructed_ MULTIFACE (

	
	

	Span

	TR
	const MULTIFACE &input_faces,
	const MULTIFACE &input_faces,

	Input
	Input

	Span

	TR
	const uint32_t Lmax,
	const uint32_t Lmax,

	Input
	Input

	Span

	TR
	MULTIFACE &output_faces,
	MULTIFACE &output_faces,

	Output
	Output

	Span

	TR
	uint32_t &L);
	uint32_t &L);

	Output
	Output

	Span

	Description
	Description
	Description

	This function takes a MULTIFACE containing K images of an individual. It outputs 1 ≤ L ≤ maxL output faces in a MULTFACE structure.
	This function takes a MULTIFACE containing K images of an individual. It outputs 1 ≤ L ≤ maxL output faces in a MULTFACE structure.

	Span

	Input
	Input
	Input
	Parameters

	input_faces
	input_faces

	TD
	P
	Span
	An instance of a
	Table 13
	Table 13

	 structure. Implementations must alter their behavior according to the number of images contained in the structure.

	Span

	TR
	Lmax
	Lmax

	The number of output faces requested by the calling application. The implementation must support a call with Lmax == 1. This is will form a baseline result. NIST will additionally report results with larger values 1 < Lmax ≤ 9. The upper bound here would allow the algorithm to render left, left-up, left-down, right, right-up, right-down, frontal, up, down variants around frontal. The implementation does not need to support values 1 < Lmax.
	The number of output faces requested by the calling application. The implementation must support a call with Lmax == 1. This is will form a baseline result. NIST will additionally report results with larger values 1 < Lmax ≤ 9. The upper bound here would allow the algorithm to render left, left-up, left-down, right, right-up, right-down, frontal, up, down variants around frontal. The implementation does not need to support values 1 < Lmax.

	Span

	Output Parameters
	Output Parameters
	Output Parameters
	Output Parameters

	output_faces
	output_faces

	A MULTIFACE structure with data pre-allocated for Lmax entries each of size 640 height by 480 width by 24 bits (RGB). These dimensions afford 120 pixels between the eyes for a Token geometry output. Images smaller than this could be centered with a grey border.
	A MULTIFACE structure with data pre-allocated for Lmax entries each of size 640 height by 480 width by 24 bits (RGB). These dimensions afford 120 pixels between the eyes for a Token geometry output. Images smaller than this could be centered with a grey border.
	
	This prescription of height and width allows the NIST application to allocate all memory. The implementation should not allocate memory for the output MULTIFACE.
	
	Implementers seeking pre-allocated sizes larger than 640x480 should contact NIST.

	Span

	
	
	

	L
	L

	0 <= L < Lmax The number of faces actually produced. These faces must occupy the first L positions of the output MULTIFACE structure.
	0 <= L < Lmax The number of faces actually produced. These faces must occupy the first L positions of the output MULTIFACE structure.
	If 0 faces are rendered, the Return Value must be non-zero.

	Span

	Return Value
	Return Value
	Return Value

	0
	0

	Success
	Success

	Span

	TR
	2
	2

	Elective refusal to process this kind of MULTIFACE
	Elective refusal to process this kind of MULTIFACE

	Span

	TR
	4
	4

	Involuntary failure to extract features (e.g. could not find face in the input-image)
	Involuntary failure to extract features (e.g. could not find face in the input-image)

	Span

	TR
	6
	6

	Elective refusal to render any output images.
	Elective refusal to render any output images.

	Span

	TR
	8
	8

	Cannot parse input data (i.e. assertion that input record is non-conformant)
	Cannot parse input data (i.e. assertion that input record is non-conformant)

	Span

	TR
	Other
	Other

	Vendor-defined failure. Failure codes must be documented and communicated to NIST with the submission of the implementation under test.
	Vendor-defined failure. Failure codes must be documented and communicated to NIST with the submission of the implementation under test.

	Span

	3.4. 1:1 Verification 640
	3.4.1. Overview 641
	The 1:1 testing will proceed in three phases: preparation of enrollment templates; preparation of verification templates; 642 and matching. These are detailed in
	The 1:1 testing will proceed in three phases: preparation of enrollment templates; preparation of verification templates; 642 and matching. These are detailed in
	Table 22
	Table 22

	. 643

	Table 22 – Functional summary of the 1:1 application 644
	Table
	TR
	TD
	Span
	Phase

	TD
	Span
	#

	TD
	Span
	Name

	TD
	Span
	Description

	TD
	Span
	Performance Metrics to be reported by NIST

	Span

	Initialization
	Initialization
	Initialization

	I1
	I1

	Initialization
	Initialization

	Function to allow implementation to read configuration data, if any.
	Function to allow implementation to read configuration data, if any.

	None
	None

	Span

	Enrollment
	Enrollment
	Enrollment

	E1
	E1

	Serial enrollment
	Serial enrollment

	Given K  1 input images of an individual, the implementation will create a proprietary enrollment template. NIST will manage storage of these templates.
	Given K  1 input images of an individual, the implementation will create a proprietary enrollment template. NIST will manage storage of these templates.
	NIST requires that these operations may be executed in a loop in a single process invocation, or as a sequence of independent process invocations, or a mixture of both.

	Statistics of the time needed to produce a template.
	Statistics of the time needed to produce a template.
	Statistics of template size.
	Rate of failure to produce a template and rate of erroneous function.

	Span

	Verification
	Verification
	Verification

	V1
	V1

	Serial verification
	Serial verification

	Given K  1 input images of an individual, the implementation will create a proprietary verification template. NIST will manage storage of these templates.
	Given K  1 input images of an individual, the implementation will create a proprietary verification template. NIST will manage storage of these templates.
	NIST requires that these operations may be executed in a loop in a single process invocation, or as a sequence of independent process invocations, or a mixture of both.

	Statistics of the time needed to produce a template.
	Statistics of the time needed to produce a template.
	Statistics of template size.
	Rate of failure to produce a template and rate of erroneous function.

	Span

	Matching (i.e. comparison)
	Matching (i.e. comparison)
	Matching (i.e. comparison)

	C1
	C1

	Serial matching
	Serial matching

	Given one proprietary enrollment template and one proprietary verification template, compare these and produce a similarity score.
	Given one proprietary enrollment template and one proprietary verification template, compare these and produce a similarity score.
	NIST requires that these operations may be executed in a loop in a single process invocation, or as a sequence of independent process invocations, or a mixture of both.

	Statistics of the time taken to compare two templates.
	Statistics of the time taken to compare two templates.
	Accuracy measures, primarily reported as DETs.

	Span

	 645
	 646
	 Enrollment phase Verification phase Multiface Multiface Enrollment template Verification template Comparison Engine Similarity Score SDK SDK
	Figure 3 – Schematic of verification without enrollment database 647
	3.4.2. API 648
	3.4.2.1. Initialization 649
	Before any template generation or matching calls are made, the NIST test harness will make a call to the initialization of 650 the function in
	Before any template generation or matching calls are made, the NIST test harness will make a call to the initialization of 650 the function in
	Table 23
	Table 23

	. 651

	Table 23 – SDK initialization 652
	Removed fields: num_descriptions 653
	Prototype
	Prototype
	Prototype
	Prototype

	int32_t initialize_verification(
	int32_t initialize_verification(

	
	

	Span

	TR
	const string &configuration_location,
	const string &configuration_location,

	Input
	Input

	Span

	TR
	const std::vector<string> &descriptions);
	const std::vector<string> &descriptions);

	Input
	Input

	Span

	Description
	Description
	Description
	

	This function initializes the SDK under test. It will be called by the NIST application before any call to the
	This function initializes the SDK under test. It will be called by the NIST application before any call to the
	This function initializes the SDK under test. It will be called by the NIST application before any call to the
	Table 24
	Table 24

	 functions convert_MULTIFACE_to_enrollment_template or convert_MULTIFACE_to_verification_template. The SDK under test should set all parameters.

	Span

	Input Parameters
	Input Parameters
	Input Parameters

	configuration_location
	configuration_location

	A read-only directory containing any developer-supplied configuration parameters or run-time data files. The name of this directory is assigned by NIST. It is not hardwired by the provider. The names of the files in this directory are hardwired in the SDK and are unrestricted.
	A read-only directory containing any developer-supplied configuration parameters or run-time data files. The name of this directory is assigned by NIST. It is not hardwired by the provider. The names of the files in this directory are hardwired in the SDK and are unrestricted.

	Span

	TR
	descriptions
	descriptions

	A lexicon of labels one of which will be assigned to each image. EXAMPLE: The descriptions could be {"mugshot", "visa", "unknown"}. These labels are provided to the SDK so that it knows to expect images of these kinds. The number of items stored in the vector is accessible via the vector::size() function.
	A lexicon of labels one of which will be assigned to each image. EXAMPLE: The descriptions could be {"mugshot", "visa", "unknown"}. These labels are provided to the SDK so that it knows to expect images of these kinds. The number of items stored in the vector is accessible via the vector::size() function.

	Span

	Output
	Output
	Output
	Parameters

	none
	none

	
	

	Span

	Return Value
	Return Value
	Return Value

	0
	0

	Success
	Success

	Span

	TR
	2
	2

	Vendor provided configuration files are not readable in the indicated location.
	Vendor provided configuration files are not readable in the indicated location.

	Span

	TR
	8
	8

	The descriptions are unexpected, or unusable.
	The descriptions are unexpected, or unusable.

	Span

	TR
	Other
	Other

	Vendor-defined failure
	Vendor-defined failure

	Span

	3.4.2.2. Template generation 654
	The functions of
	The functions of
	Table 24
	Table 24

	 support role-specific generation of a template data. The format of the templates is entirely 655 proprietary. 656

	Table 24 – Template generation 657
	Prototypes
	Prototypes
	Prototypes
	Prototypes

	int32_t convert_MULTIFACE_to_enrollment_template(
	int32_t convert_MULTIFACE_to_enrollment_template(

	
	

	Span

	TR
	const MULTIFACE &input_faces,
	const MULTIFACE &input_faces,

	Input
	Input

	Span

	TR
	uint32_t &template_size,
	uint32_t &template_size,

	Output
	Output

	Span

	TR
	uint8_t *proprietary_template);
	uint8_t *proprietary_template);

	Output
	Output

	Span

	TR
	TD
	Span
	int32_t convert_MULTIFACE_to_verification_template(

	
	

	Span

	Table
	TR
	TD
	Span
	const MULTIFACE &input_faces,

	Input
	Input

	Span

	TR
	TD
	Span
	uint32_t &template_size,

	Output
	Output

	Span

	TR
	TD
	Span
	uint8_t *proprietary_template,

	Output
	Output

	Span

	TR
	TD
	Span
	uint8_t &quality);

	Output
	Output

	Span

	Description
	Description
	Description

	This function takes a MULTIFACE, and outputs a proprietary template. The memory for the output template is allocated by the NIST test harness before the call i.e. the implementation shall not allocate memory for the result. In all cases, even when unable to extract features, the output shall be a template record that may be passed to the match_templates function without error. That is, this routine must internally encode "template creation failed" and the matcher must transparently handle this.
	This function takes a MULTIFACE, and outputs a proprietary template. The memory for the output template is allocated by the NIST test harness before the call i.e. the implementation shall not allocate memory for the result. In all cases, even when unable to extract features, the output shall be a template record that may be passed to the match_templates function without error. That is, this routine must internally encode "template creation failed" and the matcher must transparently handle this.

	Span

	Input
	Input
	Input
	Parameters

	input_faces
	input_faces

	An instance of a
	An instance of a
	An instance of a
	Table 13
	Table 13

	 structure. Implementations must alter their behavior according to the number of images contained in the structure.

	Span

	Output Parameters
	Output Parameters
	Output Parameters

	template_size
	template_size

	The size, in bytes, of the output template
	The size, in bytes, of the output template

	Span

	TR
	proprietary_template
	proprietary_template

	The output template. The format is entirely unregulated. NIST will allocate a KT byte buffer for this template: The value K is the number of images in the MULTIFACE; the value T is output by the maximum template size functions of
	The output template. The format is entirely unregulated. NIST will allocate a KT byte buffer for this template: The value K is the number of images in the MULTIFACE; the value T is output by the maximum template size functions of
	The output template. The format is entirely unregulated. NIST will allocate a KT byte buffer for this template: The value K is the number of images in the MULTIFACE; the value T is output by the maximum template size functions of
	Table 18
	Table 18

	.

	Span

	TR
	quality
	quality

	An assessment of image quality. This is optional. The legal values are
	An assessment of image quality. This is optional. The legal values are
	 [0,100] - The value should have a monotonic decreasing relationship with false non-match rate anticipated for this sample if it was compared with a pristine image of the same person. So, a low value indicates high expected FNMR.
	 [0,100] - The value should have a monotonic decreasing relationship with false non-match rate anticipated for this sample if it was compared with a pristine image of the same person. So, a low value indicates high expected FNMR.
	 [0,100] - The value should have a monotonic decreasing relationship with false non-match rate anticipated for this sample if it was compared with a pristine image of the same person. So, a low value indicates high expected FNMR.

	 255 - This value indicates a failed attempt to calculate a quality score.
	 255 - This value indicates a failed attempt to calculate a quality score.

	 254 - This values indicates the value was not assigned.
	 254 - This values indicates the value was not assigned.

	Span

	Return Value
	Return Value
	Return Value

	0
	0

	Success
	Success

	Span

	TR
	2
	2

	Elective refusal to process this kind of MULTIFACE
	Elective refusal to process this kind of MULTIFACE

	Span

	TR
	4
	4

	Involuntary failure to extract features (e.g. could not find face in the input-image)
	Involuntary failure to extract features (e.g. could not find face in the input-image)

	Span

	TR
	6
	6

	Elective refusal to produce a template (e.g. insufficient pixels between the eyes)
	Elective refusal to produce a template (e.g. insufficient pixels between the eyes)

	Span

	TR
	8
	8

	Cannot parse input data (i.e. assertion that input record is non-conformant)
	Cannot parse input data (i.e. assertion that input record is non-conformant)

	Span

	TR
	Other
	Other

	Vendor-defined failure. Failure codes must be documented and communicated to NIST with the submission of the implementation under test.
	Vendor-defined failure. Failure codes must be documented and communicated to NIST with the submission of the implementation under test.

	Span

	3.4.2.3. Matching 658
	Matching of one enrollment against one verification template shall be implemented by the function of
	Matching of one enrollment against one verification template shall be implemented by the function of
	Table 25
	Table 25

	. 659

	Table 25 – Template matching 660
	Prototype
	Prototype
	Prototype
	Prototype

	int32_t match_templates(
	int32_t match_templates(

	
	

	Span

	TR
	const uint8_t *verification_template,
	const uint8_t *verification_template,

	Input
	Input

	Span

	TR
	const uint32_t verification_template_size,
	const uint32_t verification_template_size,

	Input
	Input

	Span

	TR
	const uint8_t *enrollment_template,
	const uint8_t *enrollment_template,

	Input
	Input

	Span

	TR
	const uint32_t enrollment_template_size,
	const uint32_t enrollment_template_size,

	Input
	Input

	Span

	TR
	double &similarity);
	double &similarity);

	Output
	Output

	Span

	Description
	Description
	Description
	

	This function compares two opaque proprietary templates and outputs a similarity score, which need not satisfy the metric properties. NIST will allocate memory for this parameter before the call. When either or both of the input templates are the result of a failed template generation (see
	This function compares two opaque proprietary templates and outputs a similarity score, which need not satisfy the metric properties. NIST will allocate memory for this parameter before the call. When either or both of the input templates are the result of a failed template generation (see
	This function compares two opaque proprietary templates and outputs a similarity score, which need not satisfy the metric properties. NIST will allocate memory for this parameter before the call. When either or both of the input templates are the result of a failed template generation (see
	Table 24
	Table 24

), the similarity score shall be -1 and the function return value shall be 2.

	Span

	Input Parameters
	Input Parameters
	Input Parameters

	verification_template
	verification_template

	A template from convert_MULTIFACE_to_verification_template().
	A template from convert_MULTIFACE_to_verification_template().

	Span

	TR
	verification_template_size
	verification_template_size

	The size, in bytes, of the input verification template 0 ≤ N ≤ 232 - 1
	The size, in bytes, of the input verification template 0 ≤ N ≤ 232 - 1

	Span

	TR
	enrollment_template
	enrollment_template

	A template from convert_MULTIFACE_to_enrollment_template().
	A template from convert_MULTIFACE_to_enrollment_template().

	Span

	TR
	enrollment_template_size
	enrollment_template_size

	The size, in bytes, of the input enrollment template 0 ≤ N ≤ 232 - 1
	The size, in bytes, of the input enrollment template 0 ≤ N ≤ 232 - 1

	Span

	Output
	Output
	Output
	Parameters

	similarity
	similarity

	A similarity score resulting from comparison of the templates, on the range [0,DBL_MAX]. See section
	A similarity score resulting from comparison of the templates, on the range [0,DBL_MAX]. See section
	A similarity score resulting from comparison of the templates, on the range [0,DBL_MAX]. See section
	2.3.5
	2.3.5

	.

	Span

	Return Value
	Return Value
	Return Value

	0
	0

	Success
	Success

	Span

	TR
	2
	2

	Either or both of the input templates were result of failed feature extraction
	Either or both of the input templates were result of failed feature extraction

	Span

	TR
	Other
	Other

	Vendor-defined failure
	Vendor-defined failure

	Span

	3.5. 1:N Identification 661
	3.5.1. Overview 662
	The 1:N application proceeds in two phases, enrollment and identification. The identification phase includes separate 663 pre-search feature extraction stage, and a search stage. 664
	The design reflects the following testing objectives for 1:N implementations. 665
	 support distributed enrollment on multiple machines, with multiple processes running in parallel  allow recovery after a fatal exception, and measure the number of occurrences  allow NIST to copy enrollment data onto many machines to support parallel testing  respect the black-box nature of biometric templates  extend complete freedom to the provider to use arbitrary algorithms  support measurement of duration of core function calls  support measurement of template size
	Table 26 – Procedural overview of the identification test 666
	Table
	TR
	TD
	Span
	Phase

	TD
	Span
	#

	TD
	Span
	Name

	TD
	Span
	Description

	TD
	Span
	Performance Metrics to be reported by NIST

	Span

	Enrollment
	Enrollment
	Enrollment

	E1
	E1

	Initialization
	Initialization

	Give the implementation advance notice of the number of individuals and images that will be enrolled.
	Give the implementation advance notice of the number of individuals and images that will be enrolled.
	Give the implementation the name of a directory where any provider-supplied configuration data will have been placed by NIST. This location will otherwise be empty.
	The implementation is permitted read-write-delete access to the enrollment directory during this phase. The implementation is permitted read-only access to the configuration directory.
	After enrollment, NIST may rename and relocate the enrollment directory - the implementation should not depend on the name of the enrollment directory.

	
	

	Span

	TR
	E2
	E2

	Parallel Enrollment
	Parallel Enrollment

	For each of N individuals, pass multiple images of the individual to the implementation for conversion to a combined template. The implementation will return a template to the calling application.
	For each of N individuals, pass multiple images of the individual to the implementation for conversion to a combined template. The implementation will return a template to the calling application.
	The implementation is permitted read-only access to the enrollment directory during this phase. NIST's calling application will be responsible for storing all templates as binary files. These will not be available to the implementation during this enrollment phase.
	Multiple instances of the calling application may run simultaneously or sequentially. These may be executing on different computers. The same person will not be enrolled twice.

	Statistics of the times needed to enroll an individual.
	Statistics of the times needed to enroll an individual.
	Statistics of the sizes of created templates.
	
	
	The incidence of failed template creations.

	Span

	TR
	E3
	E3

	Finalization
	Finalization

	Permanently finalize the enrollment directory. This supports, for example, adaptation of the image-processing functions, adaptation of the representation, writing of a manifest, indexing, and computation of statistical information over the enrollment dataset.
	Permanently finalize the enrollment directory. This supports, for example, adaptation of the image-processing functions, adaptation of the representation, writing of a manifest, indexing, and computation of statistical information over the enrollment dataset.
	The implementation is permitted read-write-delete access to the enrollment directory during this phase.

	Size of the enrollment database as a function of population size N and the number of images.
	Size of the enrollment database as a function of population size N and the number of images.
	Duration of this operation. The time needed to execute this function shall be reported with the preceding enrollment times.

	Span

	Pre-search
	Pre-search
	Pre-search
	Pre-search

	S1
	S1

	Initialization
	Initialization

	Tell the implementation the location of an enrollment directory. The implementation could look at the enrollment data.
	Tell the implementation the location of an enrollment directory. The implementation could look at the enrollment data.
	The implementation is permitted read-only access to the enrollment directory during this phase. Statistics of the time needed for this operation.

	Statistics of the time needed for this operation.
	Statistics of the time needed for this operation.
	

	Span

	TR
	S2
	S2

	Template preparation
	Template preparation

	For each probe, create a template from a set of input images. This operation will generally be conducted in a separate process invocation to step S2.
	For each probe, create a template from a set of input images. This operation will generally be conducted in a separate process invocation to step S2.
	The implementation is permitted no access to the enrollment directory during this phase.
	The result of this step is a search template.

	Statistics of the time needed for this operation.
	Statistics of the time needed for this operation.
	Statistics of the size of the search template.

	Span

	Search
	Search
	Search

	S3
	S3

	Initialization
	Initialization

	Tell the implementation the location of an enrollment directory. The implementation should read all or some of the enrolled data into main memory, so that searches can commence.
	Tell the implementation the location of an enrollment directory. The implementation should read all or some of the enrolled data into main memory, so that searches can commence.
	The implementation is permitted read-only access to the enrollment directory during this phase.

	Statistics of the time needed for this operation.
	Statistics of the time needed for this operation.
	

	Span

	TR
	S4
	S4

	Search
	Search

	A template is searched against the enrollment database.
	A template is searched against the enrollment database.
	The implementation is permitted read-only access to the enrollment directory during this phase.

	Statistics of the time needed for this operation.
	Statistics of the time needed for this operation.
	Accuracy metrics - Type I + II error rates.
	Failure rates.

	Span

	3.5.2. Initialization of the enrollment session 667
	Before any enrollment feature extraction calls are made, the NIST test harness will call the initialization function of
	Before any enrollment feature extraction calls are made, the NIST test harness will call the initialization function of
	Table
	Table

	668
	27
	. 669

	Table 27 – Enrollment initialization 670
	Removed fields: num_descriptions 671
	Prototype
	Prototype
	Prototype
	Prototype

	int32_t initialize_enrollment_session(
	int32_t initialize_enrollment_session(

	
	

	Span

	TR
	const string &configuration_location,
	const string &configuration_location,

	Input
	Input

	Span

	TR
	const string &enrollment_directory,
	const string &enrollment_directory,

	Input
	Input

	Span

	TR
	const uint32_t num_persons,
	const uint32_t num_persons,

	Input
	Input

	Span

	TR
	const uint32_t num_images,
	const uint32_t num_images,

	Input
	Input

	Span

	TR
	const std::vector<string> &descriptions);
	const std::vector<string> &descriptions);

	Input
	Input

	Span

	Description
	Description
	Description
	

	This function initializes the SDK under test and sets all needed parameters. This function will be called N=1 times by the NIST application immediately before any M  1 calls to convert_MULTIFACE_to_enrollment_template. The SDK should tolerate execution of P > 1 processes on the same machine each of which may be reading and writing to the enrollment directory. This function may be called P times and these may be running simultaneously and in parallel.
	This function initializes the SDK under test and sets all needed parameters. This function will be called N=1 times by the NIST application immediately before any M  1 calls to convert_MULTIFACE_to_enrollment_template. The SDK should tolerate execution of P > 1 processes on the same machine each of which may be reading and writing to the enrollment directory. This function may be called P times and these may be running simultaneously and in parallel.

	Span

	Input Parameters
	Input Parameters
	Input Parameters

	configuration_location
	configuration_location

	A read-only directory containing any developer-supplied configuration parameters or run-time data files.
	A read-only directory containing any developer-supplied configuration parameters or run-time data files.

	Span

	TR
	enrollment_directory
	enrollment_directory

	The directory will be initially empty, but may have been initialized and populated by separate invocations of the enrollment process. When this function is called, the SDK may populate this folder in any manner it sees fit. Permissions will be read-write-delete.
	The directory will be initially empty, but may have been initialized and populated by separate invocations of the enrollment process. When this function is called, the SDK may populate this folder in any manner it sees fit. Permissions will be read-write-delete.

	Span

	TR
	num_persons
	num_persons

	The number of persons who will be enrolled 0 ≤ N ≤ 232 - 1 (e.g. 1million)
	The number of persons who will be enrolled 0 ≤ N ≤ 232 - 1 (e.g. 1million)

	Span

	TR
	num_images
	num_images

	The total number of images that will be enrolled, summed over all identities 0 ≤ M ≤ 232 - 1 (e.g. 1.8 million)
	The total number of images that will be enrolled, summed over all identities 0 ≤ M ≤ 232 - 1 (e.g. 1.8 million)

	Span

	TR
	descriptions
	descriptions

	A lexicon of labels one of which will be assigned to each enrollment image. EXAMPLE: The descriptions could be {"mugshot", "visa"}.
	A lexicon of labels one of which will be assigned to each enrollment image. EXAMPLE: The descriptions could be {"mugshot", "visa"}.
	NOTE: The identification search images may or may not be labeled. An identification image may carry a label not in this set of labels. The number of items stored in the vector is accessible via the vector::size() function.

	Span

	Output
	Output
	Output

	none
	none

	
	

	Span

	Parameters
	Parameters
	Parameters
	Parameters

	Span

	Return Value
	Return Value
	Return Value

	0
	0

	Success
	Success

	Span

	TR
	2
	2

	The configuration data is missing, unreadable, or in an unexpected format.
	The configuration data is missing, unreadable, or in an unexpected format.

	Span

	TR
	4
	4

	An operation on the enrollment directory failed (e.g. permission, space).
	An operation on the enrollment directory failed (e.g. permission, space).

	Span

	TR
	6
	6

	The SDK cannot support the number of persons or images.
	The SDK cannot support the number of persons or images.

	Span

	TR
	8
	8

	The descriptions are unexpected, or unusable.
	The descriptions are unexpected, or unusable.

	Span

	TR
	Other
	Other

	Vendor-defined failure
	Vendor-defined failure

	Span

	3.5.3. Enrollment 672
	A MULTIFACE is converted to a single enrollment template using the function of
	A MULTIFACE is converted to a single enrollment template using the function of
	Table 28
	Table 28

	. 673

	Table 28 – Enrollment feature extraction 674
	Prototypes
	Prototypes
	Prototypes
	Prototypes

	int32_t convert_MULTIFACE_to_enrollment_template(
	int32_t convert_MULTIFACE_to_enrollment_template(

	
	

	Span

	TR
	const MULTIFACE &input_faces,
	const MULTIFACE &input_faces,

	Input
	Input

	Span

	TR
	std::vector<EYEPAIR> &output_eyes,
	std::vector<EYEPAIR> &output_eyes,

	Output
	Output

	Span

	TR
	uint32_t &template_size,
	uint32_t &template_size,

	Output
	Output

	Span

	TR
	uint8_t *proprietary_template);
	uint8_t *proprietary_template);

	Output
	Output

	Span

	Description
	Description
	Description

	This function takes a MULTIFACE, and outputs a proprietary template. The memory for the output template is allocated by the NIST test harness before the call i.e. the implementation shall not allocate memory for the result.
	This function takes a MULTIFACE, and outputs a proprietary template. The memory for the output template is allocated by the NIST test harness before the call i.e. the implementation shall not allocate memory for the result.
	If the function executes correctly (i.e. returns a zero exit status), the NIST calling application will store the template. The NIST application will concatenate the templates and pass the result to the enrollment finalization function (see section
	If the function executes correctly (i.e. returns a zero exit status), the NIST calling application will store the template. The NIST application will concatenate the templates and pass the result to the enrollment finalization function (see section
	3.5.4
	3.5.4

).

	If the function gives a non-zero exit status:
	 If the exit status is 8, NIST will debug, otherwise
	 If the exit status is 8, NIST will debug, otherwise
	 If the exit status is 8, NIST will debug, otherwise

	 the test driver will ignore the output template (the template may have any size including zero)
	 the test driver will ignore the output template (the template may have any size including zero)

	 the event will be counted as a failure to enroll. Such an event means that this person can never be identified correctly.
	 the event will be counted as a failure to enroll. Such an event means that this person can never be identified correctly.

	IMPORTANT. NIST's application writes the template to disk. The implementation must not attempt writes to the enrollment directory (nor to other resources). Any data needed during subsequent searches should be included in the template, or created from the templates during the enrollment finalization function of section
	IMPORTANT. NIST's application writes the template to disk. The implementation must not attempt writes to the enrollment directory (nor to other resources). Any data needed during subsequent searches should be included in the template, or created from the templates during the enrollment finalization function of section
	3.5.4
	3.5.4

	.

	Span

	Input
	Input
	Input
	Parameters

	input_faces
	input_faces

	An instance of a
	An instance of a
	An instance of a
	Table 13
	Table 13

	 structure. Implementations must alter their behavior according to the number of images contained in the structure.

	Span

	Output Parameters
	Output Parameters
	Output Parameters

	output_eyes
	output_eyes

	For each input image in the MULTIFACE the function shall return the estimated eye centers. The calling application will pre-allocate the correct number of EYEPAIR structures (i.e. one for each image in the MULTIFACE).
	For each input image in the MULTIFACE the function shall return the estimated eye centers. The calling application will pre-allocate the correct number of EYEPAIR structures (i.e. one for each image in the MULTIFACE).

	Span

	TR
	template_size
	template_size

	The size, in bytes, of the output template
	The size, in bytes, of the output template

	Span

	TR
	proprietary_template
	proprietary_template

	The format is entirely unregulated. NIST will allocate a KT byte buffer for this template: The value K is the number of images in the MULTIFACE; the value T is output by the maximum enrollment template size function of
	The format is entirely unregulated. NIST will allocate a KT byte buffer for this template: The value K is the number of images in the MULTIFACE; the value T is output by the maximum enrollment template size function of
	The format is entirely unregulated. NIST will allocate a KT byte buffer for this template: The value K is the number of images in the MULTIFACE; the value T is output by the maximum enrollment template size function of
	Table 18
	Table 18

	.

	Span

	Return Value
	Return Value
	Return Value

	0
	0

	Success
	Success

	Span

	TR
	2
	2

	Elective refusal to process this kind of MULTIFACE
	Elective refusal to process this kind of MULTIFACE

	Span

	TR
	4
	4

	Involuntary failure to extract features (e.g. could not find face in the input-image)
	Involuntary failure to extract features (e.g. could not find face in the input-image)

	Span

	TR
	6
	6

	Elective refusal to produce a template (e.g. insufficient pixels between the eyes)
	Elective refusal to produce a template (e.g. insufficient pixels between the eyes)

	Span

	TR
	8
	8

	Cannot parse input data (i.e. assertion that input record is non-conformant)
	Cannot parse input data (i.e. assertion that input record is non-conformant)

	Span

	TR
	Other
	Other

	Vendor-defined failure. Failure codes must be documented and communicated to NIST with the submission of the implementation under test.
	Vendor-defined failure. Failure codes must be documented and communicated to NIST with the submission of the implementation under test.

	Span

	3.5.4. Finalize enrollment 675
	After all templates have been created, the function of
	After all templates have been created, the function of
	Table 29
	Table 29

	 will be called. This freezes the enrollment data. After this 676 call the enrollment dataset will be forever read-only. This API does not support interleaved enrollment and search 677 phases. 678

	The function allows the implementation to conduct, for example, statistical processing of the feature data, indexing and 679 data re-organization. The function may alter the file structure. It may increase or decrease the size of the stored data. 680 No output is expected from this function, except a return code. 681
	Table 29 – Enrollment finalization 682
	Prototypes
	Prototypes
	Prototypes
	Prototypes

	int32_t finalize_enrollment (
	int32_t finalize_enrollment (

	
	

	Span

	TR
	const string &enrollment_directory,
	const string &enrollment_directory,

	Input
	Input

	Span

	TR
	const string &edb_name,
	const string &edb_name,

	Input
	Input

	Span

	TR
	const string &edb_manifest_name);
	const string &edb_manifest_name);

	Input
	Input

	Span

	Description
	Description
	Description

	This function takes the name of the top-level directory where enrollment database (EDB) and its manifest have been stored. These are described in section
	This function takes the name of the top-level directory where enrollment database (EDB) and its manifest have been stored. These are described in section
	This function takes the name of the top-level directory where enrollment database (EDB) and its manifest have been stored. These are described in section
	2.4
	2.4

	. The enrollment directory permissions will be read + write.

	The function supports post-enrollment developer-optional book-keeping operations and statistical processing. The function will generally be called in a separate process after all the enrollment processes are complete.
	This function should be tolerant of being called two or more times. Second and third invocations should probably do nothing.

	Span

	Input
	Input
	Input
	Parameters

	enrollment_directory
	enrollment_directory

	The top-level directory in which enrollment data was placed. This variable allows an implementation to locate any private initialization data it elected to place in the directory.
	The top-level directory in which enrollment data was placed. This variable allows an implementation to locate any private initialization data it elected to place in the directory.

	Span

	TR
	edb_name
	edb_name

	The name of a single file containing concatenated templates, i.e. the EDB of section
	The name of a single file containing concatenated templates, i.e. the EDB of section
	The name of a single file containing concatenated templates, i.e. the EDB of section
	2.4
	2.4

	.

	While the file will have read-write-delete permission, the SDK should only alter the file if it preserves the necessary content, in other files for example.
	The file may be opened directly. It is not necessary to prepend a directory name.

	Span

	TR
	edb_manifest_name
	edb_manifest_name

	The name of a single file containing the EDB manifest of section
	The name of a single file containing the EDB manifest of section
	The name of a single file containing the EDB manifest of section
	2.4
	2.4

	.

	The file may be opened directly. It is not necessary to prepend a directory name.

	Span

	Output Parameters
	Output Parameters
	Output Parameters

	None
	None

	
	

	Span

	Return Value
	Return Value
	Return Value

	0
	0

	Success
	Success

	Span

	TR
	2
	2

	Cannot locate the input data - the input files or names seem incorrect.
	Cannot locate the input data - the input files or names seem incorrect.

	Span

	TR
	4
	4

	An operation on the enrollment directory failed (e.g. permission, space).
	An operation on the enrollment directory failed (e.g. permission, space).

	Span

	TR
	6
	6

	One or more template files are in an incorrect format.
	One or more template files are in an incorrect format.

	Span

	TR
	Other
	Other

	Vendor-defined failure. Failure codes must be documented and communicated to NIST with the submission of the implementation under test.
	Vendor-defined failure. Failure codes must be documented and communicated to NIST with the submission of the implementation under test.

	Span

	3.5.5. Pre-search feature extraction 683
	3.5.5.1. Initialization 684
	Before MULTIFACEs are sent to the identification feature extraction function, the test harness will call the initialization 685 function in
	Before MULTIFACEs are sent to the identification feature extraction function, the test harness will call the initialization 685 function in
	Table 30
	Table 30

	. 686

	Table 30 – Identification feature extraction initialization 687
	Prototype
	Prototype
	Prototype
	Prototype

	int32_t initialize_feature_extraction_session(
	int32_t initialize_feature_extraction_session(

	
	

	Span

	TR
	const string &configuration_location,
	const string &configuration_location,

	Input
	Input

	Span

	TR
	const string &enrollment_directory);
	const string &enrollment_directory);

	Input
	Input

	Span

	Description
	Description
	Description
	

	This function initializes the SDK under test and sets all needed parameters. This function will be called once by the NIST application immediately before any M  1 calls to convert_MULTIFACE_to_identification_template. The SDK should tolerate execution of P => 1 processes on the same machine each of which can read the configuration directory. This function may be called P times and these may be running simultaneously and in parallel.
	This function initializes the SDK under test and sets all needed parameters. This function will be called once by the NIST application immediately before any M  1 calls to convert_MULTIFACE_to_identification_template. The SDK should tolerate execution of P => 1 processes on the same machine each of which can read the configuration directory. This function may be called P times and these may be running simultaneously and in parallel.
	

	Span

	Table
	TR
	The implementation has read-only access to its prior enrollment data.
	The implementation has read-only access to its prior enrollment data.

	Span

	Input Parameters
	Input Parameters
	Input Parameters

	configuration_location
	configuration_location

	A read-only directory containing any developer-supplied configuration parameters or run-time data files.
	A read-only directory containing any developer-supplied configuration parameters or run-time data files.

	Span

	
	
	

	enrollment_directory
	enrollment_directory

	The top-level directory in which enrollment data was placed and then finalized by the implementation. The implementation can parameterize subsequent template production on the basis of the enrolled dataset.
	The top-level directory in which enrollment data was placed and then finalized by the implementation. The implementation can parameterize subsequent template production on the basis of the enrolled dataset.

	Span

	Output
	Output
	Output
	Parameters

	none
	none

	
	

	Span

	Return Value
	Return Value
	Return Value

	0
	0

	Success
	Success

	Span

	TR
	2
	2

	The configuration data is missing, unreadable, or in an unexpected format.
	The configuration data is missing, unreadable, or in an unexpected format.

	Span

	TR
	4
	4

	An operation on the enrollment directory failed (e.g. permission).
	An operation on the enrollment directory failed (e.g. permission).

	Span

	TR
	Other
	Other

	Vendor-defined failure
	Vendor-defined failure

	Span

	3.5.5.2. Feature extraction 688
	A MULTIFACE is converted to an atomic identification template using the function of
	A MULTIFACE is converted to an atomic identification template using the function of
	Table 31
	Table 31

	. The result may be stored 689 by NIST, or used immediately. The SDK shall not attempt to store any data. 690

	Table 31 – Identification feature extraction 691
	Prototypes
	Prototypes
	Prototypes
	Prototypes

	int32_t convert_MULTIFACE_to_identification_template(
	int32_t convert_MULTIFACE_to_identification_template(

	
	

	Span

	TR
	const MULTIFACE &input_faces,
	const MULTIFACE &input_faces,

	Input
	Input

	Span

	TR
	std::vector<EYEPAIR> &output_eyes,
	std::vector<EYEPAIR> &output_eyes,

	Output
	Output

	Span

	TR
	uint32_t &template_size,
	uint32_t &template_size,

	Output
	Output

	Span

	TR
	uint8_t *identification_template);
	uint8_t *identification_template);

	Output
	Output

	Span

	Description
	Description
	Description

	This function takes a MULTIFACE, and outputs a proprietary template. The memory for the output template is allocated by the NIST test harness before the call i.e. the implementation shall not allocate memory for the result.
	This function takes a MULTIFACE, and outputs a proprietary template. The memory for the output template is allocated by the NIST test harness before the call i.e. the implementation shall not allocate memory for the result.
	If the function executes correctly, it returns a zero exit status. The NIST calling application may commit the template to permanent storage, or may keep it only in memory (the developer implementation does not need to know). If the function returns a non-zero exit status, the output template will be not be used in subsequent search operations.
	The function shall not have access to the enrollment data, nor shall it attempt access.

	Span

	Input
	Input
	Input
	Parameters

	input_faces
	input_faces

	An instance of a
	An instance of a
	An instance of a
	Table 13
	Table 13

	 structure. Implementations must alter their behavior according to the number of images contained in the structure.

	Span

	Output Parameters
	Output Parameters
	Output Parameters

	output_eyes
	output_eyes

	For each input image in the MULTIFACE the function shall return the estimated eye centers. The calling application will pre-allocate the correct number of EYEPAIR structures (i.e. one for each image in the MULTIFACE).
	For each input image in the MULTIFACE the function shall return the estimated eye centers. The calling application will pre-allocate the correct number of EYEPAIR structures (i.e. one for each image in the MULTIFACE).

	Span

	TR
	template_size
	template_size

	The size, in bytes, of the output template
	The size, in bytes, of the output template

	Span

	TR
	identification_template
	identification_template

	The output template for a subsequent identification search. The format is entirely unregulated. NIST will allocate a KT byte buffer for this template: The value K is the number of images in the input MULTIFACE; the value T is output by the maximum enrollment template size function of
	The output template for a subsequent identification search. The format is entirely unregulated. NIST will allocate a KT byte buffer for this template: The value K is the number of images in the input MULTIFACE; the value T is output by the maximum enrollment template size function of
	The output template for a subsequent identification search. The format is entirely unregulated. NIST will allocate a KT byte buffer for this template: The value K is the number of images in the input MULTIFACE; the value T is output by the maximum enrollment template size function of
	Table 18
	Table 18

	.

	Span

	Return Value
	Return Value
	Return Value

	0
	0

	Success
	Success

	Span

	TR
	2
	2

	Elective refusal to process this kind of MULTIFACE
	Elective refusal to process this kind of MULTIFACE

	Span

	TR
	4
	4

	Involuntary failure to extract features (e.g. could not find face in the input-image)
	Involuntary failure to extract features (e.g. could not find face in the input-image)

	Span

	TR
	6
	6

	Elective refusal to produce a template (e.g. insufficient pixels between the eyes)
	Elective refusal to produce a template (e.g. insufficient pixels between the eyes)

	Span

	TR
	8
	8

	Cannot parse input data (i.e. assertion that input record is non-conformant)
	Cannot parse input data (i.e. assertion that input record is non-conformant)

	Span

	TR
	Other
	Other

	Vendor-defined failure. Failure codes must be documented and communicated to NIST with the submission of the implementation under test.
	Vendor-defined failure. Failure codes must be documented and communicated to NIST with the submission of the implementation under test.

	Span

	3.5.6. Initialization 692
	The function of
	The function of
	Table 32
	Table 32

	 will be called once prior to one or more calls of the searching function of
	Table 33
	Table 33

	. The function 693 might set static internal variables so that the enrollment database is available to the subsequent identification searches. 694

	Table 32 – Identification initialization 695
	Prototype
	Prototype
	Prototype
	Prototype

	int32_t initialize_identification_session(
	int32_t initialize_identification_session(

	
	

	Span

	TR
	const string &configuration_location,
	const string &configuration_location,

	Input
	Input

	Span

	TR
	const string &enrollment_directory);
	const string &enrollment_directory);

	Input
	Input

	Span

	Description
	Description
	Description

	This function reads whatever content is present in the enrollment_directory, for example a manifest placed there by the finalize_enrollment function.
	This function reads whatever content is present in the enrollment_directory, for example a manifest placed there by the finalize_enrollment function.

	Span

	Input Parameters
	Input Parameters
	Input Parameters

	configuration_location
	configuration_location

	A read-only directory containing any developer-supplied configuration parameters or run-time data files.
	A read-only directory containing any developer-supplied configuration parameters or run-time data files.

	Span

	TR
	enrollment_directory
	enrollment_directory

	The top-level directory in which enrollment data was placed.
	The top-level directory in which enrollment data was placed.

	Span

	Return Value
	Return Value
	Return Value

	0
	0

	Success
	Success

	Span

	TR
	Other
	Other

	Vendor-defined failure
	Vendor-defined failure

	Span

	3.5.7. Search 696
	The function of
	The function of
	Table 33
	Table 33

	 compares a proprietary identification template against the enrollment data and returns a 697 candidate list. 698

	Table 33 – Identification search 699
	Prototype
	Prototype
	Prototype
	Prototype

	int32_t identify_template(
	int32_t identify_template(

	
	

	Span

	TR
	const uint8_t *identification_template,
	const uint8_t *identification_template,

	Input
	Input

	Span

	TR
	const uint32_t identification_template_size,
	const uint32_t identification_template_size,

	Input
	Input

	Span

	TR
	const uint32_t candidate_list_length,
	const uint32_t candidate_list_length,

	Input
	Input

	Span

	TR
	std::vector<CANDIDATE> &candidate_list,
	std::vector<CANDIDATE> &candidate_list,

	Output
	Output

	Span

	TR
	bool &decision);
	bool &decision);

	Output
	Output

	Span

	Description
	Description
	Description
	

	This function searches a template against the enrollment set, and outputs a list of candidates.
	This function searches a template against the enrollment set, and outputs a list of candidates.
	NIST will pre-allocate the vector with candidates before the call.

	Span

	Input Parameters
	Input Parameters
	Input Parameters

	identification_template
	identification_template

	A template from convert_MULTIFACE_to_identification_template() - If the value returned by that function was non-zero the contents of identification_template will not be used and this function (i.e. identify_template) will not be called.
	A template from convert_MULTIFACE_to_identification_template() - If the value returned by that function was non-zero the contents of identification_template will not be used and this function (i.e. identify_template) will not be called.

	Span

	TR
	identification_template_size
	identification_template_size

	The size, in bytes, of the input identification template 0 ≤ N ≤ 232 - 1
	The size, in bytes, of the input identification template 0 ≤ N ≤ 232 - 1

	Span

	TR
	candidate_list_length
	candidate_list_length

	The number of candidates the search should return
	The number of candidates the search should return

	Span

	Output
	Output
	Output
	Parameters

	candidate_list
	candidate_list

	A vector containing "candidate_list_length" objects of candidates. The datatype is defined in section
	A vector containing "candidate_list_length" objects of candidates. The datatype is defined in section
	A vector containing "candidate_list_length" objects of candidates. The datatype is defined in section
	2.5
	2.5

	. Each candidate shall be populated by the implementation. The candidates shall appear in descending order of similarity score - i.e. most similar entries appear first.

	Span

	TR
	decision
	decision

	A best guess at whether there is a mate within the enrollment database. If there was a mate found, this value should be set to true, Otherwise, false. Many such decisions allow a single point to be plotted alongside a DET
	A best guess at whether there is a mate within the enrollment database. If there was a mate found, this value should be set to true, Otherwise, false. Many such decisions allow a single point to be plotted alongside a DET

	Span

	Return Value
	Return Value
	Return Value

	0
	0

	Success
	Success

	Span

	TR
	2
	2

	The input template was defective.
	The input template was defective.

	Span

	TR
	Other
	Other

	Vendor-defined failure
	Vendor-defined failure

	Span

	 700
	NOTE: Ordinarily the calling application will set the input candidate list length to operationally typical values, say 0  L  701 200, and L << N. However, there is interest in the presence of mates much further down the candidate list. We may 702 therefore extend the candidate list length such that L approaches N. 703
	3.6. Pose conformance, age, gender, and expression neutrality estimation 704
	The MEDS database11 includes many facial images for which age and gender are provided. The FERET database does 705 likewise12. It also includes images for which the non-frontal pose is known. A number of academic databases do likewise: 706 For example the CMU PIE databases famously include pose illumination and expression variation13. 707
	11 The Multiple Encounter Deceased Subject Database, NIST Special Database 32, is freely available here:
	11 The Multiple Encounter Deceased Subject Database, NIST Special Database 32, is freely available here:
	11 The Multiple Encounter Deceased Subject Database, NIST Special Database 32, is freely available here:
	http://www.nist.gov/itl/iad/ig/sd32.cfm
	http://www.nist.gov/itl/iad/ig/sd32.cfm

	

	12 FERET is available via a different process here:
	12 FERET is available via a different process here:
	http://www.nist.gov/itl/iad/ig/feret.cfm
	http://www.nist.gov/itl/iad/ig/feret.cfm

	

	13 For example, the CMU Multi-PIE Face Database –
	13 For example, the CMU Multi-PIE Face Database –
	http://www.multipie.org/
	http://www.multipie.org/

	 and others

	14 Erik Murphy-Chutorian and Mohan Manubhai Trivedi, “Head Pose Estimation in Computer Vision: A Survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol 31, no. 4, pp. 607-626, 2009.
	15 Versions up to and include v.1.2 stated that "The exact meaning of the "frontality" value returned by this function is not regulated by the NIST specification. However a reasonable implementation would embed a monotonic relationship between the output value and non-frontal angle (i.e. compound rotation involving azimuthal head yaw and pitch)." The more specific formulation here is intended to support formalized image quality assessment implementations.

	3.6.1. Pose conformance 708
	The functions of this section support testing whether a face in an image has frontal pose. This supports conformance 709 testing of, for example, the Full Frontal specification of the ISO standard [ISO]. The goal is to support a marketplace of 710 products for acquisition time assessment of pose. This is important because pose is arguably the most influential 711 covariate on face recognition error rates, and is not generally controllable by design of the acquisition system. This 712 problem has been in
	NIST encourages participants in this study to implement real-time video rate implementations, and also slower more 714 accurate methods. 715
	The functional specification here supports a DET analysis in which false-rejection of actually frontal images can be traded 716 off against false acceptance of non-frontal images via a frontal-conformance parameter, t. This specification15 suggests 717 that frontality be computed as a function of the estimated pitch and yaw angles, specifically 718
	NF = 1 - cos φYAW cos φPITCH 719
	with properties: 720
	1. that when both angles are 0 the non-frontality is 0, i.e. perfect frontality, 721
	1. that when both angles are 0 the non-frontality is 0, i.e. perfect frontality, 721
	1. that when both angles are 0 the non-frontality is 0, i.e. perfect frontality, 721

	2. that when either angle is 90 the non-frontality is 1, i.e. very poor, 722
	2. that when either angle is 90 the non-frontality is 1, i.e. very poor, 722

	3. of symmetry i.e. NF(φ) = NF(-φ). 723
	3. of symmetry i.e. NF(φ) = NF(-φ). 723

	This document does not give a definition of pitch angle (e.g. vs. Frankfurt Horizon, or normal vector at nose tip) and 724 therefore implementations must estimate pitch from internal some canonical frontal definition. 725
	NIST will evaluate and report performance for three cases: where only φYAW varies (φPITCH = 0), where only φPITCH varies, 726 and when both vary. We will select images where in-plane rotation φROLL is absent. We will consider the effect of non-727 zero φROLL on the above non-frontality definition.. 728
	The formal ISO requirement is for five degree rotation in pitch and yaw. While the ISO standard establishes an eight 729 degree limit on roll angle, this is of less importance. NIST will not consider roll angle. 730
	3.6.2. Age 731
	The functions of this section support estimation of the age of a face in one or more images. The process of age 732 determination has potential application in at least the following areas: 733
	 Age-based access control 734
	 Age-based access control 734
	 Age-based access control 734

	 Age adaptive human machine interaction (e.g. marketing) 735
	 Age adaptive human machine interaction (e.g. marketing) 735

	 Age invariant person identification 736
	 Age invariant person identification 736

	 Data mining and organization 737
	 Data mining and organization 737

	 738
	Age estimation16 has its own set of unique challenges when compared to other face image interpretation tasks, including 739 limited inter-age group variation especially when dealing with mature subjects, diversity of aging variation between races 740 and gender, and dependence on external factors such as health conditions, lifestyle, cosmetic surgery, etc. 741
	16 Xin Geng, Zhi-Hua Zhou, and Kate Smith-Miles, “Automatic Age Estimation Based on Facial Aging Patterns,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol 29, no. 12, pp. 2234-2240, 2007.
	16 Xin Geng, Zhi-Hua Zhou, and Kate Smith-Miles, “Automatic Age Estimation Based on Facial Aging Patterns,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol 29, no. 12, pp. 2234-2240, 2007.
	17 C.H. Ting, U.U. Sheikh, and S.A.R. Abu-Bakar, “Gender estimation based on physiological features of the face”, 10th International Conference on Information Science, ISSPA, pp. 201-204, 2010.

	3.6.3. Gender 742
	The functions of this section support estimation of the gender17 of a face in one or more images. Similar to age, gender is 743 viewed as a soft biometric trait that has applications in surveillance, human-computer interaction and image retrieval 744 systems. Gender could potentially be leveraged to index biometric databases and enhance the recognition accuracy of 745 primary traits such as face. 746
	3.6.4. Expression Neutrality 747
	NOTE: This task has been discontinued. Please do not send implementations. If you have capability to do this please 748 contact the organizers. 749
	Facial expression recognition is an important aspect in interpersonal communication and human-machine interaction, 750 having applications, for example, in building intelligent and more intuitive human-machine interfaces. ISO/IEC 19794-751 5:2005 establishes codes for facial expression. Clause 5.5.7 of that standard defines a neutral expression as “(non-smiling) 752 with both eyes open and mouth closed”. 753
	3.6.5. API 754
	Vendors may submit a class D SDK to evaluate performance on estimation of pose conformance, age, gender, and/or 755 expression neutrality. The SDK must define a C++ class named exactly SdkEstimator, which subclasses from the Estimator 756 class (see
	Vendors may submit a class D SDK to evaluate performance on estimation of pose conformance, age, gender, and/or 755 expression neutrality. The SDK must define a C++ class named exactly SdkEstimator, which subclasses from the Estimator 756 class (see
	Table 34
	Table 34

). At a minimum, the developer’s SdkEstimator class must override at least one of the estimation 757 functions and its corresponding initialization function from
	Table 34
	Table 34

	. To support those who only want to implement a 758 subset of the class D estimation functions, any functions that are not overridden by the developer’s SDK will default to the 759 behavior specified in the “Base” Estimator Class (ie. return a value indicating function is “not implemented”). 760

	Table 34 – “Base” Estimator Class Structure 761
	Table
	TR
	TD
	Span
	

	TD
	Span
	C++ code fragment

	TD
	Span
	Remarks

	Span

	1.
	1.
	1.

	#include <vector>
	#include <vector>
	#include <string>
	
	

	
	

	Span

	2.
	2.
	2.

	class Estimator {
	class Estimator {

	
	

	Span

	3.
	3.
	3.

	public:
	public:

	
	

	Span

	4.
	4.
	4.

	 virtual ~Estimator();
	 virtual ~Estimator();

	Span

	5.
	5.
	5.

	 virtual int32_t initialize_frontal_pose_estimation(
	 virtual int32_t initialize_frontal_pose_estimation(
	 const std::string &configuration_location);

	Pose conformance estimation initialization
	Pose conformance estimation initialization

	Span

	6.
	6.
	6.

	 virtual int32_t estimate_frontal_pose_conformance(const ONEFACE &input_face,
	 virtual int32_t estimate_frontal_pose_conformance(const ONEFACE &input_face,
	 double &non_frontality);

	Pose conformance estimation
	Pose conformance estimation

	Span

	7.
	7.
	7.

	 virtual int32_t initialize_age_estimation(
	 virtual int32_t initialize_age_estimation(
	 const std::string &configuration_location);

	Age estimation initialization
	Age estimation initialization

	Span

	8.
	8.
	8.

	 virtual int32_t estimate_age(const ONEFACE &input_face,
	 virtual int32_t estimate_age(const ONEFACE &input_face,
	 int32_t &age);

	Age (in years) estimation, given a single face
	Age (in years) estimation, given a single face

	Span

	9.
	9.
	9.

	 virtual int32_t estimate_age(const MULTIFACE &input_faces,
	 virtual int32_t estimate_age(const MULTIFACE &input_faces,
	 int32_t &age);

	Age (in years) estimation, given multiple faces of the same person taken contemporaneously
	Age (in years) estimation, given multiple faces of the same person taken contemporaneously

	Span

	9.
	9.
	9.
	9.

	 virtual int32_t initialize_gender_estimation(
	 virtual int32_t initialize_gender_estimation(
	 const std::string &configuration_location);

	Gender estimation initialization
	Gender estimation initialization

	Span

	10.
	10.
	10.

	 virtual int32_t estimate_gender(const ONEFACE &input_face,
	 virtual int32_t estimate_gender(const ONEFACE &input_face,
	 int8_t &gender,
	 double &mf);

	Gender estimation, given a single face
	Gender estimation, given a single face
	
	

	Span

	12.
	12.
	12.

	 virtual int32_t estimate_gender(const MULTIFACE &input_faces,
	 virtual int32_t estimate_gender(const MULTIFACE &input_faces,
	 int8_t &gender,
	 double &mf);

	Gender estimation, given multiple faces of the same person
	Gender estimation, given multiple faces of the same person
	

	Span

	13.
	13.
	13.

	 virtual int32_t initialize_expression_estimation(const std::string &configuration_location);
	 virtual int32_t initialize_expression_estimation(const std::string &configuration_location);

	Expression neutrality estimation initialization
	Expression neutrality estimation initialization

	Span

	14.
	14.
	14.

	 virtual int32_t estimate_expression_neutrality(
	 virtual int32_t estimate_expression_neutrality(
	 const ONEFACE &input_face,
	 double &expression_neutrality);

	Expression neutrality estimation
	Expression neutrality estimation

	Span

	15.
	15.
	15.

	};
	};

	
	

	Span

	 762
	An example of how the SdkEstimator class could be implemented is provided in
	An example of how the SdkEstimator class could be implemented is provided in
	Table 35
	Table 35

	 and
	Table 36
	Table 36

	. In the example, 763 the pose estimation function and its corresponding initialization function are implemented. In this case, during runtime, 764 the developer implementation of pose estimation will be executed. The rest of the unimplemented functions will default 765 to the behavior specified in the “Base” Estimator class (see
	Table 34
	Table 34

). 766

	 767
	Table 35 – Example of SdkEstimator Class Declaration 768
	Table
	TR
	TD
	Span
	

	TD
	Span
	C++ code fragment – sdkestimator.h

	TD
	Span
	Remarks

	Span

	1.
	1.
	1.

	#include <frvt2012.h>
	#include <frvt2012.h>

	
	

	Span

	2.
	2.
	2.

	class SdkEstimator : public Estimator {
	class SdkEstimator : public Estimator {

	
	

	Span

	3.
	3.
	3.

	public:
	public:

	
	

	Span

	4.
	4.
	4.

	 SdkEstimator();
	 SdkEstimator();

	Default constructor
	Default constructor

	Span

	5.
	5.
	5.

	 ~SdkEstimator();
	 ~SdkEstimator();

	Default destructor
	Default destructor

	Span

	6.
	6.
	6.

	 int32_t initialize_frontal_pose_estimation(
	 int32_t initialize_frontal_pose_estimation(
	 const std::string &configuration_location);

	Pose conformance estimation initialization
	Pose conformance estimation initialization

	Span

	7.
	7.
	7.

	 int32_t estimate_frontal_pose_conformance(const ONEFACE &input_face,
	 int32_t estimate_frontal_pose_conformance(const ONEFACE &input_face,
	 double &non_frontality);

	Pose conformance estimation
	Pose conformance estimation

	Span

	8.
	8.
	8.

	};
	};

	
	

	Span

	Table 36 – Example of SdkEstimator Class Definition 769
	Table
	TR
	TD
	Span
	

	TD
	Span
	C++ code fragment – sdkestimator.cpp

	TD
	Span
	Remarks

	Span

	1.
	1.
	1.

	#include <sdkestimator.h>
	#include <sdkestimator.h>
	
	

	
	

	Span

	2.
	2.
	2.

	SdkEstimator::SdkEstimator() { }
	SdkEstimator::SdkEstimator() { }

	Default constructor
	Default constructor

	Span

	3.
	3.
	3.

	SdkEstimator::~SdkEstimator() { }
	SdkEstimator::~SdkEstimator() { }

	Default destructor
	Default destructor

	Span

	4.
	4.
	4.

	int32_t
	int32_t
	SdkEstimator::initialize_frontal_pose_estimation(
	 const std::string &configuration_location)
	{
	 return 0;
	}

	Override the pose conformance estimation initialization function
	Override the pose conformance estimation initialization function

	Span

	5.
	5.
	5.

	int32_t
	int32_t
	SdkEstimator::estimate_frontal_pose_conformance(const ONEFACE &input_face,
	 double &non_frontality)
	{
	 non_frontality = 0.1;
	 return 0;
	}

	Override the pose conformance estimation function
	Override the pose conformance estimation function

	Span

	6.
	6.
	6.

	};
	};

	
	

	Span

	 770
	The initialization functions of
	The initialization functions of
	Table 37
	Table 37

	 will be called before one or more calls to the corresponding pose conformance, 771 age, gender, and expression neutrality estimation functions. In other words, initialize_frontal_pose_estimation() will be 772 called prior to estimate_frontal_pose_conformance(), initialize_age_estimation() will be called prior to estimate_age(), 773 initialize_gender_estimation() will be called prior to estimate_gender(), and initialize_expression_estimation() will be 774 called prior to estimate_expression_neutrality(). 7

	Table 37 – Initialization of Pose conformance, Age, Gender, and Expression neutrality estimation 776
	Prototypes
	Prototypes
	Prototypes
	Prototypes

	TD
	Span
	int32_t initialize_frontal_pose_estimation(

	
	

	Span

	TR
	TD
	Span
	const string &configuration_location);

	Input
	Input

	Span

	TR
	int32_t initialize_age_estimation(
	int32_t initialize_age_estimation(
	const string &configuration_location);

	
	

	Span

	TR
	Input
	Input

	Span

	TR
	TD
	Span
	int32_t initialize_gender_estimation(
	const string &configuration_location);

	
	

	Span

	TR
	Input
	Input

	Span

	TR
	TD
	Span
	int32_t initialize_expression_estimation(
	const string &configuration_location);

	
	

	Span

	TR
	Input
	Input

	Span

	Description
	Description
	Description
	

	This function initializes the SDK under test. It will be called by the NIST application before any corresponding call to the
	This function initializes the SDK under test. It will be called by the NIST application before any corresponding call to the
	This function initializes the SDK under test. It will be called by the NIST application before any corresponding call to the
	Table 38
	Table 38

	 functions. The SDK under test should set all parameters.

	Span

	Input Parameters
	Input Parameters
	Input Parameters

	configuration_location
	configuration_location

	A read-only directory containing any developer-supplied configuration parameters or run-time data files. The name of this directory is assigned by NIST. It is not hardwired by the provider. The names of the files in this directory are hardwired in the SDK and are unrestricted.
	A read-only directory containing any developer-supplied configuration parameters or run-time data files. The name of this directory is assigned by NIST. It is not hardwired by the provider. The names of the files in this directory are hardwired in the SDK and are unrestricted.

	Span

	Output
	Output
	Output
	Parameters

	none
	none

	
	

	Span

	Return Value
	Return Value
	Return Value

	0
	0

	Success
	Success

	Span

	TR
	2
	2

	Vendor provided configuration files are not readable in the indicated location.
	Vendor provided configuration files are not readable in the indicated location.

	Span

	TR
	Other
	Other

	Vendor-defined failure
	Vendor-defined failure

	Span

	 777
	Table 38
	Table 38
	Table 38

	 provides more details on the functions for computing a pose conformance, age, gender, and expression 778 neutrality from an image. 779

	 780
	Table 38 – Pose conformance, Age, Gender, Expression neutrality estimation 781
	
	
	
	

	int32_t estimate_frontal_pose_conformance(
	int32_t estimate_frontal_pose_conformance(

	
	

	Span

	
	
	

	const ONEFACE &input_face,
	const ONEFACE &input_face,

	Input
	Input

	Span

	
	
	

	double &non_frontality);
	double &non_frontality);

	Output
	Output

	Span

	Prototypes
	Prototypes
	Prototypes

	int32_t estimate_age(
	int32_t estimate_age(

	
	

	Span

	TR
	const ONEFACE &input_face,
	const ONEFACE &input_face,

	Input
	Input

	Span

	TR
	int32_t &age);
	int32_t &age);

	Output
	Output

	Span

	TR
	TD
	Span
	int32_t estimate_age(
	const MULTIFACE &input_faces,
	int32_t &age);

	
	
	Input
	Output

	Span

	TR
	TD
	Span
	int32_t estimate_gender(

	
	

	Span

	TR
	TD
	Span
	const ONEFACE &input_face,

	Input
	Input

	Span

	TR
	TD
	Span
	int8_t &gender

	Output
	Output

	Span

	TR
	TD
	Span
	double &mf);

	Output
	Output

	Span

	TR
	TD
	Span
	int32_t estimate_gender(

	
	

	Span

	TR
	TD
	Span
	const MULTIFACE &input_faces,

	Input
	Input

	Span

	TR
	TD
	Span
	int8_t &gender

	Output
	Output

	Span

	TR
	TD
	Span
	double &mf);

	Output
	Output

	Span

	TR
	TD
	Span
	int32_t estimate_expression_neutrality(

	
	

	Span

	TR
	TD
	Span
	const ONEFACE &input_face,

	Input
	Input

	Span

	Table
	TR
	TD
	Span
	double &expression_neutrality);

	Output
	Output

	Span

	Descriptions
	Descriptions
	Descriptions

	estimate_frontal_pose_conformance - this function takes a ONEFACE, and outputs a non-frontality value for the image. The non-frontality value should increase with larger deviations from frontal pose.
	estimate_frontal_pose_conformance - this function takes a ONEFACE, and outputs a non-frontality value for the image. The non-frontality value should increase with larger deviations from frontal pose.
	
	estimate_age – this function takes a ONEFACE or MULTIFACE, and outputs an age value (in years) for the image. When several images are present in a MULTIFACE they will be contemporaneous – typically collected within hours or days of eachother.
	
	estimate_gender - this function takes a ONEFACE or MULTIFACE, and outputs a gender value and a maleness-femaleness value for the image. The use of multiple images in the MULTIFACE structure allows greater accuracy.
	
	estimate_expression_neutrality – this function takes a ONEFACE, and an expression neutrality value for the image.

	Span

	Input
	Input
	Input
	Parameters

	input_face
	input_face

	An instance of a
	An instance of a
	An instance of a
	Table 12
	Table 12

	 structure.

	Span

	TR
	Input_faces
	Input_faces

	TD
	P
	Span
	An instance of a
	Table 13
	Table 13

	 structure.

	Span

	Output Parameters
	Output Parameters
	Output Parameters

	non-frontality
	non-frontality

	Indication of how far from frontal the head pose is. The value should be on the range [0,1].
	Indication of how far from frontal the head pose is. The value should be on the range [0,1].

	Span

	
	
	

	age
	age

	Indication of the age (in years) of the person. The value should be on the range [0,100].
	Indication of the age (in years) of the person. The value should be on the range [0,100].

	Span

	TR
	gender
	gender

	Indication of the gender of the person. Valid values are
	Indication of the gender of the person. Valid values are
	0: Male
	1: Female
	-1: Unknown

	Span

	TR
	mf
	mf

	A real-valued measure of maleness-femaleness value on [0,1]. A value of 0 indicates certainty that the subject is a male, and a value of 1 indicates certainty that the subject is a female.
	A real-valued measure of maleness-femaleness value on [0,1]. A value of 0 indicates certainty that the subject is a male, and a value of 1 indicates certainty that the subject is a female.

	Span

	TR
	expression_neutrality
	expression_neutrality

	ISO/IEC 19794-5:2005 establishes codes for facial expression. Clause 5.5.7 of that standard defines a neutral expression as “(non-smiling) with both eyes open and mouth closed”. SDKs shall report a real-valued measure of expression neutrality on [0,1] with 0 denoting large deviation from neutral and 1 indicating a fully neutral expression.
	ISO/IEC 19794-5:2005 establishes codes for facial expression. Clause 5.5.7 of that standard defines a neutral expression as “(non-smiling) with both eyes open and mouth closed”. SDKs shall report a real-valued measure of expression neutrality on [0,1] with 0 denoting large deviation from neutral and 1 indicating a fully neutral expression.

	Span

	Return Value
	Return Value
	Return Value

	0
	0

	Success
	Success

	Span

	TR
	2
	2

	Elective refusal to process this kind of ONEFACE or MULTIFACE
	Elective refusal to process this kind of ONEFACE or MULTIFACE

	Span

	TR
	4
	4

	Involuntary failure to extract features (e.g. could not find face in the input-image)
	Involuntary failure to extract features (e.g. could not find face in the input-image)

	Span

	TR
	8
	8

	Cannot parse input data (i.e. assertion that input record is non-conformant)
	Cannot parse input data (i.e. assertion that input record is non-conformant)

	Span

	TR
	Other
	Other

	Vendor-defined failure. Failure codes must be documented and communicated to NIST with the submission of the implementation under test.
	Vendor-defined failure. Failure codes must be documented and communicated to NIST with the submission of the implementation under test.

	Span

	 782
	NOTE 1 The "mf" and "non-frontality" values can be used to make DET characteristics. These would plot, 783 respectively, the "False male rate vs. False female rate" for gender, and the "False non-frontal rate vs. False frontal rate" 784 for pose. Various summary statistics can be computed also. 785
	 786
	787
	3.7. Video 788
	3.7.1. Definitions 789
	As shown in
	As shown in
	Table 39
	Table 39

	, the video API supports 1:N identification of video-to-video, video-to-still image, and still image-to-790 video. The following hold: 791

	 A still image is a picture of one and only one person. One or more such images are presented to the implementation 792 using a MULTIFACE data structure 793
	 A still image is a picture of one and only one person. One or more such images are presented to the implementation 792 using a MULTIFACE data structure 793
	 A still image is a picture of one and only one person. One or more such images are presented to the implementation 792 using a MULTIFACE data structure 793

	 A video is a sequence of F ≥ 1 frames containing P ≥ 0 persons. 794
	 A video is a sequence of F ≥ 1 frames containing P ≥ 0 persons. 794

	 A frame is 2D still image containing P ≥ 0 persons 795
	 A frame is 2D still image containing P ≥ 0 persons 795

	 Any person might be present in 0 ≤ f ≤ F frames, and their presence may be non-contiguous (e.g. due to occlusion) 796
	 Any person might be present in 0 ≤ f ≤ F frames, and their presence may be non-contiguous (e.g. due to occlusion) 796

	 Different videos contain different numbers of frames and people. 797
	 Different videos contain different numbers of frames and people. 797

	 A ONEVIDEO container is used to represent a video. It contains a small header and pointers to F frames. 798
	 A ONEVIDEO container is used to represent a video. It contains a small header and pointers to F frames. 798

	 Any person found in a video is represented by proprietary template (feature) data contained with a PERSONREP data 799 structure. A proprietary template contains information from one or more frames. Internally, it might embed multiple 800 traditional still-image templates, or it might integrate feature data by tracking a person across multiple frames. 801
	 Any person found in a video is represented by proprietary template (feature) data contained with a PERSONREP data 799 structure. A proprietary template contains information from one or more frames. Internally, it might embed multiple 800 traditional still-image templates, or it might integrate feature data by tracking a person across multiple frames. 801

	 A PERSONREP structure additionally contains a trajectory indicating the location of the person in each frame. 802
	 A PERSONREP structure additionally contains a trajectory indicating the location of the person in each frame. 802

	 803
	Please note that all of the code for the classes needed to implement the video API will be provided to implementers at 804
	Please note that all of the code for the classes needed to implement the video API will be provided to implementers at 804
	http://nigos.nist.gov:8080/frvt2012/
	http://nigos.nist.gov:8080/frvt2012/

	. A single sample video has been made available at the same link. The sample video 805 is only approximately representative of the scene and is not an extraction from the actual video data that will be used in 806 the evaluation. It is only intended to illustrate similarities in terms of camera placement relative to the subject and people 807 behavior. It is not intended to represent the optical properties of the actual imaging systems, particularly the spatial 808 sampling rate, nor the compression char

	NIST does not know the minimum and maximum numbers of persons appearing in video sequences. Moreover, NIST will 810 apply the algorithms to other databases. The maximum number of frames in a video sequence will be limited by the 811 duration of the sequence. NIST expects to use sequences whose duration extends from a few seconds to a few minutes. 812
	 813
	NIST does not anticipate using interlaced video. 814
	 815
	The frame sizes will often be 1920 x 1080 pixels. We do not anticipate using larger sizes. 816
	 817
	The videos are contiguous in time, without interruptions. 818
	 819
	Much of the video data is present at 30 frames per second. 820
	 821
	Some sequences exist at much higher frame rates. NIST will examine whether this offers benefit. 822
	 823
	Much of the data was collected using a modern proprietary video codec intended to allow inspection of faces. 824
	 825
	In the videos, the scenes capture people walking towards the camera. Occasionally, there are people walking in various 826 transverse directions including people walking away from the camera. The cameras have varying pitch angles ranging 827 from 0 degrees (frontal) to higher values. The depth of scene varies between the cameras such that the sizes of the faces 828 vary, with the following: 829
	 Eye-to-eye distances range from approximately 40 pixels to 120 pixels 830
	 Eye-to-eye distances range from approximately 40 pixels to 120 pixels 830
	 Eye-to-eye distances range from approximately 40 pixels to 120 pixels 830

	 Amount of time a face is fully visible in a scene can vary from approximately 0 to 5 seconds 831
	 Amount of time a face is fully visible in a scene can vary from approximately 0 to 5 seconds 831

	 Some of the captures include non-uniform lighting due to light coming through adjacent windows. 832
	 Some of the captures include non-uniform lighting due to light coming through adjacent windows. 832

	Table 39 – API implementation requirements for Video 833
	Table
	TR
	TD
	Span
	Function

	TD
	Span
	Video-to-video

	TD
	Span
	Still-to-video

	TD
	Span
	Video-to-still

	Span

	Enroll
	Enroll
	Enroll

	Videos
	Videos

	Videos
	Videos

	Stills
	Stills

	Span

	Enrollment input datatype
	Enrollment input datatype
	Enrollment input datatype

	ONEVIDEO
	ONEVIDEO

	ONEVIDEO
	ONEVIDEO

	MULTIFACE
	MULTIFACE

	Span

	Enrollment datatype
	Enrollment datatype
	Enrollment datatype
	Enrollment datatype

	PERSONREP
	PERSONREP

	PERSONREP
	PERSONREP

	PERSONREP
	PERSONREP

	Span

	Search
	Search
	Search

	Video
	Video

	Still
	Still

	Video
	Video

	Span

	Search input datatype
	Search input datatype
	Search input datatype

	ONEVIDEO
	ONEVIDEO

	MULTIFACE
	MULTIFACE

	ONEVIDEO
	ONEVIDEO

	Span

	Search datatype
	Search datatype
	Search datatype

	PERSONREP
	PERSONREP

	PERSONREP
	PERSONREP

	PERSONREP
	PERSONREP

	Span

	Search result
	Search result
	Search result

	CANDIDATELIST
	CANDIDATELIST

	CANDIDATELIST
	CANDIDATELIST

	CANDIDATELIST
	CANDIDATELIST

	Span

	API requirements
	API requirements
	API requirements

	3.7.9
	3.7.9
	3.7.9
	3.7.9

	 +
	3.7.10
	3.7.10

	 +
	3.7.12
	3.7.12

	 +
	3.7.14
	3.7.14

	

	3.7.9
	3.7.9
	3.7.9
	3.7.9

	 +
	3.7.10
	3.7.10

	 +
	3.7.20
	3.7.20

	 +
	3.7.14
	3.7.14

	

	3.7.16
	3.7.16
	3.7.16
	3.7.16

	 +
	3.7.18
	3.7.18

	 +
	3.7.12
	3.7.12

	 +
	3.7.21
	3.7.21

	

	Span

	3.7.1.1. Video-to-video 834
	Video-to-video identification is the process of enrolling N videos and then searching the enrollment database with a 835 search video. During identification, the SDK shall return a set of indices of candidate videos that contain people who 836 appear in the search video. 837
	 N templates will be generated from M enrollment videos. If no people appear in the videos, N will be 0. If may 838 people appear in each video, we'd expect N > M. 839
	 N templates will be generated from M enrollment videos. If no people appear in the videos, N will be 0. If may 838 people appear in each video, we'd expect N > M. 839
	 N templates will be generated from M enrollment videos. If no people appear in the videos, N will be 0. If may 838 people appear in each video, we'd expect N > M. 839

	 The N templates will be concatenated and finalized into a proprietary enrollment data structure. 840
	 The N templates will be concatenated and finalized into a proprietary enrollment data structure. 840

	 A ONEVIDEO will be converted to S ≥ 0 identification template(s) based on the number of people detected in the 841 video. 842
	 A ONEVIDEO will be converted to S ≥ 0 identification template(s) based on the number of people detected in the 841 video. 842

	 Each identification template generated will be searched against the enrollment database of templates generated 843 from the M input videos. 844
	 Each identification template generated will be searched against the enrollment database of templates generated 843 from the M input videos. 844

	 845
	NOTE 1 We anticipate that the same person may appear in more than one enrolled video. 846
	3.7.1.2. Still image-to-video 847
	Still image-to-video identification is the process of enrolling N videos and then searching the enrollment database with a 848 template produced from a MULTIFACE as follows: 849
	 N templates will be generated from 1 < M ≤ N enrollment videos. 850
	 N templates will be generated from 1 < M ≤ N enrollment videos. 850
	 N templates will be generated from 1 < M ≤ N enrollment videos. 850

	 The N templates will be concatenated and finalized into a proprietary enrollment data structure. 851
	 The N templates will be concatenated and finalized into a proprietary enrollment data structure. 851

	 A MULTIFACE (still image) will be converted to an identification template. 852
	 A MULTIFACE (still image) will be converted to an identification template. 852

	 The identification template will be searched against the enrollment database of N templates. 853
	 The identification template will be searched against the enrollment database of N templates. 853

	 854
	NOTE 1 We anticipate that the same person may appear in more than one enrolled video. 855
	 856
	3.7.1.3. Video-to-still image 857
	Video-to-still image identification is the process of enrolling N MULTIFACEs (see
	Video-to-still image identification is the process of enrolling N MULTIFACEs (see
	Table 13
	Table 13

) and then searching the 858 enrollment database with templates from persons found in a video as follows 859

	 N templates will be generated from N still-image MULTIFACEs. 860
	 N templates will be generated from N still-image MULTIFACEs. 860
	 N templates will be generated from N still-image MULTIFACEs. 860

	 The N templates will be concatenated and finalized into a proprietary enrollment data structure. 861
	 The N templates will be concatenated and finalized into a proprietary enrollment data structure. 861

	 A ONEVIDEO will be converted to S ≥ 0 identification template(s) based on the number of people detected in the 862 video. 863
	 A ONEVIDEO will be converted to S ≥ 0 identification template(s) based on the number of people detected in the 862 video. 863

	 Each of the S identification templates will be searched separately against the enrollment database of N templates. 864
	 Each of the S identification templates will be searched separately against the enrollment database of N templates. 864

	3.7.2. Class for encapsulating a video sequence 865
	Table 40 – ONEVIDEO Class 866
	Table
	TR
	TD
	Span
	

	TD
	Span
	C++ code fragment

	TD
	Span
	Remarks

	Span

	1.
	1.
	1.

	class ONEVIDEO
	class ONEVIDEO

	
	

	Span

	2.
	2.
	2.

	{
	{
	private:

	
	

	Span

	3.
	3.
	3.

	 uint16_t frameWidth;
	 uint16_t frameWidth;

	Number of pixels horizontally of all frames
	Number of pixels horizontally of all frames

	Span

	4.
	4.
	4.
	4.

	 uint16_t frameHeight;
	 uint16_t frameHeight;

	Number of pixels vertically of all frames
	Number of pixels vertically of all frames

	Span

	5.
	5.
	5.

	 uint8_t frameDepth;
	 uint8_t frameDepth;

	Number of bits per pixel for all frames. Legal values are 8 and 24.
	Number of bits per pixel for all frames. Legal values are 8 and 24.

	Span

	6.
	6.
	6.

	 uint16_t framesPerSec;
	 uint16_t framesPerSec;

	The frame rate of the video sequence in seconds
	The frame rate of the video sequence in seconds

	Span

	7.
	7.
	7.

	public:
	public:
	 std::vector<uint8_t*> data;

	Vector of pointers to data from each frame in the video sequence. The number of frames (ie. size of the vector) can be obtained by calling vector::size(). The i-th entry in data (ie. data[i]) points to frame_width x frame_height pixels of data for the i-th frame.
	Vector of pointers to data from each frame in the video sequence. The number of frames (ie. size of the vector) can be obtained by calling vector::size(). The i-th entry in data (ie. data[i]) points to frame_width x frame_height pixels of data for the i-th frame.

	Span

	8.
	8.
	8.

	 //Getter and Setter Methods
	 //Getter and Setter Methods

	
	

	Span

	9.
	9.
	9.

	};
	};

	
	

	Span

	3.7.3. Class representing a pair of eye coordinates 867
	The data structure for reporting person locations in video appears in
	The data structure for reporting person locations in video appears in
	Table 41
	Table 41

	. The coordinates may be useful to NIST for 868 relating spatial location to recognition success during our analysis. 869

	Table 41 – EYEPAIR Class 870
	Table
	TR
	TD
	Span
	

	TD
	Span
	C++ code fragment

	TD
	Span
	Remarks

	Span

	1.
	1.
	1.

	class EYEPAIR
	class EYEPAIR

	
	

	Span

	2.
	2.
	2.

	{
	{
	private:

	
	

	Span

	3.
	3.
	3.

	 bool isSet;
	 bool isSet;

	If the eye coordinates have been computed and assigned successfully, this value should be set to true, otherwise it should be set to false.
	If the eye coordinates have been computed and assigned successfully, this value should be set to true, otherwise it should be set to false.

	Span

	4.
	4.
	4.

	 int16_t xLeft;
	 int16_t xLeft;
	 int16_t yLeft;

	X and Y coordinate of the center of the subject's left eye. Out-of-range values (e.g. x < 0 or x >= width) indicate the implementation believes the eye center is outside the image.
	X and Y coordinate of the center of the subject's left eye. Out-of-range values (e.g. x < 0 or x >= width) indicate the implementation believes the eye center is outside the image.

	Span

	5.
	5.
	5.

	 int16_t xRight;
	 int16_t xRight;
	 int16_t yRight;

	X and Y coordinate of the center of the subject's right eye. Out-of-range values (e.g. x < 0 or x >= width) indicate the implementation believes the eye center is outside the image.
	X and Y coordinate of the center of the subject's right eye. Out-of-range values (e.g. x < 0 or x >= width) indicate the implementation believes the eye center is outside the image.

	Span

	6.
	6.
	6.

	 uint16_t frameNum
	 uint16_t frameNum

	For video: the frame number that corresponds to the video frame from which the eye coordinates were generated. (ie. the i-th frame from the video sequence). This field should not be set for eye coordinates for a single still image.
	For video: the frame number that corresponds to the video frame from which the eye coordinates were generated. (ie. the i-th frame from the video sequence). This field should not be set for eye coordinates for a single still image.

	Span

	7.
	7.
	7.

	public:
	public:
	 //getter/setter methods

	
	

	Span

	8.
	8.
	8.

	};
	};

	
	

	Span

	3.7.4. Data type for representing a person’s trajectory via eye coordinates from a video sequence 871
	Table 42 – PersonTrajectory typedef 872
	Table
	TR
	TD
	Span
	

	TD
	Span
	C++ code fragment

	TD
	Span
	Remarks

	Span

	1.
	1.
	1.

	typedef std::vector<EYEPAIR> PersonTrajectory;
	typedef std::vector<EYEPAIR> PersonTrajectory;

	Vector of EYEPAIR (see
	Vector of EYEPAIR (see
	Vector of EYEPAIR (see
	3.7.3
	3.7.3

) objects for video frames where eyes were detected. This data structure should store eye coordinates for each video frame where eyes were detected for a particular person. For video frames where the person’s eyes were not detected, the SDK shall not add an EYEPAIR to this data structure.

	
	If a face can be detected, but not the eyes, this structure could be populated with (x,y)LEFT == (x,y)RIGHT

	Span

	3.7.5. Class for representing a person from a video sequence or an image 873
	Table 43 – PERSONREP Class 874
	Table
	TR
	TD
	Span
	

	TD
	Span
	C++ code fragment

	TD
	Span
	Remarks

	Span

	1.
	1.
	1.

	class PERSONREP
	class PERSONREP

	
	

	Span

	2.
	2.
	2.

	{
	{
	private:

	
	

	Span

	3.
	3.
	3.

	 PersonTrajectory eyeCoordinates;
	 PersonTrajectory eyeCoordinates;

	Data structure for capturing eye coordinates
	Data structure for capturing eye coordinates

	Span

	4.
	4.
	4.
	4.

	 PersonTemplate proprietaryTemplate;
	 PersonTemplate proprietaryTemplate;

	PersonTemplate is a wrapper to a uint8_t* for capturing proprietary template data representing a person from a video sequence or an image.
	PersonTemplate is a wrapper to a uint8_t* for capturing proprietary template data representing a person from a video sequence or an image.

	Span

	5.
	5.
	5.

	public:
	public:

	
	

	Span

	6.
	6.
	6.

	 PERSONREP(const uint64_t inSize);
	 PERSONREP(const uint64_t inSize);

	The constructor takes a size parameter and allocates memory of inSize. getPersonTemplatePtr() should be called to access the newly allocated memory for SDK manipulation. Please note that this class will take care of all memory allocation and de-allocation of its own memory. The SDK shall not de-allocate memory created by this class.
	The constructor takes a size parameter and allocates memory of inSize. getPersonTemplatePtr() should be called to access the newly allocated memory for SDK manipulation. Please note that this class will take care of all memory allocation and de-allocation of its own memory. The SDK shall not de-allocate memory created by this class.

	Span

	7.
	7.
	7.

	 void pushBackEyeCoord(const EYEPAIR &eyes);
	 void pushBackEyeCoord(const EYEPAIR &eyes);

	This function should be used to add EYEPAIRs for the video frames or images where eye coordinates were detected.
	This function should be used to add EYEPAIRs for the video frames or images where eye coordinates were detected.

	Span

	8.
	8.
	8.

	 uint8_t* getPersonTemplatePtr() const;
	 uint8_t* getPersonTemplatePtr() const;

	This function returns a uint8_t* to the template data.
	This function returns a uint8_t* to the template data.

	Span

	9.
	9.
	9.

	 uint64_t getPersonTemplateSize() const;
	 uint64_t getPersonTemplateSize() const;

	This function returns the size of the template data.
	This function returns the size of the template data.

	Span

	10.
	10.
	10.

	 //… getter methods, copy constructor,
	 //… getter methods, copy constructor,
	 //… assignment operator

	
	

	Span

	11.
	11.
	11.

	
	

	
	

	Span

	12.
	12.
	12.

	};
	};

	
	

	Span

	3.7.6. Class for result of an identification search 875
	All identification searches shall return a candidate list of a NIST-specified length. The list shall be sorted with the most 876 similar matching entries list first with lowest rank. 877
	Table 44 – CANDIDATE Class 878
	Table
	TR
	TD
	Span
	

	TD
	Span
	C++ code fragment

	TD
	Span
	Remarks

	Span

	1.
	1.
	1.

	class CANDIDATE
	class CANDIDATE

	
	

	Span

	2.
	2.
	2.

	{
	{
	private:

	
	

	Span

	3.
	3.
	3.

	 bool isSet
	 bool isSet

	If the candidate is valid, this should be set to true. If the candidate computation failed, this should be set to false.
	If the candidate is valid, this should be set to true. If the candidate computation failed, this should be set to false.

	Span

	4.
	4.
	4.

	 uint32_t templateId;
	 uint32_t templateId;

	The Template ID integer from the enrollment database manifest defined in clause
	The Template ID integer from the enrollment database manifest defined in clause
	The Template ID integer from the enrollment database manifest defined in clause
	0
	0

	.

	Span

	5.
	5.
	5.

	 double similarityScore;
	 double similarityScore;

	Measure of similarity between the identification template and the enrolled candidate. Higher scores mean more likelihood that the samples are of the same person.
	Measure of similarity between the identification template and the enrolled candidate. Higher scores mean more likelihood that the samples are of the same person.
	An algorithm is free to assign any value to a candidate. The distribution of values will have an impact on the appearance of a plot of false-negative and false-positive identification rates.

	Span

	6.
	6.
	6.

	public:
	public:
	 //getter/setter methods

	
	

	Span

	7.
	7.
	7.

	};
	};

	
	

	Span

	3.7.7. Data type for representing a list of results of an identification search 879
	Table 45 – CANDIDATELIST typedef 880
	Table
	TR
	TD
	Span
	

	TD
	Span
	C++ code fragment

	TD
	Span
	Remarks

	Span

	1.
	1.
	1.

	typedef std::vector<CANDIDATE> CANDIDATELIST;
	typedef std::vector<CANDIDATE> CANDIDATELIST;

	A vector containing objects of CANDIDATEs. The CANDIDATE class is defined in section
	A vector containing objects of CANDIDATEs. The CANDIDATE class is defined in section
	A vector containing objects of CANDIDATEs. The CANDIDATE class is defined in section
	3.7.6
	3.7.6

	.

	Span

	 881
	3.7.8. Class representing return code values 882
	Table 46 – ReturnCode class 883
	Table
	TR
	TD
	Span
	

	TD
	Span
	C++ code fragment

	TD
	Span
	Remarks

	Span

	
	
	

	class ReturnCode {
	class ReturnCode {
	public:

	
	

	Span

	1.
	1.
	1.

	 enum Status
	 enum Status

	
	

	Span

	2.
	2.
	2.
	2.

	 {
	 {

	
	

	Span

	3.
	3.
	3.

	 Success=0,
	 Success=0,

	Success
	Success

	Span

	4.
	4.
	4.

	 MissingConfig=1,
	 MissingConfig=1,

	The configuration data is missing or unreadable
	The configuration data is missing or unreadable

	Span

	5.
	5.
	5.

	 EnrollDirFailed=2,
	 EnrollDirFailed=2,

	An operation on the enrollment directory failed
	An operation on the enrollment directory failed

	Span

	6.
	6.
	6.

	 InitNumData=3,
	 InitNumData=3,

	The SDK can’t support the number of images or videos
	The SDK can’t support the number of images or videos

	Span

	7.
	7.
	7.

	 InitBadDesc=4,
	 InitBadDesc=4,

	The image descriptions are unexpected or unusable
	The image descriptions are unexpected or unusable

	Span

	8.
	8.
	8.

	 RefuseInput=5,
	 RefuseInput=5,

	Elective refusal to process this kind of input (ONEVIDEO or MULTIFACE)
	Elective refusal to process this kind of input (ONEVIDEO or MULTIFACE)

	Span

	9.
	9.
	9.

	 FailExtract=6,
	 FailExtract=6,

	Involuntary failure to extract features
	Involuntary failure to extract features

	Span

	10.
	10.
	10.

	 FailTempl=7,
	 FailTempl=7,

	Elective refusal to produce a template
	Elective refusal to produce a template

	Span

	11.
	11.
	11.

	 FailParse=8,
	 FailParse=8,

	Cannot parse input data
	Cannot parse input data

	Span

	12.
	12.
	12.

	 FinInputData=9,
	 FinInputData=9,

	Cannot locate input data
	Cannot locate input data

	Span

	13.
	13.
	13.

	 FinTemplFormat=10,
	 FinTemplFormat=10,

	One or more template files are in an incorrect format
	One or more template files are in an incorrect format

	Span

	14.
	14.
	14.

	 IdBadTempl=11,
	 IdBadTempl=11,

	The input template was defective
	The input template was defective

	Span

	15.
	15.
	15.

	 Vendor=88
	 Vendor=88

	Vendor-defined failure
	Vendor-defined failure

	Span

	16.
	16.
	16.

	 };
	 };

	
	

	Span

	17.
	17.
	17.

	 ReturnCode(const Status inStatus);
	 ReturnCode(const Status inStatus);

	Constructor that takes an input parameter of a Status enum value. All of the functions that need to be implemented for the Video API return an instantiation of a ReturnCode object with a valid status value passed in as a parameter.
	Constructor that takes an input parameter of a Status enum value. All of the functions that need to be implemented for the Video API return an instantiation of a ReturnCode object with a valid status value passed in as a parameter.

	Span

	18.
	18.
	18.

	 Status getStatus() const;
	 Status getStatus() const;

	Getter method to return status value
	Getter method to return status value

	Span

	19.
	19.
	19.

	private:
	private:

	
	

	Span

	20.
	20.
	20.

	 Status status;
	 Status status;

	Member variable for storing status
	Member variable for storing status

	Span

	21.
	21.
	21.

	};
	};

	
	

	Span

	3.7.9. The VideoEnrollment Interface 884
	The abstract class VideoEnrollment must be implemented by the SDK developer in a class named exactly 885 SdkVideoEnrollment. The processing that takes place during each phase of the test is done via calls to the methods 886 declared in the interface as pure virtual, and therefore is to be implemented by the SDK. The test driver will call these 887 methods, handling all return values. 888
	Table
	TR
	TD
	Span
	

	TD
	Span
	C++ code fragment

	TD
	Span
	Remarks

	Span

	1.
	1.
	1.

	class VideoEnrollment
	class VideoEnrollment

	
	

	Span

	2.
	2.
	2.

	{
	{
	public:

	
	

	Span

	3.
	3.
	3.

	 virtual ReturnCode getPid(
	 virtual ReturnCode getPid(
	 string &sdkId, string &email) = 0;

	Return the sdk identifier and email
	Return the sdk identifier and email

	Span

	4.
	4.
	4.

	 virtual ReturnCode initialize(
	 virtual ReturnCode initialize(
	 const string &configDir,
	 const string &enrollDir,
	 const uint32_t numVideos) = 0 ;

	Initialize the enrollment session.
	Initialize the enrollment session.

	Span

	5.
	5.
	5.

	 virtual ReturnCode generateEnrollmentTemplate(
	 virtual ReturnCode generateEnrollmentTemplate(
	 const ONEVIDEO &inputVideo,
	 vector<PERSONREP> &enrollTemplates) = 0;

	Generate enrollment template(s) for the persons detected in the input video. This function takes an ONEVIDEO (see
	Generate enrollment template(s) for the persons detected in the input video. This function takes an ONEVIDEO (see
	Generate enrollment template(s) for the persons detected in the input video. This function takes an ONEVIDEO (see
	3.7.2
	3.7.2

) as input and populates a vector of PERSONREP (see
	3.7.5
	3.7.5

) with the number of persons detected from the video sequence. The implementation could call vector::push_back to insert into the vector.

	Span

	6.
	6.
	6.

	 // Destructor
	 // Destructor

	
	

	Span

	7.
	7.
	7.

	};
	};

	
	

	Span

	3.7.9.1. Implementation identifier 889
	Table 47 – VideoEnrollment::getPid 890
	Prototype
	Prototype
	Prototype
	Prototype

	ReturnCode getPid(
	ReturnCode getPid(

	
	

	Span

	TR
	string &sdkId,
	string &sdkId,

	A developer-assigned ID. This shall be different for each submitted SDK.
	A developer-assigned ID. This shall be different for each submitted SDK.

	Span

	Table
	TR
	string &email);
	string &email);

	Output
	Output

	Span

	Description
	Description
	Description
	

	This function retrieves a point-of-contact email address from the implementation under test.
	This function retrieves a point-of-contact email address from the implementation under test.

	Span

	Output Parameters
	Output Parameters
	Output Parameters

	sdkId
	sdkId

	4-character version ID code as hexadecimal integer. This will be used to identify the SDK in the results reports. This value should be changed every time an SDK is submitted to NIST. The value is developer assigned - format is not regulated by NIST. EXAMPLE: "011A". The value cannot be the empty string.
	4-character version ID code as hexadecimal integer. This will be used to identify the SDK in the results reports. This value should be changed every time an SDK is submitted to NIST. The value is developer assigned - format is not regulated by NIST. EXAMPLE: "011A". The value cannot be the empty string.

	Span

	TR
	email
	email

	Point of contact email address. The value cannot be the empty string.
	Point of contact email address. The value cannot be the empty string.

	Span

	ReturnCode
	ReturnCode
	ReturnCode

	Success
	Success

	Success
	Success

	Span

	TR
	Vendor
	Vendor

	Vendor-defined failure
	Vendor-defined failure

	Span

	3.7.9.2. Initialization of the video enrollment session 891
	Before any enrollment feature extraction calls are made, the NIST test harness will call the initialization below for video-892 to-video and still image-to-video. 893
	Table 48 – VideoEnrollment::initialize 894
	Prototype
	Prototype
	Prototype
	Prototype

	ReturnCode initialize(
	ReturnCode initialize(

	
	

	Span

	TR
	const string &configDir,
	const string &configDir,

	Input
	Input

	Span

	TR
	const string &enrollDir,
	const string &enrollDir,

	Input
	Input

	Span

	TR
	const uint32_t numVideos);
	const uint32_t numVideos);

	Input
	Input

	Span

	Description
	Description
	Description
	

	This function initializes the SDK under test and sets all needed parameters. This function will be called N=1 times by the NIST application immediately before any M  1 calls to generateEnrollmentTemplate. The SDK should tolerate execution of P > 1 processes on the same machine each of which may be reading and writing to the enrollment directory. This function may be called P times and these may be running simultaneously and in parallel.
	This function initializes the SDK under test and sets all needed parameters. This function will be called N=1 times by the NIST application immediately before any M  1 calls to generateEnrollmentTemplate. The SDK should tolerate execution of P > 1 processes on the same machine each of which may be reading and writing to the enrollment directory. This function may be called P times and these may be running simultaneously and in parallel.

	Span

	Input Parameters
	Input Parameters
	Input Parameters

	configDir
	configDir

	A read-only directory containing any developer-supplied configuration parameters or run-time data files.
	A read-only directory containing any developer-supplied configuration parameters or run-time data files.

	Span

	TR
	enrollDir
	enrollDir

	The directory will be initially empty, but may have been initialized and populated by separate invocations of the enrollment process. When this function is called, the SDK may populate this folder in any manner it sees fit. Permissions will be read-write-delete.
	The directory will be initially empty, but may have been initialized and populated by separate invocations of the enrollment process. When this function is called, the SDK may populate this folder in any manner it sees fit. Permissions will be read-write-delete.

	Span

	TR
	numVideos
	numVideos

	The total number of videos that will be passed to the SDK for enrollment.
	The total number of videos that will be passed to the SDK for enrollment.

	Span

	Output
	Output
	Output
	Parameters

	none
	none

	
	

	Span

	ReturnCode
	ReturnCode
	ReturnCode

	Success
	Success

	Success
	Success

	Span

	TR
	MissingConfig
	MissingConfig

	The configuration data is missing, unreadable, or in an unexpected format.
	The configuration data is missing, unreadable, or in an unexpected format.

	Span

	TR
	EnrollDirFailed
	EnrollDirFailed

	An operation on the enrollment directory failed (e.g. permission, space).
	An operation on the enrollment directory failed (e.g. permission, space).

	Span

	TR
	InitNumData
	InitNumData

	The SDK cannot support the number of videos.
	The SDK cannot support the number of videos.

	Span

	TR
	Vendor
	Vendor

	Vendor-defined failure
	Vendor-defined failure

	Span

	3.7.9.3. Video enrollment 895
	An ONEVIDEO is converted to enrollment template(s) for each person detected in the ONEVIDEO using the function 896 below. 897
	Table 49 – VideoEnrollment::generateEnrollmentTemplate 898
	Prototypes
	Prototypes
	Prototypes
	Prototypes

	ReturnCode generateEnrollmentTemplate(
	ReturnCode generateEnrollmentTemplate(

	
	

	Span

	TR
	const ONEVIDEO &inputVideo,
	const ONEVIDEO &inputVideo,

	Input
	Input

	Span

	TR
	std::vector<PERSONREP> &enrollTemplates);
	std::vector<PERSONREP> &enrollTemplates);

	Output
	Output

	Span

	Description
	Description
	Description

	This function takes an ONEVIDEO, and outputs a vector of PERSONREP objects. If the function executes correctly (i.e. returns a ReturnCode::Success exit status), the NIST calling application will store the template. The NIST application will concatenate the templates and pass the result to the enrollment finalization function. For a video in which no persons appear, a valid output is an empty vector (i.e. size() == 0).
	This function takes an ONEVIDEO, and outputs a vector of PERSONREP objects. If the function executes correctly (i.e. returns a ReturnCode::Success exit status), the NIST calling application will store the template. The NIST application will concatenate the templates and pass the result to the enrollment finalization function. For a video in which no persons appear, a valid output is an empty vector (i.e. size() == 0).
	If the function gives a non-zero exit status:

	Span

	Table
	TR
	 If the exit status is ReturnCode::FailParse, NIST will debug, otherwise
	 If the exit status is ReturnCode::FailParse, NIST will debug, otherwise
	 If the exit status is ReturnCode::FailParse, NIST will debug, otherwise
	 If the exit status is ReturnCode::FailParse, NIST will debug, otherwise

	 the test driver will ignore the output template (the template may have any size including zero)
	 the test driver will ignore the output template (the template may have any size including zero)

	 the event will be counted as a failure to enroll. Such an event means that this person can never be identified correctly.
	 the event will be counted as a failure to enroll. Such an event means that this person can never be identified correctly.

	IMPORTANT. NIST's application writes the template to disk. The implementation must not attempt writes to the enrollment directory (nor to other resources). Any data needed during subsequent searches should be included in the template, or created from the templates during the enrollment finalization function.

	Span

	Input
	Input
	Input
	Parameters

	inputVideo
	inputVideo

	An instance of a
	An instance of a
	An instance of a
	Table 40
	Table 40

	 class.

	Span

	Output Parameters
	Output Parameters
	Output Parameters

	enrollTemplates
	enrollTemplates

	For each person detected in the ONEVIDEO, the function shall identify the person’s estimated eye centers for each video frame where the person’s eye coordinates can be calculated. The eye coordinates shall be captured in the PERSONREP.eyeCoordinates variable, which is a vector of EYEPAIR objects. The frame number from the video of where the eye coordinates were detected shall be captured in the EYEPAIR.frameNum variable for each pair of eye coordinates. In the event the eye centers cannot be calculated (
	For each person detected in the ONEVIDEO, the function shall identify the person’s estimated eye centers for each video frame where the person’s eye coordinates can be calculated. The eye coordinates shall be captured in the PERSONREP.eyeCoordinates variable, which is a vector of EYEPAIR objects. The frame number from the video of where the eye coordinates were detected shall be captured in the EYEPAIR.frameNum variable for each pair of eye coordinates. In the event the eye centers cannot be calculated (

	Span

	ReturnCode
	ReturnCode
	ReturnCode

	Success
	Success

	Success
	Success

	Span

	TR
	RefuseInput
	RefuseInput

	Elective refusal to process this kind of ONEVIDEO
	Elective refusal to process this kind of ONEVIDEO

	Span

	TR
	FailExtract
	FailExtract

	Involuntary failure to extract features (e.g. could not find face in the input-image)
	Involuntary failure to extract features (e.g. could not find face in the input-image)

	Span

	TR
	FailTempl
	FailTempl

	Elective refusal to produce a template (e.g. insufficient pixels between the eyes)
	Elective refusal to produce a template (e.g. insufficient pixels between the eyes)

	Span

	TR
	FailParse
	FailParse

	Cannot parse input data (i.e. assertion that input record is non-conformant)
	Cannot parse input data (i.e. assertion that input record is non-conformant)

	Span

	TR
	Vendor
	Vendor

	Vendor-defined failure. Failure codes must be documented and communicated to NIST with the submission of the implementation under test.
	Vendor-defined failure. Failure codes must be documented and communicated to NIST with the submission of the implementation under test.

	Span

	3.7.10. The VideoFinalize Interface 899
	The abstract class VideoFinalize must be implemented by the SDK developer in a class named exactly SdkVideoFinalize. 900 The finalize function in this class takes the name of the top-level directory where enrollment database (EDB) and its 901 manifest have been stored. These are described in section
	The abstract class VideoFinalize must be implemented by the SDK developer in a class named exactly SdkVideoFinalize. 900 The finalize function in this class takes the name of the top-level directory where enrollment database (EDB) and its 901 manifest have been stored. These are described in section
	2.4
	2.4

	. The enrollment directory permissions will be read + 902 write. 903

	Table
	TR
	TD
	Span
	

	TD
	Span
	C++ code fragment

	TD
	Span
	Remarks

	Span

	1.
	1.
	1.

	class VideoFinalize
	class VideoFinalize

	
	

	Span

	2.
	2.
	2.

	{
	{
	public:

	
	

	Span

	3.
	3.
	3.

	 virtual ReturnCode finalize(
	 virtual ReturnCode finalize(
	 const string &enrollDir,
	 const string &edbName,
	 const string &edbManifest) = 0;

	This function supports post-enrollment developer-optional book-keeping operations and statistical processing. The function will generally be called in a separate process after all the enrollment processes are complete.
	This function supports post-enrollment developer-optional book-keeping operations and statistical processing. The function will generally be called in a separate process after all the enrollment processes are complete.

	Span

	4.
	4.
	4.

	 // Destructor
	 // Destructor

	
	

	Span

	5.
	5.
	5.

	};
	};

	
	

	Span

	3.7.11. Finalize video enrollment 904
	After all templates have been created, the function of
	After all templates have been created, the function of
	Table 50
	Table 50

	 will be called. This freezes the enrollment data. After this 905 call the enrollment dataset will be forever read-only. This API does not support interleaved enrollment and search 906 phases. 907

	The function allows the implementation to conduct, for example, statistical processing of the feature data, indexing and 908 data re-organization. The function may alter the file structure. It may increase or decrease the size of the stored data. 909 No output is expected from this function, except a return code. 910
	Table 50 – VideoFinalize::finalize 911
	Prototypes
	Prototypes
	Prototypes
	Prototypes

	ReturnCode finalize (
	ReturnCode finalize (

	
	

	Span

	TR
	const string &enrollDir,
	const string &enrollDir,

	Input
	Input

	Span

	Table
	TR
	const string &edbName,
	const string &edbName,

	Input
	Input

	Span

	TR
	const string &edbManifest);
	const string &edbManifest);

	Input
	Input

	Span

	Description
	Description
	Description

	This function takes the name of the top-level directory where enrollment database (EDB) and its manifest have been stored. These are described in section
	This function takes the name of the top-level directory where enrollment database (EDB) and its manifest have been stored. These are described in section
	This function takes the name of the top-level directory where enrollment database (EDB) and its manifest have been stored. These are described in section
	2.4
	2.4

	. The enrollment directory permissions will be read + write.

	The function supports post-enrollment developer-optional book-keeping operations and statistical processing. The function will generally be called in a separate process after all the enrollment processes are complete.
	This function should be tolerant of being called two or more times. Second and third invocations should probably do nothing.

	Span

	Input
	Input
	Input
	Parameters

	enrollDir
	enrollDir

	The top-level directory in which enrollment data was placed. This variable allows an implementation to locate any private initialization data it elected to place in the directory.
	The top-level directory in which enrollment data was placed. This variable allows an implementation to locate any private initialization data it elected to place in the directory.

	Span

	TR
	edbName
	edbName

	The name of a single file containing concatenated templates, i.e. the EDB of section
	The name of a single file containing concatenated templates, i.e. the EDB of section
	The name of a single file containing concatenated templates, i.e. the EDB of section
	2.4
	2.4

	.

	While the file will have read-write-delete permission, the SDK should only alter the file if it preserves the necessary content, in other files for example.
	The file may be opened directly. It is not necessary to prepend a directory name.

	Span

	TR
	edbManifest
	edbManifest

	The name of a single file containing the EDB manifest of section
	The name of a single file containing the EDB manifest of section
	The name of a single file containing the EDB manifest of section
	2.4
	2.4

	.

	The file may be opened directly. It is not necessary to prepend a directory name.

	Span

	Output Parameters
	Output Parameters
	Output Parameters

	None
	None

	
	

	Span

	ReturnCode
	ReturnCode
	ReturnCode

	Success
	Success

	Success
	Success

	Span

	TR
	FinInputData
	FinInputData

	Cannot locate the input data - the input files or names seem incorrect.
	Cannot locate the input data - the input files or names seem incorrect.

	Span

	TR
	EnrollDirFailed
	EnrollDirFailed

	An operation on the enrollment directory failed (e.g. permission, space).
	An operation on the enrollment directory failed (e.g. permission, space).

	Span

	TR
	FinTemplFormat
	FinTemplFormat

	One or more template files are in an incorrect format.
	One or more template files are in an incorrect format.

	Span

	TR
	Vendor
	Vendor

	Vendor-defined failure. Failure codes must be documented and communicated to NIST with the submission of the implementation under test.
	Vendor-defined failure. Failure codes must be documented and communicated to NIST with the submission of the implementation under test.

	Span

	3.7.12. The VideoFeatureExtraction Interface 912
	The abstract class VideoFeatureExtraction must be implemented by the SDK developer in a class named exactly 913 SdkVideoFeatureExtraction. 914
	Table
	TR
	TD
	Span
	

	TD
	Span
	C++ code fragment

	TD
	Span
	Remarks

	Span

	1.
	1.
	1.

	class VideoFeatureExtraction
	class VideoFeatureExtraction

	
	

	Span

	2.
	2.
	2.

	{
	{
	public:

	
	

	Span

	3.
	3.
	3.

	 virtual ReturnCode initialize(
	 virtual ReturnCode initialize(
	 const string &configDir,
	 const string &enrollDir) = 0;

	Initialize the feature extraction session.
	Initialize the feature extraction session.

	Span

	4.
	4.
	4.

	 virtual ReturnCode generateIdTemplate(
	 virtual ReturnCode generateIdTemplate(
	 const ONEVIDEO &inputVideo,
	 vector<PERSONREP> &idTemplates) = 0;

	Generate identification template(s) for the persons detected in the input video. This function takes an ONEVIDEO (see
	Generate identification template(s) for the persons detected in the input video. This function takes an ONEVIDEO (see
	Generate identification template(s) for the persons detected in the input video. This function takes an ONEVIDEO (see
	3.7.2
	3.7.2

) as input and populates a vector of PERSONREP (see
	3.7.5
	3.7.5

) with the number of persons detected from the video sequence. The implementation could call vector::push_back to insert into the vector.

	Span

	5.
	5.
	5.

	 // Destructor
	 // Destructor

	
	

	Span

	6.
	6.
	6.

	};
	};

	
	

	Span

	3.7.13. Video feature extraction initialization 915
	Before one or more ONEVIDEOs are sent to the identification feature extraction function, the test harness will call the 916 initialization function below. 917
	Table 51 – VideoFeatureExtraction::initialize 918
	Prototype
	Prototype
	Prototype
	Prototype

	ReturnCode initialize(
	ReturnCode initialize(

	
	

	Span

	TR
	const string &configDir,
	const string &configDir,

	Input
	Input

	Span

	Table
	TR
	const string &enrollDir);
	const string &enrollDir);

	Input
	Input

	Span

	Description
	Description
	Description
	

	This function initializes the SDK under test and sets all needed parameters. This function will be called once by the NIST application immediately before any M  1 calls to generateIdTemplate. The SDK should tolerate execution of P => 1 processes on the same machine each of which can read the configuration directory. This function may be called P times and these may be running simultaneously and in parallel.
	This function initializes the SDK under test and sets all needed parameters. This function will be called once by the NIST application immediately before any M  1 calls to generateIdTemplate. The SDK should tolerate execution of P => 1 processes on the same machine each of which can read the configuration directory. This function may be called P times and these may be running simultaneously and in parallel.
	
	The implementation has read-only access to its prior enrollment data.

	Span

	Input Parameters
	Input Parameters
	Input Parameters

	configDir
	configDir

	A read-only directory containing any developer-supplied configuration parameters or run-time data files.
	A read-only directory containing any developer-supplied configuration parameters or run-time data files.

	Span

	
	
	

	enrollDir
	enrollDir

	The top-level directory in which enrollment data was placed and then finalized by the implementation. The implementation can parameterize subsequent template production on the basis of the enrolled dataset.
	The top-level directory in which enrollment data was placed and then finalized by the implementation. The implementation can parameterize subsequent template production on the basis of the enrolled dataset.

	Span

	Output
	Output
	Output
	Parameters

	none
	none

	
	

	Span

	ReturnCode
	ReturnCode
	ReturnCode

	Success
	Success

	Success
	Success

	Span

	TR
	MissingConfig
	MissingConfig

	The configuration data is missing, unreadable, or in an unexpected format.
	The configuration data is missing, unreadable, or in an unexpected format.

	Span

	TR
	EnrollDirFailed
	EnrollDirFailed

	An operation on the enrollment directory failed (e.g. permission).
	An operation on the enrollment directory failed (e.g. permission).

	Span

	TR
	Vendor
	Vendor

	Vendor-defined failure
	Vendor-defined failure

	Span

	3.7.13.1. Video feature extraction 919
	An ONEVIDEO is converted to one or more identification templates using the function below. The result may be stored by 920 NIST, or used immediately. The SDK shall not attempt to store any data. 921
	Table 52 – VideoFeatureExtraction::generateIdTemplate 922
	Prototypes
	Prototypes
	Prototypes
	Prototypes

	ReturnCode generateIdTemplate(
	ReturnCode generateIdTemplate(

	
	

	Span

	TR
	const ONEVIDEO &inputVideo,
	const ONEVIDEO &inputVideo,

	Input
	Input

	Span

	TR
	std::vector<PERSONREP> &idTemplates);
	std::vector<PERSONREP> &idTemplates);

	Output
	Output

	Span

	Description
	Description
	Description

	This function takes an ONEVIDEO (see
	This function takes an ONEVIDEO (see
	This function takes an ONEVIDEO (see
	3.7.2
	3.7.2

) as input and populates a vector of PERSONREP (see
	3.7.5
	3.7.5

) with the number of persons detected from the video sequence. The implementation could call vector::push_back to insert into the vector.

	If the function executes correctly, it returns a zero exit status. The NIST calling application may commit the template to permanent storage, or may keep it only in memory (the implementation does not need to know). If the function returns a non-zero exit status, the output template will be not be used in subsequent search operations.
	The function shall not have access to the enrollment data, nor shall it attempt access.

	Span

	Input
	Input
	Input
	Parameters

	InputVideo
	InputVideo

	An instance of a section
	An instance of a section
	An instance of a section
	3.7.2
	3.7.2

	 class. Implementations must alter their behavior according to the people detected in the video sequence.

	Span

	Output Parameters
	Output Parameters
	Output Parameters

	IdTemplates
	IdTemplates

	For each person detected in the video, the function shall create a PERSONREP (see section
	For each person detected in the video, the function shall create a PERSONREP (see section
	For each person detected in the video, the function shall create a PERSONREP (see section
	3.7.5
	3.7.5

) object, populate it with a template and eye coordinates for each frame where eyes were detected, and add it to the vector.

	Span

	ReturnCode
	ReturnCode
	ReturnCode

	Success
	Success

	Success
	Success

	Span

	TR
	RefuseInput
	RefuseInput

	Elective refusal to process this kind of ONEVIDEO
	Elective refusal to process this kind of ONEVIDEO

	Span

	TR
	FailExtract
	FailExtract

	Involuntary failure to extract features (e.g. could not find face in the input-image)
	Involuntary failure to extract features (e.g. could not find face in the input-image)

	Span

	TR
	FailTempl
	FailTempl

	Elective refusal to produce a template (e.g. insufficient pixels between the eyes)
	Elective refusal to produce a template (e.g. insufficient pixels between the eyes)

	Span

	TR
	FailParse
	FailParse

	Cannot parse input data (i.e. assertion that input record is non-conformant)
	Cannot parse input data (i.e. assertion that input record is non-conformant)

	Span

	TR
	Vendor
	Vendor

	Vendor-defined failure. Failure codes must be documented and communicated to NIST with the submission of the implementation under test.
	Vendor-defined failure. Failure codes must be documented and communicated to NIST with the submission of the implementation under test.

	Span

	3.7.14. The VideoSearch Interface 923
	The abstract class VideoSearch must be implemented by the SDK developer in a class named exactly SdkVideoSearch. 924
	Table
	TR
	TD
	Span
	

	TD
	Span
	C++ code fragment

	TD
	Span
	Remarks

	Span

	1.
	1.
	1.

	class VideoSearch
	class VideoSearch

	
	

	Span

	2.
	2.
	2.
	2.

	{
	{
	public:

	
	

	Span

	3.
	3.
	3.

	 virtual ReturnCode initialize(
	 virtual ReturnCode initialize(
	 const string &configDir,
	 const string &enrollDir) = 0;

	Initialize the search session.
	Initialize the search session.

	Span

	4.
	4.
	4.

	 virtual ReturnCode identifyVideo(
	 virtual ReturnCode identifyVideo(
	 const PERSONREP &idVideoTemplate,
	 const uint32_t candListLength,
	 CANDIDATELIST &candList) = 0;

	For video-to-video identification
	For video-to-video identification
	This function searches a template generated from an ONEVIDEO against the enrollment set, and outputs a vector containing candListLength objects of Candidates (see section
	This function searches a template generated from an ONEVIDEO against the enrollment set, and outputs a vector containing candListLength objects of Candidates (see section
	3.7.7
	3.7.7

).

	Span

	5.
	5.
	5.

	 virtual ReturnCode identifyImage(
	 virtual ReturnCode identifyImage(
	 const PERSONREP &idImageTemplate,
	 const uint32_t candListLength,
	 CANDIDATELIST &candList) = 0;

	For still-to-video identification
	For still-to-video identification
	
	This function searches a template generated from a MULTIFACE against the enrollment set, and outputs a vector containing candListLength objects of Candidates.

	Span

	6.
	6.
	6.

	 // Destructor
	 // Destructor

	
	

	Span

	7.
	7.
	7.

	};
	};

	
	

	Span

	3.7.14.1. Video identification initialization 925
	The function below will be called once prior to one or more calls of the searching function of
	The function below will be called once prior to one or more calls of the searching function of
	Table 54
	Table 54

	. The function might 926 set static internal variables so that the enrollment database is available to the subsequent identification searches. 927

	Table 53 – VideoSearch::initialize 928
	Prototype
	Prototype
	Prototype
	Prototype

	ReturnCode initialize(
	ReturnCode initialize(

	
	

	Span

	TR
	const string &configDir,
	const string &configDir,

	Input
	Input

	Span

	TR
	const string &enrollDir);
	const string &enrollDir);

	Input
	Input

	Span

	Description
	Description
	Description

	This function reads whatever content is present in the enrollment_directory, for example a manifest placed there by the VideoFinalize::finalize function.
	This function reads whatever content is present in the enrollment_directory, for example a manifest placed there by the VideoFinalize::finalize function.

	Span

	Input Parameters
	Input Parameters
	Input Parameters

	configDir
	configDir

	A read-only directory containing any developer-supplied configuration parameters or run-time data files.
	A read-only directory containing any developer-supplied configuration parameters or run-time data files.

	Span

	TR
	enrollDir
	enrollDir

	The top-level directory in which enrollment data was placed.
	The top-level directory in which enrollment data was placed.

	Span

	ReturnCode
	ReturnCode
	ReturnCode

	Success
	Success

	Success
	Success

	Span

	TR
	MissingConfig
	MissingConfig

	The configuration data is missing, unreadable, or in an unexpected format.
	The configuration data is missing, unreadable, or in an unexpected format.

	Span

	TR
	EnrollDirFailed
	EnrollDirFailed

	An operation on the enrollment directory failed (e.g. permission).
	An operation on the enrollment directory failed (e.g. permission).

	Span

	TR
	Vendor
	Vendor

	Vendor-defined failure
	Vendor-defined failure

	Span

	3.7.15. Video identification search 929
	The function below compares a proprietary identification template against the enrollment data and returns a candidate 930 list. 931
	Table 54 – VideoSearch::identifyVideo and VideoSearch::identifyImage 932
	Prototype
	Prototype
	Prototype
	Prototype

	ReturnCode identifyVideo(
	ReturnCode identifyVideo(

	Searches a template generated from a ONEVIDEO against the enrollment set (video-to-video)
	Searches a template generated from a ONEVIDEO against the enrollment set (video-to-video)

	Span

	
	
	

	const PERSONREP &idVideoTemplate,
	const PERSONREP &idVideoTemplate,

	Input
	Input

	Span

	
	
	

	const uint32_t candListLength,
	const uint32_t candListLength,

	Input
	Input

	Span

	
	
	

	CANDIDATELIST &candList);
	CANDIDATELIST &candList);

	Output
	Output

	Span

	
	
	

	TD
	Span
	ReturnCode identifyImage(

	Searches a template generated from a MULTIFACE against the enrollment set (still-to-video)
	Searches a template generated from a MULTIFACE against the enrollment set (still-to-video)

	Span

	TR
	TD
	Span
	const PERSONREP &idImageTemplate,

	Input
	Input

	Span

	TR
	TD
	Span
	const uint32_t candListLength,

	Input
	Input

	Span

	TR
	TD
	Span
	CANDIDATELIST &candList);

	Output
	Output

	Span

	Description
	Description
	Description
	

	This function searches an identification template against the enrollment set, and outputs a vector containing candListLength Candidates (see section
	This function searches an identification template against the enrollment set, and outputs a vector containing candListLength Candidates (see section
	This function searches an identification template against the enrollment set, and outputs a vector containing candListLength Candidates (see section
	3.7.7
	3.7.7

). Each candidate shall be populated by the implementation and added

	Span

	Table
	TR
	to candList. Note that candList will be an empty vector when passed into this function. The candidates shall appear in descending order of similarity score - i.e. most similar entries appear first.
	to candList. Note that candList will be an empty vector when passed into this function. The candidates shall appear in descending order of similarity score - i.e. most similar entries appear first.

	Span

	Input Parameters
	Input Parameters
	Input Parameters

	idTemplate
	idTemplate

	A template from generateIdTemplate() - If the value returned by that function was non-zero the contents of idTemplate will not be used and this function (i.e. identifyVideo) will not be called.
	A template from generateIdTemplate() - If the value returned by that function was non-zero the contents of idTemplate will not be used and this function (i.e. identifyVideo) will not be called.

	Span

	TR
	candListLength
	candListLength

	The number of candidates the search should return
	The number of candidates the search should return

	Span

	Output
	Output
	Output
	Parameters

	candList
	candList

	A vector containing candListLength objects of Candidates. The datatype is defined in section
	A vector containing candListLength objects of Candidates. The datatype is defined in section
	A vector containing candListLength objects of Candidates. The datatype is defined in section
	3.7.7
	3.7.7

	. Each candidate shall be populated by the implementation and added to this vector. The candidates shall appear in descending order of similarity score - i.e. most similar entries appear first.

	Span

	ReturnCode
	ReturnCode
	ReturnCode

	Success
	Success

	Success
	Success

	Span

	TR
	IdBadTempl
	IdBadTempl

	The input template was defective.
	The input template was defective.

	Span

	TR
	Vendor
	Vendor

	Vendor-defined failure
	Vendor-defined failure

	Span

	3.7.16. The ImageEnrollment Interface 933
	The abstract class ImageEnrollment must be implemented by the SDK developer in a class named exactly 934 SdkImageEnrollment. 935
	Table
	TR
	TD
	Span
	

	TD
	Span
	C++ code fragment

	TD
	Span
	Remarks

	Span

	1.
	1.
	1.

	class ImageEnrollment
	class ImageEnrollment

	
	

	Span

	2.
	2.
	2.

	{
	{
	public:

	
	

	Span

	3.
	3.
	3.

	 virtual ReturnCode getPid(
	 virtual ReturnCode getPid(
	 string &sdkId, string &email) = 0;

	Return the sdk identifier and email
	Return the sdk identifier and email

	Span

	4.
	4.
	4.

	 virtual ReturnCode initialize(
	 virtual ReturnCode initialize(
	 const string &configDir,
	 const string &enrollDir,
	 const uint32_t numPersons,
	 const uint32_t numImages,
	 const vector<string> &descriptions) = 0 ;

	Initialize the enrollment session.
	Initialize the enrollment session.

	Span

	5.
	5.
	5.

	 virtual ReturnCode generateEnrollmentTemplate(
	 virtual ReturnCode generateEnrollmentTemplate(
	 const MULTIFACE &inputFaces,
	 PERSONREP &outputTemplate) = 0;

	This function takes a MULTIFACE (see
	This function takes a MULTIFACE (see
	This function takes a MULTIFACE (see
	2.3.3
	2.3.3

) as input and outputs a proprietary template represented by a PERSONREP (see
	3.7.5
	3.7.5

).

	
	For each input image in the MULTIFACE, the function shall return the estimated eye centers by setting PERSONREP.eyeCoordinates.

	Span

	6.
	6.
	6.

	 // Destructor
	 // Destructor

	
	

	Span

	7.
	7.
	7.

	};
	};

	
	

	Span

	3.7.17. Implementation identifier 936
	Table 55 – ImageEnrollment::getPid 937
	Prototype
	Prototype
	Prototype
	Prototype

	ReturnCode getPid(
	ReturnCode getPid(

	
	

	Span

	TR
	string &sdkId,
	string &sdkId,

	A developer-assigned ID. This shall be different for each submitted SDK.
	A developer-assigned ID. This shall be different for each submitted SDK.

	Span

	TR
	string &email);
	string &email);

	Output
	Output

	Span

	Description
	Description
	Description
	

	This function retrieves a point-of-contact email address from the implementation under test.
	This function retrieves a point-of-contact email address from the implementation under test.

	Span

	Output Parameters
	Output Parameters
	Output Parameters

	sdkId
	sdkId

	4-character version ID code as hexadecimal integer. This will be used to identify the SDK in the results reports. This value should be changed every time an SDK is submitted to NIST. The value is developer assigned - format is not regulated by NIST. EXAMPLE: "011A". The value cannot be the empty string.
	4-character version ID code as hexadecimal integer. This will be used to identify the SDK in the results reports. This value should be changed every time an SDK is submitted to NIST. The value is developer assigned - format is not regulated by NIST. EXAMPLE: "011A". The value cannot be the empty string.

	Span

	TR
	email
	email

	Point of contact email address. The value cannot be the empty string.
	Point of contact email address. The value cannot be the empty string.

	Span

	ReturnCode
	ReturnCode
	ReturnCode

	Success
	Success

	Success
	Success

	Span

	Table
	TR
	Vendor
	Vendor

	Vendor-defined failure
	Vendor-defined failure

	Span

	3.7.17.1. Initialization of the image enrollment session 938
	Before any enrollment feature extraction calls are made, the NIST test harness will call the initialization below for video-939 to-still. 940
	Table 56 – ImageEnrollment::initialize 941
	Prototype
	Prototype
	Prototype
	Prototype

	ReturnCode initialize(
	ReturnCode initialize(

	
	

	Span

	TR
	const string &configDir,
	const string &configDir,

	Input
	Input

	Span

	TR
	const string &enrollDir,
	const string &enrollDir,

	Input
	Input

	Span

	TR
	const uint32_t numPersons,
	const uint32_t numPersons,

	Input
	Input

	Span

	TR
	const uint32_t numImages,
	const uint32_t numImages,

	Input
	Input

	Span

	TR
	const std::vector<string> &descriptions);
	const std::vector<string> &descriptions);

	Input
	Input

	Span

	Description
	Description
	Description
	

	This function initializes the SDK under test and sets all needed parameters. This function will be called N=1 times by the NIST application immediately before any M  1 calls to generateEnrollmentTemplate. The SDK should tolerate execution of P > 1 processes on the same machine each of which may be reading and writing to the enrollment directory. This function may be called P times and these may be running simultaneously and in parallel.
	This function initializes the SDK under test and sets all needed parameters. This function will be called N=1 times by the NIST application immediately before any M  1 calls to generateEnrollmentTemplate. The SDK should tolerate execution of P > 1 processes on the same machine each of which may be reading and writing to the enrollment directory. This function may be called P times and these may be running simultaneously and in parallel.

	Span

	Input Parameters
	Input Parameters
	Input Parameters

	configDir
	configDir

	A read-only directory containing any developer-supplied configuration parameters or run-time data files.
	A read-only directory containing any developer-supplied configuration parameters or run-time data files.

	Span

	
	
	

	enrollDir
	enrollDir

	The directory will be initially empty, but may have been initialized and populated by separate invocations of the enrollment process. When this function is called, the SDK may populate this folder in any manner it sees fit. Permissions will be read-write-delete.
	The directory will be initially empty, but may have been initialized and populated by separate invocations of the enrollment process. When this function is called, the SDK may populate this folder in any manner it sees fit. Permissions will be read-write-delete.

	Span

	
	
	

	numPersons
	numPersons

	The number of persons who will be enrolled.
	The number of persons who will be enrolled.

	Span

	TR
	numImages
	numImages

	The total number of images that will be enrolled, summed over all identities.
	The total number of images that will be enrolled, summed over all identities.

	Span

	TR
	descriptions
	descriptions

	A lexicon of labels one of which will be assigned to each enrollment image. EXAMPLE: The descriptions could be {"mugshot", "visa"}.
	A lexicon of labels one of which will be assigned to each enrollment image. EXAMPLE: The descriptions could be {"mugshot", "visa"}.
	NOTE: The identification search images may or may not be labeled. An identification image may carry a label not in this set of labels. The number of items stored in the vector is accessible via the vector::size() function.

	Span

	Output
	Output
	Output
	Parameters

	none
	none

	
	

	Span

	ReturnCode
	ReturnCode
	ReturnCode

	Success
	Success

	Success
	Success

	Span

	TR
	MissingConfig
	MissingConfig

	The configuration data is missing, unreadable, or in an unexpected format.
	The configuration data is missing, unreadable, or in an unexpected format.

	Span

	TR
	EnrollDirFailed
	EnrollDirFailed

	An operation on the enrollment directory failed (e.g. permission, space).
	An operation on the enrollment directory failed (e.g. permission, space).

	Span

	TR
	InitNumData
	InitNumData

	The SDK cannot support the number of videos.
	The SDK cannot support the number of videos.

	Span

	TR
	InitBadDesc
	InitBadDesc

	The descriptions are unexpected, or unusable.
	The descriptions are unexpected, or unusable.

	Span

	TR
	Vendor
	Vendor

	Vendor-defined failure
	Vendor-defined failure

	Span

	3.7.17.2. Image enrollment 942
	A MULTIFACE (see
	A MULTIFACE (see
	Table 13
	Table 13

) is converted to a single enrollment template using the function below. 943

	Table 57 – ImageEnrollment::generateEnrollmentTemplate 944
	Prototypes
	Prototypes
	Prototypes
	Prototypes

	ReturnCode generateEnrollmentTemplate(
	ReturnCode generateEnrollmentTemplate(

	
	

	Span

	TR
	const MULTIFACE &inputFaces,
	const MULTIFACE &inputFaces,

	Input
	Input

	Span

	TR
	PERSONREP &outputTemplate);
	PERSONREP &outputTemplate);

	Output
	Output

	Span

	Description
	Description
	Description

	This function takes a MULTIFACE, and outputs a proprietary template in the form of a PERSONREP object. If the function executes correctly (i.e. returns a ReturnCode::Success exit status), the NIST calling application will store the template. The NIST application will concatenate the templates and pass the result to the enrollment finalization function.
	This function takes a MULTIFACE, and outputs a proprietary template in the form of a PERSONREP object. If the function executes correctly (i.e. returns a ReturnCode::Success exit status), the NIST calling application will store the template. The NIST application will concatenate the templates and pass the result to the enrollment finalization function.
	If the function gives a non-zero exit status:
	 If the exit status is ReturnCode::FailParse, NIST will debug, otherwise
	 If the exit status is ReturnCode::FailParse, NIST will debug, otherwise
	 If the exit status is ReturnCode::FailParse, NIST will debug, otherwise

	Span

	Table
	TR
	 the test driver will ignore the output template (the template may have any size including zero)
	 the test driver will ignore the output template (the template may have any size including zero)
	 the test driver will ignore the output template (the template may have any size including zero)
	 the test driver will ignore the output template (the template may have any size including zero)

	 the event will be counted as a failure to enroll. Such an event means that this person can never be identified correctly.
	 the event will be counted as a failure to enroll. Such an event means that this person can never be identified correctly.

	IMPORTANT. NIST's application writes the template to disk. The implementation must not attempt writes to the enrollment directory (nor to other resources). Any data needed during subsequent searches should be included in the template, or created from the templates during the enrollment finalization function.

	Span

	Input
	Input
	Input
	Parameters

	inputFaces
	inputFaces

	An instance of a
	An instance of a
	An instance of a
	Table 13
	Table 13

	 structure.

	Span

	Output Parameters
	Output Parameters
	Output Parameters

	outputTemplate
	outputTemplate

	An instance of a section
	An instance of a section
	An instance of a section
	3.7.5
	3.7.5

	 class, which stores proprietary template data and eye coordinates. The function shall identify the person’s estimated eye centers for each image in the MULTIFACE. The eye coordinates shall be captured in the PERSONREP.eyeCoordinates variable, which is a vector of EYEPAIR objects. In the event the eye centers cannot be calculated, the SDK shall store an EYEPAIR and set EYEPAIR.isSet to false to indicate there was a failure in generating eye coordinates. In other words, for N images in the MULTIFACE.

	Span

	ReturnCode
	ReturnCode
	ReturnCode

	Success
	Success

	Success
	Success

	Span

	TR
	RefuseInput
	RefuseInput

	Elective refusal to process this kind of ONEVIDEO
	Elective refusal to process this kind of ONEVIDEO

	Span

	TR
	FailExtract
	FailExtract

	Involuntary failure to extract features (e.g. could not find face in the input-image)
	Involuntary failure to extract features (e.g. could not find face in the input-image)

	Span

	TR
	FailTempl
	FailTempl

	Elective refusal to produce a template (e.g. insufficient pixels between the eyes)
	Elective refusal to produce a template (e.g. insufficient pixels between the eyes)

	Span

	TR
	FailParse
	FailParse

	Cannot parse input data (i.e. assertion that input record is non-conformant)
	Cannot parse input data (i.e. assertion that input record is non-conformant)

	Span

	TR
	Vendor
	Vendor

	Vendor-defined failure. Failure codes must be documented and communicated to NIST with the submission of the implementation under test.
	Vendor-defined failure. Failure codes must be documented and communicated to NIST with the submission of the implementation under test.

	Span

	3.7.18. The ImageFinalize Interface 945
	The abstract class ImageFinalize must be implemented by the SDK developer in a class named exactly SdkImageFinalize. 946 The finalize function in this class takes the name of the top-level directory where enrollment database (EDB) and its 947 manifest have been stored. These are described in section
	The abstract class ImageFinalize must be implemented by the SDK developer in a class named exactly SdkImageFinalize. 946 The finalize function in this class takes the name of the top-level directory where enrollment database (EDB) and its 947 manifest have been stored. These are described in section
	2.4
	2.4

	. The enrollment directory permissions will be read + 948 write. 949

	Table
	TR
	TD
	Span
	

	TD
	Span
	C++ code fragment

	TD
	Span
	Remarks

	Span

	1.
	1.
	1.

	class ImageFinalize
	class ImageFinalize

	
	

	Span

	2.
	2.
	2.

	{
	{
	public:

	
	

	Span

	3.
	3.
	3.

	 virtual ReturnCode finalize(
	 virtual ReturnCode finalize(
	 const string &enrollDir,
	 const string &edbName,
	 const string &edbManifest) = 0;

	This function supports post-enrollment developer-optional book-keeping operations and statistical processing. The function will generally be called in a separate process after all the enrollment processes are complete.
	This function supports post-enrollment developer-optional book-keeping operations and statistical processing. The function will generally be called in a separate process after all the enrollment processes are complete.

	Span

	4.
	4.
	4.

	 // Destructor
	 // Destructor

	
	

	Span

	5.
	5.
	5.

	};
	};

	
	

	Span

	3.7.19. Finalize image enrollment 950
	After all templates have been created, the function of
	After all templates have been created, the function of
	Table 58
	Table 58

	 will be called. This freezes the enrollment data. After this 951 call the enrollment dataset will be forever read-only. This API does not support interleaved enrollment and search 952 phases. 953

	The function allows the implementation to conduct, for example, statistical processing of the feature data, indexing and 954 data re-organization. The function may alter the file structure. It may increase or decrease the size of the stored data. 955 No output is expected from this function, except a return code. 956
	Table 58 – ImageFinalize::finalize 957
	Prototypes
	Prototypes
	Prototypes
	Prototypes

	ReturnCode finalize(
	ReturnCode finalize(

	
	

	Span

	TR
	const string &enrollDir,
	const string &enrollDir,

	Input
	Input

	Span

	TR
	const string &edbName,
	const string &edbName,

	Input
	Input

	Span

	TR
	const string &edbManifest);
	const string &edbManifest);

	Input
	Input

	Span

	Description
	Description
	Description
	Description

	This function takes the name of the top-level directory where enrollment database (EDB) and its manifest have been stored. These are described in section
	This function takes the name of the top-level directory where enrollment database (EDB) and its manifest have been stored. These are described in section
	This function takes the name of the top-level directory where enrollment database (EDB) and its manifest have been stored. These are described in section
	2.4
	2.4

	. The enrollment directory permissions will be read + write.

	The function supports post-enrollment developer-optional book-keeping operations and statistical processing. The function will generally be called in a separate process after all the enrollment processes are complete.
	This function should be tolerant of being called two or more times. Second and third invocations should probably do nothing.

	Span

	Input
	Input
	Input
	Parameters

	enrollDir
	enrollDir

	The top-level directory in which enrollment data was placed. This variable allows an implementation to locate any private initialization data it elected to place in the directory.
	The top-level directory in which enrollment data was placed. This variable allows an implementation to locate any private initialization data it elected to place in the directory.

	Span

	TR
	edbName
	edbName

	The name of a single file containing concatenated templates, i.e. the EDB of section
	The name of a single file containing concatenated templates, i.e. the EDB of section
	The name of a single file containing concatenated templates, i.e. the EDB of section
	2.4
	2.4

	.

	While the file will have read-write-delete permission, the SDK should only alter the file if it preserves the necessary content, in other files for example.
	The file may be opened directly. It is not necessary to prepend a directory name.

	Span

	TR
	edbManifest
	edbManifest

	The name of a single file containing the EDB manifest of section
	The name of a single file containing the EDB manifest of section
	The name of a single file containing the EDB manifest of section
	2.4
	2.4

	.

	The file may be opened directly. It is not necessary to prepend a directory name.

	Span

	Output Parameters
	Output Parameters
	Output Parameters

	None
	None

	
	

	Span

	ReturnCode
	ReturnCode
	ReturnCode

	Success
	Success

	Success
	Success

	Span

	TR
	FinInputData
	FinInputData

	Cannot locate the input data - the input files or names seem incorrect.
	Cannot locate the input data - the input files or names seem incorrect.

	Span

	TR
	EnrollDirFailed
	EnrollDirFailed

	An operation on the enrollment directory failed (e.g. permission, space).
	An operation on the enrollment directory failed (e.g. permission, space).

	Span

	TR
	FinTemplFormat
	FinTemplFormat

	One or more template files are in an incorrect format.
	One or more template files are in an incorrect format.

	Span

	TR
	Vendor
	Vendor

	Vendor-defined failure. Failure codes must be documented and communicated to NIST with the submission of the implementation under test.
	Vendor-defined failure. Failure codes must be documented and communicated to NIST with the submission of the implementation under test.

	Span

	3.7.20. The ImageFeatureExtraction Interface 958
	The abstract class ImageFeatureExtraction must be implemented by the SDK developer in a class named exactly 959 SdkImageFeatureExtraction. 960
	Table
	TR
	TD
	Span
	

	TD
	Span
	C++ code fragment

	TD
	Span
	Remarks

	Span

	1.
	1.
	1.

	class ImageFeatureExtraction
	class ImageFeatureExtraction

	
	

	Span

	2.
	2.
	2.

	{
	{
	public:

	
	

	Span

	3.
	3.
	3.

	 virtual ReturnCode initialize(
	 virtual ReturnCode initialize(
	 const string &configDir,
	 const string &enrollDir) = 0;

	Initialize the feature extraction session.
	Initialize the feature extraction session.

	Span

	4.
	4.
	4.

	 virtual ReturnCode generateIdTemplate(
	 virtual ReturnCode generateIdTemplate(
	 const MULTIFACE &inputFaces,
	 PERSONREP &outputTemplate) = 0;

	This function takes a MULTIFACE (see
	This function takes a MULTIFACE (see
	This function takes a MULTIFACE (see
	2.3.3
	2.3.3

) as input and outputs a proprietary template represented by a PERSONREP (see
	3.7.5
	3.7.5

).

	
	For each input image in the MULTIFACE, the function shall return the estimated eye centers by setting PERSONREP.eyeCoordinates.

	Span

	5.
	5.
	5.

	 // Destructor
	 // Destructor

	
	

	Span

	6.
	6.
	6.

	};
	};

	
	

	Span

	3.7.20.1. Image feature extraction initialization 961
	Before one or more MULTIFACEs are sent to the identification feature extraction function, the test harness will call the 962 initialization function below. 963
	Table 59 – ImageFeatureExtraction::initialize 964
	Prototype
	Prototype
	Prototype
	Prototype

	ReturnCode initialize(
	ReturnCode initialize(

	
	

	Span

	TR
	const string &configDir,
	const string &configDir,

	Input
	Input

	Span

	TR
	const string &enrollDir);
	const string &enrollDir);

	Input
	Input

	Span

	Description
	Description
	Description

	This function initializes the SDK under test and sets all needed parameters. This function will be called once by
	This function initializes the SDK under test and sets all needed parameters. This function will be called once by

	Span

	
	
	
	

	the NIST application immediately before M  1 calls to generateIdTemplate. The SDK should tolerate execution of P ≥ 1 processes on the same machine each of which can read the configuration directory. This function may be called P times and these may be running simultaneously and in parallel.
	the NIST application immediately before M  1 calls to generateIdTemplate. The SDK should tolerate execution of P ≥ 1 processes on the same machine each of which can read the configuration directory. This function may be called P times and these may be running simultaneously and in parallel.
	
	The implementation has read-only access to its prior enrollment data.

	Span

	Input Parameters
	Input Parameters
	Input Parameters

	configDir
	configDir

	A read-only directory containing any developer-supplied configuration parameters or run-time data files.
	A read-only directory containing any developer-supplied configuration parameters or run-time data files.

	Span

	
	
	

	enrollDir
	enrollDir

	The top-level directory in which enrollment data was placed and then finalized by the implementation. The implementation can parameterize subsequent template production on the basis of the enrolled dataset.
	The top-level directory in which enrollment data was placed and then finalized by the implementation. The implementation can parameterize subsequent template production on the basis of the enrolled dataset.

	Span

	Output
	Output
	Output
	Parameters

	none
	none

	
	

	Span

	ReturnCode
	ReturnCode
	ReturnCode

	Success
	Success

	Success
	Success

	Span

	TR
	MissingConfig
	MissingConfig

	The configuration data is missing, unreadable, or in an unexpected format.
	The configuration data is missing, unreadable, or in an unexpected format.

	Span

	TR
	EnrollDirFailed
	EnrollDirFailed

	An operation on the enrollment directory failed (e.g. permission).
	An operation on the enrollment directory failed (e.g. permission).

	Span

	TR
	Vendor
	Vendor

	Vendor-defined failure
	Vendor-defined failure

	Span

	3.7.20.2. Image feature extraction 965
	A MULTIFACE is converted to one identification template using the function below. The result may be stored by NIST, or 966 used immediately. The SDK shall not attempt to store any data. 967
	Table 60 – ImageFeatureExtraction::generateIdTemplate 968
	Prototypes
	Prototypes
	Prototypes
	Prototypes

	ReturnCode generateIdTemplate(
	ReturnCode generateIdTemplate(

	
	

	Span

	TR
	const MULTIFACE &inputFaces,
	const MULTIFACE &inputFaces,

	Input
	Input

	Span

	TR
	PERSONREP &outputTemplate);
	PERSONREP &outputTemplate);

	Output
	Output

	Span

	Description
	Description
	Description

	This function takes a MULTIFACE (see
	This function takes a MULTIFACE (see
	This function takes a MULTIFACE (see
	2.3.3
	2.3.3

) as input and populates a PERSONREP (see
	3.7.5
	3.7.5

) with a proprietary template and eye coordinates.

	If the function executes correctly, it returns a zero exit status. The NIST calling application may commit the template to permanent storage, or may keep it only in memory (the developer implementation does not need to know). If the function returns a non-zero exit status, the output template will be not be used in subsequent search operations.
	The function shall not have access to the enrollment data, nor shall it attempt access.

	Span

	Input
	Input
	Input
	Parameters

	inputFaces
	inputFaces

	An instance of a
	An instance of a
	An instance of a
	Table 13
	Table 13

	 structure.

	Span

	Output Parameters
	Output Parameters
	Output Parameters

	outputTemplate
	outputTemplate

	An instance of a section
	An instance of a section
	An instance of a section
	3.7.5
	3.7.5

	 class, which stores proprietary template data and eye coordinates. The function shall identify the person’s estimated eye centers for each image in the MULTIFACE. The eye coordinates shall be captured in the PERSONREP.eyeCoordinates variable, which is a vector of EYEPAIR objects. In the event the eye centers cannot be calculated, the SDK shall store an EYEPAIR and set EYEPAIR.isSet to false to indicate there was a failure in generating eye coordinates. In other words, for N images in the MULTIFACE.

	Span

	ReturnCode
	ReturnCode
	ReturnCode

	Success
	Success

	Success
	Success

	Span

	TR
	RefuseInput
	RefuseInput

	Elective refusal to process this kind of ONEVIDEO
	Elective refusal to process this kind of ONEVIDEO

	Span

	TR
	FailExtract
	FailExtract

	Involuntary failure to extract features (e.g. could not find face in the input-image)
	Involuntary failure to extract features (e.g. could not find face in the input-image)

	Span

	TR
	FailTempl
	FailTempl

	Elective refusal to produce a template (e.g. insufficient pixels between the eyes)
	Elective refusal to produce a template (e.g. insufficient pixels between the eyes)

	Span

	TR
	FailParse
	FailParse

	Cannot parse input data (i.e. assertion that input record is non-conformant)
	Cannot parse input data (i.e. assertion that input record is non-conformant)

	Span

	TR
	Vendor
	Vendor

	Vendor-defined failure. Failure codes must be documented and communicated to NIST with the submission of the implementation under test.
	Vendor-defined failure. Failure codes must be documented and communicated to NIST with the submission of the implementation under test.

	Span

	3.7.21. The ImageSearch Interface 969
	The abstract class ImageSearch must be implemented by the SDK developer in a class named exactly SdkImageSearch. 970
	Table
	TR
	TD
	Span
	

	TD
	Span
	C++ code fragment

	TD
	Span
	Remarks

	Span

	1.
	1.
	1.

	class VideoFeatureExtraction
	class VideoFeatureExtraction

	
	

	Span

	2.
	2.
	2.
	2.

	{
	{
	public:

	
	

	Span

	3.
	3.
	3.

	 virtual ReturnCode initialize(
	 virtual ReturnCode initialize(
	 const string &configDir,
	 const string &enrollDir) = 0;

	Initialize the search session.
	Initialize the search session.

	Span

	4.
	4.
	4.

	 virtual ReturnCode identifyVideo(
	 virtual ReturnCode identifyVideo(
	 const PERSONREP &idTemplate,
	 const uint32_t candListLength,
	 CANDIDATELIST &candList) = 0;

	For video-to-still identification
	For video-to-still identification
	
	This function searches a template generated from an ONEVIDEO against the enrollment set, and outputs a vector containing candListLength objects of Candidates (see section
	This function searches a template generated from an ONEVIDEO against the enrollment set, and outputs a vector containing candListLength objects of Candidates (see section
	3.7.7
	3.7.7

). Each candidate shall be populated by the implementation and added to candList. The candidates shall appear in descending order of similarity score - i.e. most similar entries appear first.

	Span

	5.
	5.
	5.

	 // Destructor
	 // Destructor

	
	

	Span

	6.
	6.
	6.

	};
	};

	
	

	Span

	3.7.21.1. Image identification initialization 971
	The function below will be called once prior to one or more calls of the searching function of
	The function below will be called once prior to one or more calls of the searching function of
	Table 62
	Table 62

	. The function might 972 set static internal variables so that the enrollment database is available to the subsequent identification searches. 973

	Table 61 – ImageSearch::initialize 974
	Prototype
	Prototype
	Prototype
	Prototype

	ReturnCode initialize(
	ReturnCode initialize(

	
	

	Span

	TR
	const string &configDir,
	const string &configDir,

	Input
	Input

	Span

	TR
	const string &enrollDir);
	const string &enrollDir);

	Input
	Input

	Span

	Description
	Description
	Description

	This function reads whatever content is present in the enrollment_directory, for example a manifest placed there by the ImageFinalize::finalize function.
	This function reads whatever content is present in the enrollment_directory, for example a manifest placed there by the ImageFinalize::finalize function.

	Span

	Input Parameters
	Input Parameters
	Input Parameters

	configDir
	configDir

	A read-only directory containing any developer-supplied configuration parameters or run-time data files.
	A read-only directory containing any developer-supplied configuration parameters or run-time data files.

	Span

	TR
	enrollDir
	enrollDir

	The top-level directory in which enrollment data was placed.
	The top-level directory in which enrollment data was placed.

	Span

	ReturnCode
	ReturnCode
	ReturnCode

	Success
	Success

	Success
	Success

	Span

	TR
	MissingConfig
	MissingConfig

	The configuration data is missing, unreadable, or in an unexpected format.
	The configuration data is missing, unreadable, or in an unexpected format.

	Span

	TR
	EnrollDirFailed
	EnrollDirFailed

	An operation on the enrollment directory failed (e.g. permission).
	An operation on the enrollment directory failed (e.g. permission).

	Span

	TR
	Vendor
	Vendor

	Vendor-defined failure
	Vendor-defined failure

	Span

	3.7.22. Image identification search 975
	The function below performs a video-to-still identification and compares a proprietary identification template generated 976 from a video against the enrollment data and returns a candidate list. 977
	Table 62 – ImageSearch::identifyVideo 978
	Prototype
	Prototype
	Prototype
	Prototype

	ReturnCode identifyVideo(
	ReturnCode identifyVideo(

	Searches a template generated from a ONEVIDEO against the enrollment set (video-to-still)
	Searches a template generated from a ONEVIDEO against the enrollment set (video-to-still)

	Span

	
	
	

	const PERSONREP &idVideoTemplate,
	const PERSONREP &idVideoTemplate,

	Input
	Input

	Span

	
	
	

	const uint32_t candListLength,
	const uint32_t candListLength,

	Input
	Input

	Span

	
	
	

	CANDIDATELIST &candList);
	CANDIDATELIST &candList);

	Output
	Output

	Span

	Description
	Description
	Description
	

	This function searches an identification template against the enrollment set, and outputs a vector containing candListLength objects of Candidates (see section
	This function searches an identification template against the enrollment set, and outputs a vector containing candListLength objects of Candidates (see section
	This function searches an identification template against the enrollment set, and outputs a vector containing candListLength objects of Candidates (see section
	3.7.7
	3.7.7

). Each candidate shall be populated by the implementation and added to candList. Note that candList will be an empty vector when passed into this function. The candidates shall appear in descending order of similarity score - i.e. most similar entries appear first.

	Span

	Input Parameters
	Input Parameters
	Input Parameters

	idTemplate
	idTemplate

	A template from VideoFeatureExtraction::generateIdTemplate() - If the value returned by that function was non-zero the contents of idTemplate will not be used and this function (i.e. identifyVideo) will not be called.
	A template from VideoFeatureExtraction::generateIdTemplate() - If the value returned by that function was non-zero the contents of idTemplate will not be used and this function (i.e. identifyVideo) will not be called.

	Span

	TR
	candListLength
	candListLength

	The number of candidates the search should return
	The number of candidates the search should return

	Span

	Output
	Output
	Output
	Output
	Parameters

	candList
	candList

	A vector containing candListLength objects of Candidates. The datatype is defined in section
	A vector containing candListLength objects of Candidates. The datatype is defined in section
	A vector containing candListLength objects of Candidates. The datatype is defined in section
	3.7.7
	3.7.7

	. Each candidate shall be populated by the implementation and added to this vector. The candidates shall appear in descending order of similarity score - i.e. most similar entries appear first.

	Span

	ReturnCode
	ReturnCode
	ReturnCode

	Success
	Success

	Success
	Success

	Span

	TR
	IdBadTempl
	IdBadTempl

	The input template was defective.
	The input template was defective.

	Span

	TR
	Vendor
	Vendor

	Vendor-defined failure
	Vendor-defined failure

	Span

	 979
	4. References 980
	FRVT 2002
	FRVT 2002
	FRVT 2002
	FRVT 2002

	Face Recognition Vendor Test 2002: Evaluation Report, NIST Interagency Report 6965, P. Jonathon Phillips, Patrick Grother, Ross J. Micheals, Duane M. Blackburn, Elham Tabassi, Mike Bone
	Face Recognition Vendor Test 2002: Evaluation Report, NIST Interagency Report 6965, P. Jonathon Phillips, Patrick Grother, Ross J. Micheals, Duane M. Blackburn, Elham Tabassi, Mike Bone

	Span

	FRVT 2002b
	FRVT 2002b
	FRVT 2002b

	Face Recognition Vendor Test 2002: Supplemental Report, NIST Interagency Report 7083, Patrick Grother
	Face Recognition Vendor Test 2002: Supplemental Report, NIST Interagency Report 7083, Patrick Grother

	Span

	FRVT 2006
	FRVT 2006
	FRVT 2006

	P. Jonathon Phillips, W. Todd Scruggs, Alice J. O’Toole, Patrick J. Flynn, Kevin W. Bowyer, Cathy L. Schott, and Matthew Sharpe. "FRVT 2006 and ICE 2006 Large-Scale Results." NISTIR 7408, March 2007.
	P. Jonathon Phillips, W. Todd Scruggs, Alice J. O’Toole, Patrick J. Flynn, Kevin W. Bowyer, Cathy L. Schott, and Matthew Sharpe. "FRVT 2006 and ICE 2006 Large-Scale Results." NISTIR 7408, March 2007.

	Span

	AN27
	AN27
	AN27

	NIST Special Publication 500-271: American National Standard for Information Systems — Data Format for the Interchange of Fingerprint, Facial, & Other Biometric Information – Part 1. (ANSI/NIST ITL 1-2007). Approved April 20, 2007.
	NIST Special Publication 500-271: American National Standard for Information Systems — Data Format for the Interchange of Fingerprint, Facial, & Other Biometric Information – Part 1. (ANSI/NIST ITL 1-2007). Approved April 20, 2007.

	Span

	IREX III
	IREX III
	IREX III

	P. Grother, G.W. Quinn, J. Matey, M. Ngan, W. Salamon, G. Fiumara, C. Watson, Iris Exchange III, Performance of Iris Identification Algorithms, NIST Interagency Report 7836, Released April 9, 2012.
	P. Grother, G.W. Quinn, J. Matey, M. Ngan, W. Salamon, G. Fiumara, C. Watson, Iris Exchange III, Performance of Iris Identification Algorithms, NIST Interagency Report 7836, Released April 9, 2012.
	P. Grother, G.W. Quinn, J. Matey, M. Ngan, W. Salamon, G. Fiumara, C. Watson, Iris Exchange III, Performance of Iris Identification Algorithms, NIST Interagency Report 7836, Released April 9, 2012.
	http://iris.nist.gov/irex
	http://iris.nist.gov/irex

	

	Span

	MBE
	MBE
	MBE

	P. Grother, G .W. Quinn, and P. J. Phillips, Multiple-Biometric Evaluation (MBE) 2010, Report on the Evaluation of 2D Still Image Face Recognition Algorithms, NIST Interagency Report 7709, Released June 22, 2010. Revised August 23, 2010.
	P. Grother, G .W. Quinn, and P. J. Phillips, Multiple-Biometric Evaluation (MBE) 2010, Report on the Evaluation of 2D Still Image Face Recognition Algorithms, NIST Interagency Report 7709, Released June 22, 2010. Revised August 23, 2010.
	http://face.nist.gov/mbe
	http://face.nist.gov/mbe
	http://face.nist.gov/mbe

	

	Span

	MINEX
	MINEX
	MINEX

	P. Grother et al., Performance and Interoperability of the INCITS 378 Template, NIST IR 7296
	P. Grother et al., Performance and Interoperability of the INCITS 378 Template, NIST IR 7296
	P. Grother et al., Performance and Interoperability of the INCITS 378 Template, NIST IR 7296
	http://fingerprint.nist.gov/minex04/minex_report.pdf
	http://fingerprint.nist.gov/minex04/minex_report.pdf

	

	Span

	MOC
	MOC
	MOC

	P. Grother and W. Salamon, MINEX II - An Assessment of ISO/IEC 7816 Card-Based Match-on-Card Capabilities
	P. Grother and W. Salamon, MINEX II - An Assessment of ISO/IEC 7816 Card-Based Match-on-Card Capabilities
	http://fingerprint.nist.gov/minex/minexII/NIST_MOC_ISO_CC_interop_test_plan_1102.pdf
	http://fingerprint.nist.gov/minex/minexII/NIST_MOC_ISO_CC_interop_test_plan_1102.pdf
	http://fingerprint.nist.gov/minex/minexII/NIST_MOC_ISO_CC_interop_test_plan_1102.pdf

	

	Span

	PERFSTD
	PERFSTD
	PERFSTD
	INTEROP

	ISO/IEC 19795-4 — Biometric Performance Testing and Reporting — Part 4: Interoperability Performance Testing. Posted as
	ISO/IEC 19795-4 — Biometric Performance Testing and Reporting — Part 4: Interoperability Performance Testing. Posted as
	ISO/IEC 19795-4 — Biometric Performance Testing and Reporting — Part 4: Interoperability Performance Testing. Posted as
	document 37N2370
	document 37N2370

	. The standard was published in 2007. It can be purchased from ANSI at
	http://webstore.ansi.org/
	http://webstore.ansi.org/

	.

	Span

	ISO
	ISO
	ISO
	STD05

	ISO/IEC 19794-5:2005 — Information technology — Biometric data interchange formats — Part 5: Face image data. The standard was published in 2005, and can be purchased from ANSI at
	ISO/IEC 19794-5:2005 — Information technology — Biometric data interchange formats — Part 5: Face image data. The standard was published in 2005, and can be purchased from ANSI at
	ISO/IEC 19794-5:2005 — Information technology — Biometric data interchange formats — Part 5: Face image data. The standard was published in 2005, and can be purchased from ANSI at
	http://webstore.ansi.org/
	http://webstore.ansi.org/

	

	Multipart standard of "Biometric data interchange formats". This standard was published in 2005. It was amended twice to include guidance to photographers, and then to include 3D information. Two corrigenda were published. All these changes and new material is currently being incorporated in revision of the standard. Publication is likely in early 2011. The documentary history is as follows.
	ISO/IEC 19794-5: Information technology — Biometric data interchange formats — Part 5:Face image data. First edition: 2005-06-15.
	International Standard ISO/IEC 19794-5:2005 Technical Corrigendum 1: Published 2008-07-01
	International Standard ISO/IEC 19794-5:2005 Technical Corrigendum 2: Published 2008-07-01
	Information technology — Biometric data interchange formats — Part 5: Face image data AMENDMENT 1: Conditions for taking photographs for face image data. Published 2007-12-15
	Information technology — Biometric data interchange formats — Part 5: Face image data AMENDMENT 2: Three dimensional image data.
	JTC 1/SC37/N3303. FCD text of the second edition. Contact pgrother AT nist DOT gov for more information.

	Span

	 981
	Annex A 982 Submission of Implementations to the FRVT 2012 983
	A.1 Submission of implementations to NIST 984
	NIST requires that all software, data and configuration files submitted by the participants be signed and encrypted. 985 Signing is done with the participant's private key, and encryption is done with the NIST public key. The detailed 986 commands for signing and encrypting are given here:
	NIST requires that all software, data and configuration files submitted by the participants be signed and encrypted. 985 Signing is done with the participant's private key, and encryption is done with the NIST public key. The detailed 986 commands for signing and encrypting are given here:
	http://www.nist.gov/itl/iad/ig/encrypt.cfm
	http://www.nist.gov/itl/iad/ig/encrypt.cfm

	 987

	NIST will validate all submitted materials using the participant's public key, and the authenticity of that key will be verified 988 using the key fingerprint. This fingerprint must be submitted to NIST by writing it on the signed participation agreement. 989
	By encrypting the submissions, we ensure privacy; by signing the submission, we ensure authenticity (the software 990 actually belongs to the submitter). NIST will reject any submission that is not signed and encrypted. NIST accepts no 991 responsibility for anything that is transmitted to NIST that is not signed and encrypted with the NIST public key. 992
	A.2 How to participate 993
	Those wishing to participate in FRVT 2012 testing must do all of the following, on the schedule listed on Page
	Those wishing to participate in FRVT 2012 testing must do all of the following, on the schedule listed on Page
	2
	2

	. 994

	― IMPORTANT: Follow the instructions for cryptographic protection of your SDK and data here. 995
	― IMPORTANT: Follow the instructions for cryptographic protection of your SDK and data here. 995
	― IMPORTANT: Follow the instructions for cryptographic protection of your SDK and data here. 995
	― IMPORTANT: Follow the instructions for cryptographic protection of your SDK and data here. 995
	http://www.nist.gov/itl/iad/ig/encrypt.cfm
	http://www.nist.gov/itl/iad/ig/encrypt.cfm

	 996

	― Send a signed and fully completed copy of the Application to Participate in the Face Recognition Vendor Test (FRVT) 997 2012. This is available at
	― Send a signed and fully completed copy of the Application to Participate in the Face Recognition Vendor Test (FRVT) 997 2012. This is available at
	― Send a signed and fully completed copy of the Application to Participate in the Face Recognition Vendor Test (FRVT) 997 2012. This is available at
	http://www.nist.gov/itl/iad/ig/frvt-2012.cfm
	http://www.nist.gov/itl/iad/ig/frvt-2012.cfm

	. This must identify, and include signatures 998 from, the Responsible Parties as defined in the application. The properly signed FRVT 2012 Application to Participate 999 shall be sent to NIST as a PDF. 1000

	― Provide an SDK (Software Development Kit) library which complies with the API (Application Programmer Interface) 1001 specified in this document. 1002
	― Provide an SDK (Software Development Kit) library which complies with the API (Application Programmer Interface) 1001 specified in this document. 1002

	 Encrypted data and SDKs below 20MB can be emailed to NIST at
	 Encrypted data and SDKs below 20MB can be emailed to NIST at
	 Encrypted data and SDKs below 20MB can be emailed to NIST at
	 Encrypted data and SDKs below 20MB can be emailed to NIST at
	frvt2012@nist.gov
	frvt2012@nist.gov

	 1003

	 Encrypted data and SDKS above 20MB shall be 1004
	 Encrypted data and SDKS above 20MB shall be 1004

	EITHER 1005
	 Split into sections AFTER the encryption step. Use the unix "split" commands to make 9MB chunks, 1006 and then rename to include the filename extension need for passage through the NIST firewall. 1007
	 Split into sections AFTER the encryption step. Use the unix "split" commands to make 9MB chunks, 1006 and then rename to include the filename extension need for passage through the NIST firewall. 1007
	 Split into sections AFTER the encryption step. Use the unix "split" commands to make 9MB chunks, 1006 and then rename to include the filename extension need for passage through the NIST firewall. 1007
	 Split into sections AFTER the encryption step. Use the unix "split" commands to make 9MB chunks, 1006 and then rename to include the filename extension need for passage through the NIST firewall. 1007
	 Split into sections AFTER the encryption step. Use the unix "split" commands to make 9MB chunks, 1006 and then rename to include the filename extension need for passage through the NIST firewall. 1007

	 you% split –a 3 –d –b 9000000 libFRVT2012_enron_A_02.tgz.gpg 1008
	 you% split –a 3 –d –b 9000000 libFRVT2012_enron_A_02.tgz.gpg 1008

	 you% ls -1 x??? | xargs –iQ mv Q libFRVT2012_enron_A_02_Q.tgz.gpg 1009
	 you% ls -1 x??? | xargs –iQ mv Q libFRVT2012_enron_A_02_Q.tgz.gpg 1009

	 Email each part in a separate email. Upon receipt NIST will 1010
	 Email each part in a separate email. Upon receipt NIST will 1010

	 nist% cat frvt2012_enron_A02_*.tgz.gpg > libFRVT2012_enron_A_02.tgz.gpg 1011
	 nist% cat frvt2012_enron_A02_*.tgz.gpg > libFRVT2012_enron_A_02.tgz.gpg 1011

	OR 1012
	 Made available as a file.zip.gpg or file.zip.asc download from a generic http webserver18, 1013
	 Made available as a file.zip.gpg or file.zip.asc download from a generic http webserver18, 1013
	 Made available as a file.zip.gpg or file.zip.asc download from a generic http webserver18, 1013
	 Made available as a file.zip.gpg or file.zip.asc download from a generic http webserver18, 1013
	 Made available as a file.zip.gpg or file.zip.asc download from a generic http webserver18, 1013

	18 NIST will not register, or establish any kind of membership, on the provided website.
	18 NIST will not register, or establish any kind of membership, on the provided website.

	OR 1014
	 Mailed as a file.zip.gpg or file.zip.asc on CD / DVD to NIST at this address: 1015
	 Mailed as a file.zip.gpg or file.zip.asc on CD / DVD to NIST at this address: 1015
	 Mailed as a file.zip.gpg or file.zip.asc on CD / DVD to NIST at this address: 1015
	 Mailed as a file.zip.gpg or file.zip.asc on CD / DVD to NIST at this address: 1015
	 Mailed as a file.zip.gpg or file.zip.asc on CD / DVD to NIST at this address: 1015

	FRVT 2012 Test Liaison (A203)
	FRVT 2012 Test Liaison (A203)
	FRVT 2012 Test Liaison (A203)
	FRVT 2012 Test Liaison (A203)
	100 Bureau Drive
	A203/Tech225/Stop 8940
	NIST
	Gaithersburg, MD 20899-8940
	USA

	In cases where a courier needs a phone number, please use NIST shipping and handling on: 301 -- 975 -- 6296.
	In cases where a courier needs a phone number, please use NIST shipping and handling on: 301 -- 975 -- 6296.
	

	Span

	A.3 Implementation validation 1016
	Registered Participants will be provided with a small validation dataset and test program available on the website 1017
	http://www.nist.gov/itl/iad/ig/frvt-2012.cfm
	http://www.nist.gov/itl/iad/ig/frvt-2012.cfm
	http://www.nist.gov/itl/iad/ig/frvt-2012.cfm

	 shortly after the final evaluation plan is released. 1018

	The validation test programs shall be compiled by the provider. The output of these programs shall be submitted to NIST. 1019
	Prior to submission of the SDK and validation data, the Participant must verify that their software executes on the 1020 validation images, and produces correct similarity scores and templates. 1021
	Software submitted shall implement the FRVT 2012 API Specification as detailed in the body of this document. 1022
	Upon receipt of the SDK and validation output, NIST will attempt to reproduce the same output by executing the SDK on 1023 the validation imagery, using a NIST computer. In the event of disagreement in the output, or other difficulties, the 1024 Participant will be notified. 1025

