

NIST

Face and Iris Evaluation Activities at NIST

Dr. P. Jonathon Phillips - NIST

3 May 2006 CardTechSecurTech 2006

National Institute of Standards and Technology

...working with industry to foster innovation, trade, security and jobs

FRGC and ICE Team

- FRGC
- Program Manager for FRGC and ICE
 - P. Jonathon Phillips *NIST*
- Evaluation Team
 - Todd Scruggs SAIC
 - Matt Sharpe SAIC
 - William Worek SIAC
 - Kevin Bowyer University of Notre Dame
 - Patrick Flynn University of Notre Dame
 - Ross Beveridge Colorado State University
 - Alice O'Toole University of Texas at Dallas
- FRGC and ICE Liaison
 - Cathy Schott Schafer Corp

Outline

- Face Recognition Grand Challenge (FRGC)
 <u>http://face.nist.gov/frgc</u>
- Status of the Face Recognition Vendor Test (FRVT) 2006 <u>http://face.nist.gov/frvt2006</u>
- Comparison of Human and Computer Performance <u>http://face.nist.gov/frgc</u>
- Iris Challenge Evaluation (ICE) 2005 and 2006
 <u>http://iris.nist.gov/ice</u>

Face Recognition Grand Challenge Overview

5 N

FRGC and FRVT 2006

- What is the difference between FRGC and FRVT 2006?
 - FRGC (May 2004 March 2006)
 - Still and 3D face recognition algorithm development project
 - FRVT 2006 (30 January 2006) FACE RECOGNITION 2
 - Independent government evaluation of face recognition systems
 - Measure progress since FRVT 2002

FRGC Background

- Renewed interest in developing new methods for automatic face recognition
 - Fueled by advances in
 - Computer vision techniques
 - Computer design
 - Sensor design
 - Interest in fielding face recognition systems
- New techniques have potential to significantly reduce error rates

FRGC Objective

• The primary objective of the FRGC is to:

Develop still and 3D algorithms to improve performance an order of magnitude over FRVT 2002

Select Point to Measure

Verification rate at :

- False accept rate = 0.1%

• July 2002:

- 20% error rate (80% verification rate)

• Goal:

- 2% error rate (98% verification rate)

FRGC Modes Examined

Single Still

Outdoor/ Uncontrolled

Multiple Stills

3D Single view

3D Full Face

ISN

FRGC Experiments

Exp 1: Controlled indoor still versus indoor still

Exp 2: Multiple still versus multiple still

Exp 3: 3d versus 3D 3t - Texture only 3s - Shape only

Exp 4: Uncontrolled still versus indoor still

FRGC Participation

Summary

- Face Recognition Grand Challenge
 - Order of magnitude increase in performance
 - Systematically investigate still and 3D V/V
 - Formulate series of challenge problems
 - Face Recognition Grand Challenge Completion March 2006

FRVT 2006

- Latest in a series of large scale independent evaluations for face recognition systems
 - Previous evaluations in the series were the FERET, FRVT2000, and FRVT 2002
- Primary goal is to
 - Measure progress of prototype systems/algorithms and commercial face recognition systems since FRVT 2002
 - Conduct comparison across modalities
 - Compare performance with FRGC goals

FRVT 2006 Status Update

- The Face Recognition Vendor Test (FRVT) 2006
 - Began on 30 January 2006
 - Currently underway
 - Testing executables at this time
 - 22 Participants
 - 10 countries
 - 30% of Participants are from Academia

Human-Computer Comparison

O'Toole, Phillips, Jiang, Penard, Ayyad, Abdi 2005

Problem

- Are face recognition algorithms *ready* for applications?
 - enormous improvements over last decade
 - accuracy of algorithms tested intensively
- How accurate do they have to be to be useful?
 - meet or exceed human performance

Human-Machine Comparisons

- Same image pairs from Exp. 4
- Seven state-of-the-art algorithms
 - -4 from industry
 - 3 from academic institutions
- Comparisons
 - 120 difficult face pairs
 - 120 easy face pairs

Sampling

- homogeneous
 - caucasian males/females 20-30 yrs
 - comparisons made on identity not
 - age, race, sex
- Stimuli
 - 240 pairs of faces
 - 120 male pairs
 - 60 easy
 - 60 difficult
 - 120 female pairs
 - 60 easy
 - 60 difficult

Procedure

- Human subject raters respond...
 - 1. sure they are the same person
 - 2. think they are the same person
 - 3. not sure
 - 4. think they are not the same person
 - 5. sure they are not the same person

Identity Matching for Difficult Face Pairs

Results Summary

- 3 algorithms surpass humans!
 - NJIT (Liu, IEEE: PAMI, in press)
 - CMU (Xie et al., 2005)
 - Viisage (Husken et al., 2005)
- 4 less accurate than humans

Conclusions

- Algorithms compete favorably with humans on the difficult task of matching faces across changes in illumination
 - some algorithms are *better* than humans on "difficult" face pairs
 - nearly all are *better* than humans on "easy" face pairs

Iris Challenge Evaluation Overview

ICE Goals

- Broad Goals
 - Facilitate iris recognition technology development
 - Technology assessment of iris recognition
- Modeled after FRGC/FRVT 2005
 - FRGC (Face Recognition Grand Challenge)
 - FRVT 2006 (Face Recognition Vendor Test 2006)

ICE 2005 and 2006

- What is the difference between ICE
 Phase I 2005 and ICE Phase II 2006?
 - ICE 2005 Technology Development
 - Iris recognition challenge problems
 - Iris data set
 - ICE 2006 Evaluation
 - Independent government technology evaluation
 - Sequestered data

ICE 2005 Challenge Problems

JS

Define Experiments

Exp 1 Right Eye

1425 Iris Images124 Individuals

Iris Images Individuals

Exp 2

Left Eye

Overlapping Individuals Total Individuals

ICE 2005

- Challenge Problem
 - Open book

• Data Released September 2005

- Iris images
- Experiments
- Ground truth
- Similarity Matrices Submitted March 2006
 - Generated by participants
 - Scored by NIST
- NOT an independent Evaluation
 - NO sequestered data

ICE Participation

Result Submissions

Results submitted:

- 9 Groups
- 15 Algorithms + 1 irisBEE Baseline
- 6 Countries

• ICE Phase I Participants:

- Cambridge University (Cam 1, Cam 2)
- Carnegie Mellon University (CMU)
- Chinese Academy of Sciences, Center for Information Science (CAS 1, CAS 2, CAS 3)
- Indiana University, Purdue University, Indianapolis (IUPUI)
- Iritech (IritchA, IritchB, IrtchC, IritchD)
- PELCO (Pelco)
- SAGEM Iridian (SAGEM)
- West Virginia University (WVU)
- Yamataki Corp / Tohoku University (Tohoku)

ROC Results - Fully Automatic

Exp 1

Exp 2

Bar Plot Performance Results Fully Automatic, FAR=0.001

Bar Plot Performance Results Fully Automatic, FAR=0.001

IJZ

Eye Independence

• Purpose:

- Examine relationship between left & right iris

• Method:

- For each subject, compute mean match score
 - Right and left iris
- For each subject, compute mean non-match score
 - Right and left iris
- Scatter plot of right verses left iris
 - Mean match score
 - Mean non-match score

Eye Independence - Iritech

Eye Independence-CASIA

Quality Measures

ICE 2006 Schedule

• 1 April 2006

- ICE 2006 Protocol released

• 15 June 2006

- Executables submission deadline
- ICE 2006 evaluation begins
- December 2006

S S - ICE 2006 Final Report released